Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лучи положительные 281, XII

От объекта наблюдения 7 пучок лучей падает на объектив 8 и выходит из него сходящимся. Отрицательная линза 10 превращает сходящийся пучок лучей в параллельный. Благодаря этому через анализатор 11 проходят параллельные пучки лучей. Положительная линза 12 собирает параллельные пучки в фокальную плоскость окуляра 14.  [c.240]

Показатель преломлении среды считается равным - -п, если направление луча положительно и —ге, если оио отрицательно.  [c.16]


От<0), а за лучом — положительным (т.е. 0т>0). Это правило знаков, показанное на рис. 9, является простым и, самое главное, общим для всех регуляторов режима ГТД, какими бы они ни были. Невыполнение этого правила приводит к расходящимся неустойчивым процессам при любых значениях статических и динамических констант регуляторов.  [c.207]

Через начало координат О построенного графика, проведен луч О—1 касательно к положительной части графика силы инерции. За положительное направление силы инерции принято такое, когда эта сила направлена от оси вращения кулачка, т. е. когда она стремится оторвать толкатель от профиля кулачка.  [c.222]

Электронный луч создается в специальном приборе — электронной пушке (рис. 10), с помощью которой получают узкие электронные пучки с большой плотностью энергии. Пушка имеет катод /, который может нагреваться до высоких температур. Катод размещен внутри прикатодного электрода 2. На некотором расстоянии от катода находится ускоряющий электрод (анод) 3 с отверстием. Элект-ройы, выходящие с катода, фокусируются с помощью электрического поля между прикатодным и ускоряющим электродами в пучок с диаметром, равным диаметру отверстия в аноде 5. Положительный потенциал ускоряющего электрода может достигать нескольких десятков тысяч вольт, поэтому электроны, испускаемые катодом, на пути к аноду приобретают значительную скорость и энергию. Питание пушки электрической энергией осуществляется от высоковольтного источника 7 постоянного тока.  [c.15]

Важная положительная особенность электронного луча — возможность управления им при помощи электростатических и магнитных полей. Наибольшее распространение на практике получили магнитные системы фокусировки и управления перемещением луча.  [c.110]

Лучи D/, D2, 03, , проведенные через точку D, образуют углы J) , xt)2,. .., i ), с положительным направлением оси х, причем  [c.112]

Если Vx = Vy> v , то эллипсоид вращения (лучевая поверхность необыкновенного луча) расположен внутри сферы (рис. 10.10) и оптическая ось совпадает с осью z. Такой кристалл (например, кварц) называется положительным (п = Пу По <Пг = п ). Если же Vx = Vy а Уг, то сфера расположена внутри эллипсоида вращения (рис. 10.11) и такой кристалл (например, исландский шпат) называется отрицательным (ло > Пе).  [c.259]

Случай 3. Оптическая ось О О положительного кристалла параллельна преломляющей грани и плоскости падения. Луч света падает нормально к поверхности кристалла (рис. 10.15). В этом случае обыкновенный и необыкновенный лучи распространяются, не преломившись, в направлении падения, но с разными скоростями (Уо > Vg). Для отрицательного кристалла получится тот же результат с той лишь разницей, что Vg < Ve. Если бы в данном случае луч падал под некоторым углом, отличным от нуля.  [c.263]


Принято определять направление плоскости поляризации относительно наблюдателя, смотрящего навстречу падающему лучу. Вращение называется правым (положительным), если плоскость поляризации поворачивается вправо (по часовой стрелке) для наблюдателя, и левым (отрицательным), если она поворачивается влево (против часовой стрелки).  [c.295]

При построении изображений предметов и выводе основных формул геометрической оптики рассматриваются гомоцентрические (исходящие из одной точки) пучки света. Лучи, входящие в эти пучки, должны составлять малый угол с оптической осью системы (такие лучи называют параксиальными). Для них допустима замена синуса или тангенса угла с оптической осью значением самого угла, что часто упрощает вычисления. При описании построений используют удобный прием ( правило знаков ), согласно которому все расстояния отсчитываются от границы раздела двух исследуемых сред и те из них, которые оказываются направленными против распространения луча, считаются отрицательными. Кроме того, учитывается знак угла. Положительным считается угол, отсчитываемый от направления главной оптической оси по часовой стрелке, а углом, отсчитываемым в противоположном направлении, приписывается отрицательный знак.  [c.278]

Для всех рассуждений, изложенных в 71, было существенно, что из точки Ь (см. рис. 12.10) выходит гомоцентрический пучок лучей, и отнюдь не важно, каким способом он получен. В частности, в Г может находиться не точечный источник света, а его стигматическое изображение, полученное с помощью какой-либо иной оптической системы. Следовательно, соотношение (71.3) можно последовательно применить к каждой преломляющей поверхности сложной оптической системы, понимая под Ь изображение точечного источника, образованное всеми предыдущими поверхностями. Очевидно, что при этом а-1 может быть и положительным, если на рассматри-  [c.287]

Эта общая формула линзы годна для линз выпуклых и вогнутых при любом расположении источника и соответствующем расположении фокуса. Нужно только принять во внимание знаки Пх, а , Ях, Я2, считая их положительными, если они отложены вправо от линзы, и отрицательными, если они отложены влево от линзы (как было сделано при выводе формулы (71.2)). Если знаки ах и На одинаковы, то одна из сопряженных точек — мнимая, т. е. в ней пересекаются не сами лучи, а их воображаемые продолжения.  [c.290]

Если фокусы действительны, т. е. параллельные лучи после преломления в линзе сходятся, то линза называется собирательной или положительной. При мнимых фокусах параллельные лучи после преломления в  [c.291]

Показатель преломления, соответствующий направлению малой полуоси эллипсоида в случае положительных кристаллов и большой — в случае отрицательных кристаллов, называется показателем преломления необыкновенного луча ).  [c.508]

Построение преломленных лучей показывает, что в этом случае в отрицательном кристалле необыкновенный луч преломляется силь нее, чем обыкновенный (в положительном — наоборот).  [c.514]

Под действием света освобождаются отрицательные заряды ( действие лучей есть строго униполярное, положительный заряд лучами не уносится по всей вероятности, кажущееся заряжение нейтральных тел лучами объясняется той же причиной ).  [c.635]

Ядра, в которых это соотношение нарушено, являются радиоактивными, причем ядра, имеющие избыток нейтронов, испускают электрон, а ядра, имеющие избыток протонов, — позитрон, т. е. электрон с положительным зарядом. Существование позитрона было предсказано Дираком в 1928 г. в результате анализа релятивистского квантовомеханического уравнения для электрона. В 1932 г. Андерсон обнаружил позитрон, изучая космические лучи при помощи камеры Вильсона, помещенной в магнитное поле. В лабораторных условиях позитрон впервые наблюдал Жолио-Кюри, который в 1934 г. обнаружил возникновение искусственной радиоактивности при облучении легких ядер а-частицами.  [c.20]

Очевидно, что, кроме описанного процесса образования пары электронов с противоположными зарядами должен существовать и обратный процесс перехода электрона из области положительных энергий на свободный уровень в области отрицательных энергий. В этом процессе, названном аннигиляцией, одновременно исчезают обычный электрон и дырка , что в соответствии с законами сохранения энергии и импульса должно сопровождаться переходом энергии покоя обоих электронов в энергию излучения двух Y-квантов. Разумеется, термин аннигиляция (в переводе означает уничтожение ) нельзя понимать в буквальном смысле слова, так как никакого уничтожения материи и энергии не происходит, а имеет место превращение одних частиц (е+ и е-) в другие (у-кванты) и переход энергии из одной формы в другую. Открытие в 1932 г. Андерсоном позитрона в составе космических лучей блестяще подтвердило взгляды Дирака. Электрон и позитрон были названы соответственно частицей и античастицей.  [c.546]


Л°-Частица является нейтральным гипероном. Кроме нейтрального гиперона, в опытах по изучению состава космических лучей (1958 г.), а также в опытах на космотроне (1954 г.) были обнаружены заряженные гипероны с различными схемами распада. Например, были установлены следующие схемы распада для положительного гиперона  [c.602]

КРИСТАЛЛЫ валентные (атомные) содержат в узлах кристаллической решетки нейтральные атомы (С, Ge, Те и др.), между которыми осуществляется гомеополярная связь, обусловленная квантово-механическим взаимодействием глобулярные представляют собой частный случай молекулярных кристаллов и имеют вид клубка полимеров жидкие обладают свойствами как жидкости (текучестью), так и твердого кристалла (анизотропией свойств) внутри малых объемов идеальные не имеют дефектов структуры иопные обладают гетерополярной связью между правильно чередующимися в узлах кристаллической решетки положительными и отрицательными ионами квантовые характеризуются большой амплитудой нулевых колебаний атомов, сравнимой с межатомным расстоянием металлические образуются благодаря специфической химической связи, возникающей между ионами кристаллической решетки и электронным газом (Си, А1 и др.) молекулярные (Лг, СН , парафин и др.) формируются силами Ван-дер-Вальса, главным образом дисперсионными нитевидные вытянуты в одном направлении во много раз больше, чем в остальных оптические [активные поворачивают плоскость поляризации света вокруг падающего линейно поляризованного луча анизотропные обладают двойным лучепреломлением, состоящим в том, что луч света, падающий на поверхность кристалла, раздваивается в нем на два преломленных луча двуосные имеют две оптические оси, вдоль которых свет не испытывает двойного лучепреломления одноосные (имеющие одну оптическую ось отрицательные, в которых скорость обыкновенного светового луча меньше, чем скорость распространения необыкновенного луча положительные, в которых скорость распространения обьпсновенного светового луча больше, чем скорость распространения необыкновенного луча))] КРИСТАЛЛИЗАЦИЯ— образование кристаллов из паров, растворов, расплавов веществ, находящихся в твердом состоянии в процессе электролиза и при химических реакциях  [c.244]

Исследование лучей положительных ионов < дало возможность разработать метод точного определения масс атомов различных элементов (см. Изотопы и Спектрограф массовый). Этот метод основан на том, что пучок положительных ионов, проходящий через электрическое и магнитное ноле, отклоняется на разные углы в аависимости от массы иона. Если имеются ионы различных атомов, то и отклонения их различны. Таким путем удалось напр, показать, что хлор с ат. в. 35,47 представляет собой в основном смесь двух изотопов с ат. в. 35 и 37. Если принять ат. в. кислорода равным 16, то (как показывают измерения) ат, в. всех остальных элементов очень близки л целым числам. Этот факт является одним из нанболое важных аргументов в пользу гипотезы о том, что ядра всех элементов построены из одних и тех же элементарных частиц (протонов и нейтронов). Отклонение ат. п. от це-лочисленности (дефект массы) является мерой энергии связи частиц, входящих в состав ядра.  [c.128]

Для преломленного луча тоже может осуществляться равэнство (24а). Будем считать направление оси у-ов положительным тогда, когда она направлена в сторону распространения луча положительным направлением оси х-ов будем считать направление слева направо. В этом случае для преломленного луча будут справедливы равенства  [c.196]

В момент начала нарастания нилоо бразно-го напряжения горизонтальной развертки луча осуществляется подсветка луча положительным П-имнульсом, который снимается с делителя Т з5, / з4 и Сгз, включенного в Л евое плечо мультивибратора Лу и подается на модулятор электронно-лучевой трубки Лб.  [c.138]

Основными параметрами луча лазера являются его мощность, длительность импульса и диаметр светового пятна на свариваемой поверхности, Расфокусировка луча также влияет на глубину проплав-ленпя основного металла. При положительных расфокусировках глубина проплавления изменяется более резко. Поглощение световой энергии основным металлом зависит от состояния его по-  [c.69]

Параметры электронного луча, соответствующие технологическому процессу сварки, определяют основные требования к конструкции электронной пушки (табл. 34). В сварочных установках электронная пушка состоит из следующих основных э.гсементов катод—источник электронов анод — электрод с отверстием в середине для пропускания луча к изделию, подключенный к положительному полюсу силового выпрямителя фокусирующий ири-катодныл. . .летстрод (модулятор), регулирующий силу тока в луче фокусирующая магнитная линза отклоняющая магнитная система.  [c.159]

Координаты точек круга соответствуют нормальным и касательным напряжениям на различных площадках. Так, для определения напряжений на площадке, проведенной под углом а (рис. 159), из центра круга С проводим луч под углом 2а до пересечения с окружностью в точке Da (положительные углы откладываем против часовой стрелки). Докажем, что абсцисса точки (отрезок ОКо) равна нормальному напряжению Стд, а ордината ее (отрезок KaDa) —  [c.168]

Увеличение разрешающей силы микроскопа путем уменьшения длины световой волны прнв ело к положительному результату. Микроскопы, пспользующне ультрафиолетовые лучи, позволяют увеличить разрешающую силу примерно в два раза. Переход к микроскопам, использующим рентгеновские лучи, позволил бы резко увеличить разрешающую силу. Однако отсутствие оптических линз для рентгеновских лучей делает практически почти невозможным создание рентгеновских микроскопов. Такие принципиальные трудности были преодолены после того, как в 1923 г. Луи де Бройлем была выдвинута гипотеза, согласно которой любой частице с массой т, движущейся со скоростью v, соответствует волна с длиной  [c.203]


Уравнение (10.19) квадратично относительно vh, следовательно, имеет два положительных решения, соответствующих двум различным скоростям Vj для каждого направления нормали N. Это означает, что при распространении света в анизотропной среде имеет место распростране1те одновременно двух волн с разными скоростями, которым соответствуют взаимно перпендикулярные направления колебания вектора электрической индукции . Очевидно, что при этом каждому направлению распространения и каждой поляризации будет соответствовать свой показатель преломления. Такая зависимость показателя преломления от поляризации волны приводит к раздвоению луча (двулучепреломлеиию) при прохождении анизотропных сред.  [c.252]

В качестве основного объекта исследования разумно и по сей день выбирать упомянутый выше исландский шпат, хотя почти все кристаллы в той или иной степени обладают этим свойством. Опыт показывает, что при освещении кристалла исландского шпата узким пучком света в нем возникают два луча, которые со времен Гюйгенса называют обыкновенным и необыкновенным (рис.3.1). Этот эффект наблюдается и при нормальном падении света на естественную грань кристалла. Для необыкновенного луча показатель преломления rig зависит от направления луча а кристалле, тогда как Пд — показатель преломления обыкновенного луча — остается постоянным при любом угле падения световой волны на кристалл. В частности, для исландского шпата (для света с длиной волны X = 5893А — желтый дуб.иет натрия) Лц = 1,658, а 1,486 < < 1,658. Следовательно, в данном случае Пе < По- Такие кристаллы называют отрицательными. Вместе с тем существует широкий класс веществ (например, кристаллический кварц), для которых > л,,. Такие кристаллы называют положительными.  [c.114]

Однако в 1928—1929 гг. П. Дирак, решая свое знаменитое уравнение, показал, что наряду с электроном должна быть в природе частица, похожая на электрон, но только с положительным электрическим зарядом е. В 1932 г. в составе космических лучей К- Андерсоном были обнаружены такие частицы, получившие название позитроны ( 10). Позитрон (е ) обладает такой же массой и спииом, как и электрон, но положительным электрическим зарядом е.  [c.338]

Среди решений уравнений Дирака, описывающих обычные (с положительной энергией) состояния электрона, имеются также решения, которые соответствуют состояниям с отрицательными значениями энергии. Это представляло большие трудности для теории, и первые несколько лет предпринимались 1юпытки избавиться от состояний с отрицательной энергией. Одним из авторов этих попыток был Э. Шредингер. Однако было ясно (как показал И. Е. Тамм), что без состояний, соответствующих отрицательным энергиям, теория Дирака становится бессильной объяснить ряд важнейших явлений. (Теория Дирака успешно объясняет аномальный эффект Зеемана, тонкую структуру спектральных линий, закон рассеяния -лучей, закон тормозного излучения электрона.)  [c.350]

В предыдущем параграфе мы упоминали, что показатели преломления кристаллов для обыкновенного и необыкновенного лучей неодинаковы. Так, для исландского шпата По = 1,658, а п,, может принимать в зависимости от направления луча в кристалле все значения между 1,486 и 1,658. Кристаллы, для которых, как и для исландского шпата, /ig По, называют отрицательными. Кристаллы, для которых Пе По (напримвр, квзрц), НОСЯТ иззвание положительных.  [c.384]

В 1938 г. в составе космических лучей была открыта новая элементарная частица,. получившая название ц-мезон. В резуль тате исследования свойств ц-мезонов было установлено, что они бывают положительные и отрицательные, имеют массу 207те и примерно через 2-10 сек распадаются на электрон и 2 нейтрино .  [c.53]

На сфере Пуанкаре можно ввести координаты, подобные географическим долготу ф (—180° ф 180°) и широту (О (—90° 0 90°). Положительнзя долгота отсчитывается от начальной точки Н (см. рис. 17.8) по часовой стрелке, если смотреть сверху, положительная широта — от экватора вниз. Некоторая произвольная точка А на сфере соответствует, таким образом, полностью эллиптически поляризованному лучу, у которого эллипс имеет азимут а=ф/2 и эллиптичность tg сь/2 , причем направление вращения левое при (о<0 и правое при 6)>0. Точка Я выбрана начальной потому, что ей отвечает горизонтальная линейная поляризация. Диаметрально противоположная ей точка V определяет вертикальную линейную поляризацию.  [c.36]


Смотреть страницы где упоминается термин Лучи положительные 281, XII : [c.171]    [c.86]    [c.365]    [c.16]    [c.28]    [c.263]    [c.141]    [c.330]    [c.10]    [c.74]    [c.508]    [c.102]    [c.543]    [c.95]    [c.485]   
Техническая энциклопедия Том15 (1931) -- [ c.0 ]



ПОИСК



Х-лучи



© 2025 Mash-xxl.info Реклама на сайте