Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрические кристаллы

Электрические кристаллы 588, 589 Электроизоляционная лакоткань 588 Электроизоляционный компаунд 588  [c.687]

Научная проблема в познании электрических кристаллов сводится к установлению природы их самопроизвольной (спонтанной) электрической поляризации. Здесь положение даже сложнее, чем в магнетизме, где спонтанная намагниченность объясняется элементарными магнитными моментами электронов. Элементарных электрических диполей в природе, как известно, нет, а самопроизвольная электрическая поляризация кристаллов — не редкость.  [c.5]


Современная техника требует много хороших и разных электрических кристаллов. Такие кристаллы преобразуют тепло в электричество, и наоборот. Это пироэлектрики. Таковы, например, турмалин, сахар. Кристаллы пьезоэлектриков деформируются под действием электрического поля, а механические нагрузки вызывают в них электрическую поляризацию. Наиболее известный пьезоэлектрический кристалл — кварц. Кристаллы пьезоэлектриков излучают и принимают звук и ультразвук, стабилизируют по частоте излучения радиостанций, разграничивают частотные диапазоны в высокочастотной телефонии, служат активными элементами в измерительных приборах и пр.  [c.5]

Квантовая радиоэлектроника также не обходится без электрических кристаллов. Такие кристаллы управляют лазерным пучком отклоняют его, модулируют по интенсивности, обеспечивают получение мощных ( гигантских ) импульсов электрические кристаллы используются для генерации гармоник.  [c.6]

Среди электрических кристаллов центральное место принадлежит сегнетоэлектрикам. Такими кристаллами являются, например, сегнетова соль, титанат бария, дигидрофосфат калия. Сегнетоэлектрики — электрический аналог ферромагнетиков. Они спонтанно поляризованы, разбиваются на отдельные области — домены. Сегнетоэлектрики имеют высокую диэлектрическую проницаемость, из них можно делать малогабаритные конденсаторы большой емкости. В районе температуры возникновения (исчезновения) спонтанной поляризации (в области фазового перехода) сегнетоэлектрики испытывают аномалию практически всех физических свойств тепловых, механических, электрических, оптических. Природа этих аномалий еще не до конца понята, но резкое изменение свойств сегнетоэлектриков может быть выгодно использовано в измерительной аппаратуре и радиоаппаратуре.  [c.6]

Главное внимание в книге уделяется электрическим кристаллам однако свойствами, сходными с ними, обладают и некоторые анизотропные диэлектрические среды. Это электреты и пьезоэлектрические текстуры. Основные сведения о них и об их свойствах также будут кратко изложены в книге.  [c.6]

Описание свойств электрических кристаллов во многом связано с кристаллографией. Этим обусловлено наличие в книге первой главы, являющейся по существу кристаллографическим введением. Кристаллография в школе не изучается, а в ВУЗах преподается в ограниченном объеме. К тому же кристаллы стали широко применяться сравнительно недавно, и о них написано еще мало книг. Все это создает трудности в понимании свойств кристаллов и в свою очередь в их применении и правильном использовании. Настоящая книга рассчитана на то, чтобы хотя бы частично заполнить пробелы в знаниях о кристаллах широкого круга технических специалистов, студентов и любителей техники.  [c.6]


Для этих целей пьезоэлектрическим преобразователем возбуждаются ультразвуковые колебания. Возбуждение их происходит в результате так называемого пьезоэффекта — электрические колебания, поданные на пластину, преобразуются в механические. Это имеет место вследствие перестройки в расположении кристаллов пластины из кварца, титаната бария и д )., оси которых под действием проходящего тока поворачиваются в металле, а в результате этого поворота изменяется и суммарная длина пластины. Эти удлинения, следующие непрерывно друг за другом, создают волну.  [c.125]

Ионная (или гетерополярная) связь возникает у разнородных атомов, когда какой-либо из них отдает с внешней оболочки, а другой принимает на свою внешнюю оболочку один или несколько электронов Образующиеся при этом положительно и отрицательно заряженные ионы с завершенными внешними оболочками благодаря электрическим силам взаимно притягиваются Ионная Связь характерна только для ионных кристаллов, состоящих из разных атомов элементы не обладают ионной связью  [c.5]

Идеальные кристаллы, не содержащие примесей, почти не встречаются. Примеси в кристаллах полупроводниковых материалов увеличивают количество электронов или дырок. Так, при введении одного атома 5Ь в 1 см Ое или 81 возникает один электрон, а одного атома В— одна дырка. Присутствие даже 10 примесей изменяет электрические характеристики Ое (р = 0,15).  [c.388]

Возникновение электронной или дырочной электропроводности при введении в идеальный кристалл различных примесей обусловлено следующим. Рассмотрим кристалл 81, в котором один из атомов замещен атомом 8Ь. На внешней электронной оболочке 8Ь располагает пятью электронами (V группа периодической системы). При этом четыре электрона образуют парные электронные связи с четырьмя ближайшими атомами 81. Свободный пятый электрон продолжает двигаться вокруг атома 8Ь по орбите, подобной орбите электрона в атоме На однако сила его электрического притяжения к ядру уменьшится соответственно величине диэлектрической проницаемости 81. Поэтому для освобождения пятого электрона требуется незначительная энергия (приблизительно 0,008 адж). Такой слабо связанный электрон легко отрывается от атома 8Ь под действием тепловых колебаний решетки при низких температурах. Низкая энергия ионизации примесного атома означает, что при температурах около—100° С все атомы примесей в Се и 81 уже ионизированы, а освободившиеся электроны участвуют в процессе электропроводности. При этом основными носителями заряда являются электроны и возникает электронная (отрицательная) электропроводность, или электропроводность п -типа.  [c.388]

Существенными недостатками при выращивании монокристаллов из расплава являются неравномерное распределение примесей (а следовательно, и электрических свойств) по длине кристалла, винтовая макронеоднородность распределения примесей в кристаллах, а также структурные несовершенства в кристаллах Се и 51.  [c.391]

Нанести металлизированные проводники, соответствующие линиям связи на электрической принципиальной схеме, с помощью которых элементы кристалла соединяют в единую функциональную схему На эскизе (рис. 25.146) и на рис. 25.19а они условно изображены утолщенными линиями. На рис. 25.15 и 25.196 показаны варианты их действительного вида на чертеже, где размер а более 20 мкм (см. рис. 25.15). Допускается отклонение изображения  [c.550]

Варианты задания содержат электрическую принципиальную схему на кристалл, эскиз совмещенной топологии и таблицу с обозначениями элементов схемы и указанием соответствующих элементов. На эскизе топологии проводники показаны условно утолщенными линиями.  [c.573]

На эскизе определена схема взаимного расположения элементов и их соединений в соответствии с электрической принципиальной схемой, указаны номера эталонов и тип корпуса, в который должен быть помещен данный кристалл.  [c.578]

Из формул (2.3) и (2.6) видно, что электрическая проводимость прямо пропорциональна числу свободных электронов п, пробегу к и обратно пропорциональна скорости v, которые могут меняться от вещества к веществу. Пробег электрона ограничен тепловыми колебаниями атомов и наличием у кристалла различного рода дефектов.  [c.34]

При плавлении ионных кристаллов или кристаллов с ковалентными полярными связями, которые тоже могут образовывать ионы при температурах выше, чем температуры их плавления (ионные растворы — название предложено М. Я. Темкиным). Ионизация газов не приводит к образованию электролитов, так как основной проводящей электрический ток частицей будет электрон.  [c.288]


Эти опыты позволили определить направление колебания электрического вектора для различных конкретных случаев поляризации света. Было установлено, что в случае поляризации кристаллом турмалина электрический вектор направлен параллельно оптической оси турмалина. В случае отражения и преломления на границе двух диэлектриков направление преимущественного колебания электрического вектора соответственно совпадает с нормалью к плоскости падения и лежит в плоскости падения.  [c.229]

Чтобы убедиться в этом, направим на кристалл линейно-поляризованный свет с амплитудой Е. Угол между плоскостью колебания в падающем свете и главным сечением кристалла обозначим через а. Очевидно, что электрические векторы необыкновенного и обыкновенного лучей образуют соответственно углы а и 90 —сс с плоскостью колебания падающего линейно-поляризованного света. Тогда амплитуды колебания электрического вектора для обыкновенного ( ). и необыкновенного [Ее) лучей соответственно будут  [c.231]

Получение эллиптически-поляризованного света. Рассмотрим взаимодействие двух когерентных волн со взаимно перпендикулярными электрическими векторами, распространяющихся вдоль одной прямой. Практически такой случай можно реализовать на следующей установке (рис. 9.15) естественный свет, исходящий из точечного источника S, проходя через призму Николя, превращается в линейно-поляризованный. Пластинка П толщиной d, вырезанная из одноосного кристалла параллельно оптической оси 00, располагается так, чтобы линейно-поляризованный свет падал на нее пер-  [c.234]

Уравнение (10.19) называется уравнением волновых нормалей Френеля и позволяет определить скорость по нормали в зависимости от направления нормали N, заданного Nx, N у, N,, и от свойства кристалла, заданного главными скоростями y.v, Vy, или главными диэлектрическими проницаемостями е, ., е.у, t%. Отметим, что v, , (л — скорости света в случае, когда колебания вектора электрической индукции совершаются по главным диэлектрическим осям, а Уд/ — скорость световой волны для произвольного направления, но перпендикулярной фронту волны вектора D и, следовательно, направленной по нормали N.  [c.252]

Значительное развитие получило использование злектрических кристаллов. Такие кристаллы излучают и принимают звук и ультразвук, стабилизируют по частоте излучение радиостанций, разграничивают частотные Диапазоны в высокочастотной телефонии, служат активными элементами в измерительных приборах, управляют лазерным пучком и т.д. Среди электрических кристаллов центральное место принадлежит сегнетоэлектрикам н пьезоэлектрнкам.  [c.588]

Пьезоэлектрический преобразователь. Прямым пьезоэлектрическим эффектом называется возникновение электрической поляризации в кристаллах некоторых классов или пьеэокерамиках в результате приложения к ним внешних сил (Пьезокерамика есть продукт отжига спрессованной смеси мелкораздробленного сегнето-электрического кристалла и присадок ) В простейшем случае (рис. 5) эффект проявляется в форме поверхностных связанные зарядов пьезоэлемента, изготовленного  [c.188]

Говоря об электрических кристаллах, нельзя не рассмотреть другие электрические среды, не имеющие кристаллического строения. Такими средами являются пьезоэлектрические текстуры и электреты. Некристаллические электрические среды анизотропны и обладают рядом физических свойств, характерных для кристаллов. Анизотропные среды могут иметь остаточную (аналог спонтанной) электрическую поляризацию, пироэлектрические свойства, а некоторые текстуры — полярную анизотропию последние могут быть названы полярно-нейтральными и, следовательно, обладать пьезоэлектрическими свойствами. Характерист1я и пьезоэлектрических текстур и особенно электретов весьма специфичны, но здесь мы будем рассматривать только те из них, которые сблин ают анизотропные среды с электрическими кристаллами.  [c.155]

Ниобат лития и танталат лития (Ь1ЫЬОз и Ь1ТкОз) являются сегнето-электрическими кристаллами, а танталат лития проявляет также ярко выраженные пироэлектрические свойства. Оба кристалла используются в  [c.463]

Пример структуры ЛВС, реализующей логико-информационные связи организационных элементов САПР сложных изделий электронной техники — больших (БИС) и сверхбольших (СБИС) интегральных схем с большой степенью интеграции, приведен на рис. 2.11. С созданием таких САПР разработчик получает возможность учитывать логику работы, электрические параметры наборов типовых элементов БИС и СБИС с различной геометрией на кристалле, контролировать различные этапы разработки, так чтобы несколько разработчиков, проектирующих различные фрагменты изделий, могли использовать их правильные версии.  [c.83]

На макроуровне используют математические модели, описывающие физическое состояние и процессы в сплошных средах. Для моделирования применяют аппарат уравнений математической физики. Примерами таких уравнений служат дифференциальные уравнения в частных производных—уравнения электродинамики, теплопроводности, упругости, газовой динамики. Эти уравнения описывают поля электрического потенциала и температуры в полупроводниковых кристаллах интегральных схем, напряженно-деформированное состояние деталей механических конструкций и т. п. К типичным фазовым переменным на микроуровне относятся электрические потенциалы, давления, температуры, концентрадии частиц, плотности токов, механические напряжения и деформации. Независимыми переменными являются время и пространственные координаты. В качестве операторов F и У в уравнениях (4.2) фигурируют дифференциальные и интегральные операторы. Уравнения (4.2), дополненные краевыми условиями, составляют ММ объектов на микроуровне. Анализ таких моделей сводится к решению краевых задач математической физики.  [c.146]


На макроуровне производится дискретизация пространств с выделением в качестве элементов отдельных деталей, дискретных электрорадиоэлементов, участков полупроводниковых кристаллов. При этом из числа независимых переменных исключают пространственные координаты. Функциональные модели на макроуровне представляют собой системы алгебраических или обыкновенных дифференциальных уравнений, для их получения и решения используют соответствующие численные методы. В качестве фазовых переменных фигурируют электрические напряжения, токи, силы, скорости, температуры, расходы и т. д. Они характеризуют проявления внешних свойств элементов при их взаимодействии между собой и внешней средой в электронных схемах или механических конструкциях.  [c.146]

Рассмотрим сначала простейшее представление электрический ток — это движение электронов под воздействием приложенного электрического поля. В металлах число электронов, участвующих в электропроводности, зависит от структуры кристалла, а для одновалентных металлов —это один электрон на атом Поведение электрона, находящегося в твердом теле, удобнее всего описывать в трехмерной системе координат, для которой три декартовы координаты кх, ку и кг являются компонентами волнового числа к. Электрону с энергией Е и импульсом р соответствует волновое число к. Согласно уравнению де Бройля, р=Ьк (где Й—постоянная Планка, деленная на 2л) и Е р 12т. Положение электрона в -пространстве характеризуется вектором к, пропорциональным импульсу электрона. В ыеталле, содержащем N свободных электронов, при абсолютном нуле температуры электроны займут N 2 низших энергети-  [c.187]

Зонная структура твердого тела является результатом взаимодействия волновой функции электрона с рещеткой. Зонная структура позволяет найти частоты и направления, для которых волновая функция электрона может или не может проходить через решетку. Отражение электронной волны под углами Брэгга от кристаллографических плоскостей является идеально упругим и не вносит вклада в электрическое сопротивление. Для каждого кристалла и каждой электронной конфигурации условия Брэгга налагают определенные ограничения на направление волнового вектора и значения энергий, которые может принимать электронная волна. Эти ограничения в направлениях и значениях энергий приводят к появлению щелей в почти непрерывном спектре энергий и направлений. Именно эти щели (порядка 1 эВ для полупроводников и 5 эВ или больше для хороших диэлектриков) обусловливают сильнейшие различия между металлами, полупроводниками и диэлектриками (рис. 5.2). Для металлов характерно, что уровень Ферми оказывается внутри зоны, имеющей вакантные энергетические уровни. Полупроводники имеют полностью заполненную разрешенную зону. Ширина запрещенной зоны у них невелика, н поэтому ие большое число электронов при тепловом возбуждении может перейти в расположенную выше разрешенную зону. Диэлектрик отличается от полупроводника тем, что его запрещенная зона очень велика, и практически ни один возбужденный электрон не может ее преодолеть.  [c.190]

Из теории Максвелла следует, что свет является поперечной элект )Омагнитной волной — электрический и магпнтиь1н секторы в световой волне колеблются перпендикулярно направлению распространения. Поперечность световых волн была известна, однако, еще до появления элек.тромагп итной тео[)ии Максвелла. Уже в опытах по обнаружению двойного лучепреломления в кристалле исландского  [c.224]

Интерференция поляризованного света. До сих пор мы рассматривали взаимодействие двух световых лучей с колебаниями, происходящими во взаимно перпендикулярных направлениях, распространяющихся вдоль одной линии. Возникает естественный вопрос будет ли наблюдаться отличное от рассмотренного выи.1е явление, если оба луча являются взаимно когерентными и электрические векторы в них колеблются вдоль одной прямой Практически такой случай можно реализовать на установке (рнс. 9.21), где между двумя НИКОЛЯМИ Л/i и N-, расположена кристаллическая пластинка Я, вырезанная из одноосного кристалла параллелыю оптической оси. Параллельный пучок естестветюго спета, паправлеиный на николь Л/х, превращаясь в лине11н0- поляризованный, падает на пластинку П перпендикулярно ее поверхности. При нормальном падении пучка лучей на пластинку из одноосного кристалла, оптическая ось в которой параллельна преломляющей поверхности, возникающие  [c.240]


Смотреть страницы где упоминается термин Электрические кристаллы : [c.245]    [c.203]    [c.197]    [c.128]    [c.3]    [c.4]    [c.216]    [c.425]    [c.239]    [c.91]    [c.84]    [c.30]    [c.160]    [c.235]    [c.241]    [c.255]    [c.296]    [c.320]    [c.317]   
Конструкционные материалы (1990) -- [ c.588 , c.589 ]



ПОИСК



Влияние магнитного и электрического полей в кристалле сульфида кадмия

Кристалл как электрическая батарея. Спонтанная поляризация

Основные представления о механизме электрического старения (электролитического окрашивания) щелочно-галоидных кристаллов

Электрический вектор в кристалле



© 2025 Mash-xxl.info Реклама на сайте