Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сопротивление Влияние смазки

Рассматривая структуру уравнений (19) и (20), видим, что первые члены правых частей представляют выражения, относящиеся к сопротивлению при смазке, имеющей вязкость, не зависящую от давления влияние изменяемости вязкости от давления выражается вторым членом правых частей указанных уравнений. Следовательно, переход от весьма длинного к короткому подшипнику для первых членов правых частей уравнений (19) и (20) может быть осуществлен на основании известных переходных коэффициентов. Величины вторых членов правых частей указанных уравнений могут быть определены по средним давлениям в слое.  [c.20]


Для определения влияния покрытий на продолжительность нагрева кузнечных заготовок в пламенных печах используют коэффициент рэ , учитывающий тепловое сопротивление слоя смазки [43]  [c.110]

При полном упрощении, без учета влияния сопротивлений уплотнения, смазки, прогиба и неровностей пути, при Кт = = Кп = Кт = получим известную в теоретической механике формулу  [c.265]

Назначение и влияние смазки на процесс изнашивания деталей лифта. При перемещении одного тела по другому возникает сопротивление движению в виде касательной (тангенциальной) силы, действующей в направлении, противоположном основному направлению движения тела, называемой силой трения.  [c.156]

Скорость деформирования должна приниматься в зависимости от наличия оборудования ка данном производстве. Изменяя какой-либо из параметров, таких как температура штамповки радиус вытяжного ребра матрицы е -ч радиус закругления пуансона зазор между пуансоном и матрицей 2 толщина материала 3 ввд смазки скорость штамповки усилие прижима качество обработанной поверхности вытяжного ребра свойства материала (пластические свойства и сопротивление деформированию)- определяют прежде всего его влияние, а также оптимальное значение построением кривых в зависимости от предельного коэффициента вытяжки.  [c.29]

При работе чугуна в паре трения графит выполняет двоякую роль являясь непрочной составляющей структуры чугуна, он уменьшает сопротивление силам трения, а как продукт износа - играет роль смазки. Положительное влияние графита проявляется и в том, что, заполняя в результате изнашивания мелкие поры на трущихся поверхностях, он уравнивает удельные нагрузки, действующие на поверхность. Установлено, что при одном и том же содержании графита износостойкость чугуна возрастает с уменьшением размера графитовых включений.  [c.19]

Чеканка применяется для упрочнения канавок, выточек, шлицев, шпоночных пазов, галтелей и других поверхностей, являющихся концентраторами напряжений, g также для упрочнения зубчатых колес, сварных швов и т. д. Малые размеры бойка позволяют достичь большой энергии удара на единицу поверхности. Эффект упрочнения поэтому может быть очень высоким остаточные напряжения составлять 60—80 кгс/мм , степень наклепа — 30—50%, глубина — несколько миллиметров, долговечность деталей увели иваться в 1,5 раза и более. Чеканку можно также применять для создания нужного рельефа поверхности в целях лучшего удержания на ней смазки, повышения сопротивления относительному перемещению, восстановления плотности неподвижных посадок, уменьшения влияния контактной коррозии.  [c.117]


Не всегда указанные особенности влияния скорости на внутреннее и внешнее трение при скольжении позволяют различить эти два случая. Например, при движении так называемого ползуна по плоскости (см. рис. 43) толщина зазора, образующегося при жидкостной смазке между ползуном и подстилающей поверхностью, сама зависит от скорости скольжения, возрастая вместе с ней. Поэтому сила трения будет возрастать не пропорционально скорости движения, а медленнее, так как сопротивление  [c.187]

Скольжение как физическое явление, сопровождающее функционирование механических устройств, обладает целым рядом недостатков. Прежде всего оно характеризуется большими потерями мощности, требуемой для поддержания движения звеньев машин, интенсивным износом трущихся поверхностей, большими силами сопротивления движению. Для уменьшения влияния этих явлений во многих механических устройствах в область контакта тел подают жидкую либо газообразную смазку (часто под давлением), применяют специальные антифрикционные материалы.  [c.18]

Наиболее важным свойством смазочных материалов, оказывающим решающее влияние на работу узла, является вязкость, т. е. свойство смазки оказывать сопротивление относительному перемещению ее частиц. Вязкость масла выбирается в зависимости от удельного давления в подшипнике. С величиной вязкости связана величина предельного нагружения подшипников. В подшипниках с большими удельными давлениями применяются масла с большой вязкостью, при малых удельных давлениях — с меньшей вязкостью.  [c.252]

Таким образом, увеличение силы трения с ростом нормальной нагрузки обусловлено уменьшением толщины слоя смазки во времени под влиянием этой нагрузки и увеличением сопротивления сдвигу в нем (см. рис. 9).  [c.106]

А. С. Ахматов показал (1], что граничные смазочные слои обладают способностью повышать сопротивление давлению (упругость). При больших давлениях у относительно мягких твердых тел пластическое течение начинается одновременно или даже ранее граничных слоев, их покрывающих, т. е. граничный слой не выжимается даже при высоких давлениях. По данным П. А. Ребиндера износ поверхности происходит и при наличии масляной пленки между трущимися поверхностями. Даже при больших контактных напряжениях пленки не разрушаются и, несмотря на то, что поверхностные слои металла покрыты пленкой, они все же упруго и пластически деформируются. Не разрушаясь при механических воздействиях, смазка подвергается химическим изменениям в результате вторичных процессов и влияния обнажающихся металлических поверхностей. При износе металлов на масляную пленку больше всего влияет температура на поверхности трения.  [c.278]

Трение определяется совокупностью влияний особенностей конструкции, материалов и условий смазки. Там, где требуется до предела уменьшить сопротивление движению, возможно применение колец разгруженного типа, но все же следует оценить величину практически допустимой величины трения.  [c.74]

Графит обладает низкими механическими свойствами. Он нарушает сплошность металлической основы, располагаясь между ее зернами, ослабляя связь между ними. Поэтому серый чугун плохо сопротивляется растяжению и имеет очень низкие пластичность и вязкость. Чем крупнее и прямолинейнее графитовые включения, тем хуже механические свойства чугуна. Твердость серого чугуна, а также его сопротивление сжатию близки показателям стали, имеющей такую же структуру, как металлическая основа чугуна. Графит оказывает и некоторое положительное влияние на свойства чугуна, в частности, он повышает его износостойкость, действуя аналогично смазке, облегчает обрабатываемость резанием, так как делает стружку ломкой, способствует гашению вибраций изделий, уменьшает усадку при изготовлении отливок.  [c.138]

Изменение условий трения (нагрузка, скорость, режим смазки и др.) может привести к резкому изменению сопротивления материалов изнашиванию (рис. 20.31, а, б). Это связано с возникновением в поверхностном слое материа.лов критических температур, давлений, приводящих к необратимым структурным изменениям в зоне контакта. Образование новой структуры приводит к изменению интенсивности и даже механизма разрушения поверхности (механизма изнашивания). Сильное и многообразное по характеру влияние условий испытания на интенсивность изнашивания металлических материалов обусловливает необходимость проведения испытаний на изнашивание в возможно более широком интервале нагрузок, скоростей, условий смазывания, температур и др. (см. рис. 20.31, а, б).  [c.401]


На сопротивление вырубке также оказывает влияние скорость деформирования, смазка материала и штампа, состояние режущих кромок пуансона и матрицы, степень твердости режущих кромок и др.  [c.55]

Смазка материала и инструмента. Смазка при вырубке оказывает влияние на усилие проталкивания детали, а следовательно, и на усилие вырубки и на сопротивление вырубке. На основании исследований можно заключить, что при работе без смазки усилие проталкивания возрастает на 30—40% по сравнению с усилием проталкивания со смазкой. Это приводит к увеличению общего усилия вырубки на 3—6% по сравнению с усилием при работе со смазкой. Состояние режущих кромок инструмента (штампа) также сказывается на Тц. Экспериментально установлено, что работа с тупыми режущими кромками инструмента требует больших усилий, чем вырубка с острыми кромками (примерно на 10 — 12%).  [c.56]

Деформации могут быть следующих видов объемные (растяжения, сжатия, сдвига, изгиба, кручения), контактные и деформации в слоях смазки. При неблагоприятных условиях все они могут оказывать заметное влияние на точность механизмов. Объемные деформации определяются достаточно точно обычными методами сопротивления материалов. Наибольшее влияние из них оказывают деформации поперечного изгиба и кручения. Расчет контактных деформаций производится с помощью формул Герца и всегда является приближенным, так как эти формулы не учитывают микропрофиль поверхностей достаточно надежным расчет можно считать при чистоте поверхностей не ниже 8-го класса. Расчет деформаций в слоях смазки обычно не производится ввиду отсутствия методов и данных возможные смещения принимаются равными слою смазки.  [c.435]

Прокатку, прессование, ковку и штамповку жаропрочных сталей и сплавов начинают с температур 1100— 1220° С. Закаливают, нормализуют жаропрочные стали при 850—1050° С, никелевые сплавы — при 1050—1220° С. Для уменьшения вредного влияния воздуха жаропрочные сплавы перед штамповкой и при термообработке нагревают в контролируемых атмосферах. Ответственные детали подвергают термообработке в вакууме. Сравнительно низкая пластичность и большое сопротивление никелевых жаропрочных сплавов обработке давлением вынуждает производить штамповку в узком интервале температур (100—150° С) и в несколько переходов. Для горячей обработки давлением жаропрочных сплавов требуются эффективные высокотемпературные смазки.  [c.215]

Момент трения при вращении растёт пропорционально нагрузке и скорости, особенно резко при больших скоростях (влияние растущих эффектов трения сопротивления воздуха и потока смазки).  [c.597]

Вязкость. Вязкостью или внутренним трением называется свойство жидкостей оказывать сопротивление перемещению одной ее части относительно другой под влиянием приложенной внешней силы. Вязкость является важнейшей характеристикой, определяющей возможность и целесообразность применения того или иного масла для конкретных узлов механизмов, способность обеспечивать жидкостную смазку поверхностей трения и сводить к минимуму износ и заедание трущихся поверхностей.  [c.12]

Влияние скорости вращения на коэффициент трения практически невелико. Смазка приводит к увеличению коэффициента трения. Минимальный коэффициент трения в подшипниках качения наблюдается при отсутствии смазки. Однако смазка необходима для предохранения рабочих поверхностей от коррозии и сильного износа, имеющего место при сухом трении, и главным образом для отвода тепла, выделяющегося в подшипнике. Увеличение вязкости масла ведет к росту коэффициента трения. Излишняя подача масла в подшипники нецелесообразна, так как это ведет к увеличению сопротивления качению шариков или роликов. Работа высокоскоростных подшипников в масляной ванне недо-  [c.226]

Для устранения или уменьшения трения предложены различные методы изготовление конических насадок с углом конуса, равным углу трения испытание на сжатие цилиндрических трубчатых образцов с осевыми отверстиями и вогнутыми торцами в виде входящих конических поверхностей с углом а, равным углу трения [21, 26]. Для испытания стали рекомендуется а = 4 6°, высота образца 1—-1,5 диаметра, диаметр отверстия — 0,3 диаметра образца (рис. 15.7). Чем меньше отношение /г/с(, тем ближе весь объем образца к сжимаемым торцам, тем больше влияние трения, тем меньше касательные напряжения, тем выше сопротивление пластической деформации, выраженное в сжимающих напряжениях (рис. 15.8). Именно влиянием трения объясняется очень высокое сопротивление пластической деформации тонких прокладок из свинца и алюминия, которые при большей толщине потекли бы при значительно меньших напряжениях. Этой же причиной объясняется высокое сопротивление пластической деформации мягких подшипниковых сплавов, залитых тонким слоем на стальную основу. Вследствие влияния трения условная диаграмма сжатия (зависимость нагрузки от высоты образца) дает при значительных пластических деформациях очень крутой подъем. Продольное разрушение путем отрыва при сжатии хрупких материалов обычно наблюдается лишь при тщательной смазке на торцах.  [c.45]

От изменения метеорологических условий. Низкие температуры воздуха вызывают дополнительные сопротивления потому, что вязкость смазки увеличивается, а это обстоятельство ведет к повышению коэффициента и силы трения, развивающейся в смазочном слое между подшипником и шейкой оси. Также повышается сопротивление и при сильном ветре. Однако достоверных данных о влиянии суровых климатических условий (сильный ветер, мороз и снегопады) на основное сопротивление современного подвижного состава в настоящее время не имеется.  [c.88]


При трогании с места. Приведенные выше формулы и графики для определения удельного основного сопротивления, полученные опытным путем, действительны только при скорости выше 10 км ч. При скорости от О (момент трогания поезда с места) до 10 км ч закономерность изменения сопротивления имеет другой характер (рис. 54). Это явление объясняется тем, что при трогании поезда с места, особенно после продолжительных стоянок, смазка постепенно выдавливается из-под подшипников. Поэтому в первые моменты трогания между шейкой и подшипником возникает не жидкостное, а полужидкостное или даже полусухое трение и коэффициент трения при этом значительно повышается. Кроме того, на увеличение сопротивления в момент трогания оказывает влияние и повышение трения качения колеса по рельсу, так как при продолжительных стоянках увеличивается вдавливание бандажа в рельс по сравнению с вдавливанием при движении. Степень повышения сопротивления при трогании зависит от длительности стоянок, причем она наиболее интенсивно увеличивается в первые 20—30 мин, от нагрузки от оси на рельс, температуры окружающей среды, состояния ходовых частей, в меньшей степени от рода смазки, так как последняя во время стоянки стекает с шейки оси.  [c.88]

Для изотермического деформирования применяют гидравлические прессы, хотя для. этой цели можно использовать и другое оборудование. При этом скорость деформации может быть сколь угодно малой величиной и нижний ее предел ограничен только производительностью процесса. При уменьшении скорости деформации можно штамповать при значительно меньшем по сравнению с обычными условиями горячей штамповки сопротивлении металла деформированию. Например, сравнивали удельное усилие осадки в торец образцов диаметром 15 и высотой 20 мм из сплава ВТЗ-1 в обычных условиях на кривошипном прессе и в изотермических условиях на гидравлическом прессе без смазки при температуре 900° С. Температура нагрева штампов при штамповке на кривошипном прессе составляла 250° С. При деформации —60 % подстуживание торцов заготовки существенно не влияет на усилие деформирования. Отношение удельных усилий при штамповке на кривошипном прессе в условиях изотермической штамповки равно 2. Разница в усилии определяется только влиянием скорости деформации. Охлаждение заготовки при уменьшении ее толщины увеличивает усилие осадки на кривошипном прессе. При деформации 80% отношение удельных усилий составляет уже 2,8 [35].  [c.22]

Смазка оказывает значительное влияние на силовой режим при вытяжке, так как значительная доля усилия расходуется на преодоление сопротивления трения, возникающего в процессе деформирования.  [c.291]

Момент трения при вращении растет пропорционально нагрузке и скорости, особенно резко при больших скоростях (влияние повышенного трения скольжения на площадках контакта и отчасти сопротивления воздуха и потока смазки).  [c.250]

Влияние сопротивления утечки. Изолятор работающей свечи нередко покрывается нагаром, особенно при неправильной регулировке карбюратора или чрезмерной смазке двигателя. Нагар создает проводящие мостики, шунтирующие искровые промежутки свечей.  [c.182]

Система образования защитной полимерной пленки, В связи с тем, что граничная смазка минеральными маслами не обеспечивает необходимую защиту от износа, эксплуатационные свойства смазочных масел улучшают введением специальных противоиз-носных, антиокислительных и других присадок, что экономит расход масел и повышает долговечность машин. К этим присадкам относятся присадки на основе металлорганических соединений, что имеет некоторую аналогию с ИП. В 50-х годах была предложена смазка, содержащая компоненты полимеризующихся на контакте веществ [61]. Основой действия такой пленки являлось ее значительно большее сопротивление деформации и внедрению, чем таковое оказывает несущая жидкость. Предполагалось, что из-за нагрева участков контакта образование и схватывание пленки с металлом должно происходить на наиболее нагруженных участках, т. е. при огромных удельных давлениях, и на окисной пленке путем адсорбции или при каталитическом влиянии металла при износе окисной пленки на предельно высоких нагрузках. Как только полимерная пленка износится, увеличение трения и температуры приведет к наращиванию. новой пленки. В работе [61 ] предложен ряд маслорастворимых добавок, например смесь метилового эфира многоосновной кислоты и полиаминов, дающая полиамидный полимер трения, который эффективно снижает заедание на шестеренчатой испытательной машине Ридер .  [c.15]

Нарастание давления, начавщееся у точки В кольцевого зазора в подшипнике (рис. 245), казалось бы, если руководствоваться только формулой (а), должно непрерывно продолжаться до точки А , где угол клинового зазора обращается в нуль. Однако, как видно из рис. 245, нарастание давления уже заканчивается в точке Е, лежащей раньше точки а дальше, вплоть до точки С, находящейся е расширяющейся части кольцевого зазора, имеет место непрерывное уменьшение давления. На первый взгляд такой ход кривой давлений может быть объяснен влиянием инерции жидкости, так как по мере приближения к точке А1 скорость потока смазки непрерывно растет за счет сужения сечения, а на это увеличение скорости, на основании уравнения Бернулли, должно затрачиваться внутреннее давление. Однако, как известно, и мы это подчеркивали раньше, в условиях течения при малых зазорах влиянием инерции жидкости можно пренебречь. Поэтому объяснение явления уменьшения давления в области малых толщин слоя смазки будет иным, но также связанным с фактом увеличения екорости. Если скорости в кольцевом потоке смазки рассматривать в области сравнительно больших толщин слоя смазки, то средняя скорость в каждом отдельном сечении оказывается, как правило, меньше 0,5Уц, где Уц — окружная скорость цапфы. Вязкие же еопротивления, связанные с поддержанием таких скоростей, преодолеваются самим вращением цапфы без затраты на это внутреннего давления, даже наоборот, этот процесс сопровождается возрастанием давления. По мере же приближения к точке Л1, средняя скорость в потоке становится превышающей величину 0,ЬУц. В результате сопротивления течению жидкости, связанные с такими скоростями, не могут быть преодолены лишь за счет одного вращения цапфы необходимые для этого добавочные движущие усилия и получаются за счет падения давления. В части зазора, находящегося непосредственно за течение смазки происходит еще со средними скоростями, превышающими 0,ЬУц, поэтому для поддержания такой скорости недостаточно одного вращения цапфы, а требуется создание движущих усилий за счет дальнейшего снижения внутреннего давления, которое и продолжает падать вплоть  [c.350]

Добавочная присадка меди (0,2-=-0,3%) повышает сопротивление окислению и улучшает износостойкость. Ввиду благоприятного влияния меди разработан специальный медистый антифрикционный чугун, содержащий до 2,0% Си. Антифрикционные чугуны удовлетворительны как в отношении стойкости против износа, так и низкого коэфициента трения (примерно как у латуни в паре со сталью), но при работе в опредёленных условиях эксплоатации (обеспеченная смазка, чистота механической обработки, точность сопряжения поверхностей трения, небольшое удельное давление при малых скоростях).  [c.45]


Осуществление совершенного контакта при стыке опытных образцов является предпосылкой теории. Поэтому необходимо принимать меры для сведения влияния, контактного теплового сопротивления в опытах к. минимально возможной величине или учитывать величину температурного скачка в месте стыка расчетным путем. В расоматриваемой работе попользовался первый путь. С этой целью образцы 10 тщательно обрабатываются и проверяется их плоокопараллельность. Кроме того, при контакте поверхностей применялись сжимающие усилия и различные промежуточные контактирующие материалы смазки на графитовой основе, медная фольга, олово, жидкие металлы. Металлические прокладки должны иметь более высокую теплопроводность, чем основной материал. Кроме того, они должны иметь меньшую твердость и толщину, не превышающую удвоенную среднюю высоту микронеровностей поверхности. Возможность эффективного уменьшения теплового сопротивления за счет промежуточных тел подтверждается так же [Л. 4, 5]. Способы учета контактного сопротивления расчетным путем приводятся, в [Л. 6, 7].  [c.123]

Если стержень на оси трубы тонкий, то его влиянием на характер движения и величину сопротивления прокачиванию можно пренебречь. Тонкий слой около стенок трубы, состоящий из чистой дисперсионной среды, будет играть роль своеобразной смазки. Для труб большего диаметра его влиянием на величину расхода через сечение трубы можно пренебречь и считать, что вся масса дпсперсионной системы, движущейся по трубе, находится вне этого слоя. Влияние такого слоя будет сказываться в том, что на поверхности трубы не будет прилипания частиц дисперсной компоненты. Действительно, из уравнений движения при условии конечности напряжений на оси трубы следует  [c.435]

Диффузионные процессы в микрообъемах металла, примыкающих непосредственно к поверхности трения или к пленкам вторичных структур, могут приводить к значительным структурным изменениям в этих микрообъемах. Фрикционный нагрев способствует протеканию в поверхностном слое процессов отпуска, возврата и рекристаллизации, что приводит к разупрочнению поверхности, снижению ее несущей способности, усилению схватывания. В тяжелых условиях трения (высокие скорости и давления, отсутствие смазки), когда имеет место интенсивный фрикционный нагрев, в поверхностном слое стали может происходить а -> Y превращение. Возникает так называемый аустенит трения. И. М. Любарский с сотр. обнаружил на поверхности трения стали 20Х2Н4А аустенитный слой толщиной в несколько микрометров. После прекращения трения в процессе охлаждения этот аустенит полностью или частично распадался [20.40]. Аустенит трения в ряде случаев обладает повышенной устойчивостью и может сохраняться в структуре после охлаждения до комнатной и более низких температур. Это объясняется высоким уровнем его легированности, а также стабилизирующим влиянием деформационного и фазового наклепа. Поверхностный слой обогащается легирующими элементами в результате их диффузии из глубинных слоев металла (термодиффузия, восходящая диффузия), а также из окружающей среды. Так, при термическом разложении смазки в зоне контакта поверхность металла может насыщаться углеродом и другими элементами, содержащимися в смазке. Аустенит трения, обладая повышенной прочностью, теплостойкостью, может, увеличивать сопротивление стали изнашиванию. Образование аустенита при трении и его ускоренное охлаждение (вторичная закалка) приводят к формированию нетравящихся ( белых ) слоев на поверхности стальных деталей. Белые слои обладают высокой микротвердостью Я = 9 — 15 ГПа и значительной хрупкостью. Структура белых слоев и условия их возникновения при трении были рассмотрены в работах Б. Д. Грозина, К- В. Савицкого, И. М. Любарского и др. Установлено, что белые слои характеризуются высокой дисперсностью структуры, химической неоднородностью и сложным фазовым составом. В них присутствуют аустенит (20—80%), так называемый скрытноигольчатый (или мелкокристаллический) мартенсит и карбиды. В условиях динамического нагружения белые слои из-за высокой хрупкости интенсивно выкрашиваются, что и ведет к ускоренному повреждению поверхности.  [c.396]

Для материалов, работающих в условиях граничной смазки, самосмазывающихся материалов, в ряде других случаев фрикционного взаимодействия твердость поверхностного слоя не является определяющим параметром износостойкости. Большое значение приобретают способность поверхностных слоев многократно передеформироваться, не испытывая сильного наклепа, химическая активность поверхности в отношении окружающей среды и контртела, возможность образования поверхностных слоев с развитой анизотропией механических свойств. С точки зрения структуры, сопротивление материала усталостному изнашиванию определяется прежде всего энергией, необходимой для зарождения трещин, и скоростью их распространения. Положительное влияние ионной имплантации на прочность при малоцикловой усталости связано прежде всего с появлением радиационных дефектов, улучшающих гомогенность деформации (измельчение полос скольжения), и снижением энергии дефектов упаковки при образовании поверхностных сплавов. В условиях многоцикловой усталости большое значение приобретают остаточные напряжения, возникающие при легировании поверхности. В большинстве случаев глубина зарождения усталостных трещин при изнашивании значительно превосходит глубину имплантированного слоя. Исходя из этого, можно предположить, что имплантация влияет не на зарождение трещин, а на их развитие и выход на поверхность. В табл. 3.4 суммированы некоторые результаты исследования износостойкости ионно-легированных слоев в условиях граничной смазки и усталостного изнашивания [26].  [c.97]

Вязкость или внутреннее трение. Вязкостью называется свойство масла оказывать сопротивление перемещению одной ее части относительно другой под влиянием приложенной внешней силы. Вязкость — основной параметр, характеризующий способность масла обеспечивать жидкостную смазку поверхностей качения. Вязкость минеральных масел выражается в единицах динамической (абсолютной), кинематической и условной вязкостей. Перевод значений кинематической вязкости в градусы ВУ, секунды Редвуда или Сейболта приведен в табл. 1.  [c.341]

Течение металла, степень заполнения гравюры и сопротивление деформированию зависят от температуры подогрева штампов. Для определения влияния температуры подогрева штампов на удельное усилие штамповки образцы из стали, титановых и алюминиевых сплавов осаживали без смазки на бойках, нагретых до 100, 200, 300 и 400° С и без нагрева. Температура осадки образцов из стали и титановых сплавов составляла 1050° С, алюми- ч ниевых сплавов 480° С. Штампы нагревали индукционными нагре- вателями непрерывного действия, вмонтированными в блок. , Температуру контролировали термопарами, встроенными в штампы. Образцы из сплавов ВТЗ-1, Д16 и стали ЗОХГСА диа- метром 56 и толщиной 8 мм осаживали на КГШП усилием 15 МН до толщины —4 мм с одной и той же наладки пресса. Так как деформация образцов одних и тех же размеров при осадке на КГШП обратно пропорциональна усилию, изменение деформации характеризует влияние нагрева штампов на сопротивление деформированию (рис. 4).  [c.17]

Слой — Сопротивление вращению шипа 343—347, 355 — Слой — Эпюры давления 341, 351 Смазки — Влияние па коэффициент трения скольжения 15, 16 — Присадки проти-возадирные 28  [c.438]

Коэффициент внешнего трения между прокатываемым металлом и поверхностью валков, оказываюший большое влияние на сопротивление металла деформации при прокатке, зависит от физической природы металла, температуры прокатки, смазки, материала и качества поверхности валков, скорости прокатки. Коэффициент трения может изменяться от пропуска к пропуску.  [c.228]

Сущность процесса смазки состоит в том, что молекулы масла под влиянием сил молекулярного притяжения распространяются по трущимся поверхностям и смачивают их. При этом те слои молекул, которые непосредственно соприкасаются с трущимися поверхностями, перемещаются вместе с ними и трение в основном происходит только между промежуточными слоями молекул масла.. Так как сила притяжения между молекулами масла меньше, чем между маслом и материалом трущихся поверхностей, то и сопротивление их перемещению значительно понижается, что уменьшает потери мощности на преодоление трения. Способность смачивать поверхность твердого тела и образовывать прочную масляную пленку, защищающую трущиеся по1верхности от износа, является одним из основных требований, предъявляемых к смазочным маслам.  [c.27]


Смотреть страницы где упоминается термин Сопротивление Влияние смазки : [c.162]    [c.71]    [c.447]    [c.163]    [c.127]    [c.83]    [c.60]   
Несущая способность и расчеты деталей машин на прочность Изд3 (1975) -- [ c.163 , c.164 ]



ПОИСК



Влияние смазки

Влияние смазки на сопротивление резанию



© 2025 Mash-xxl.info Реклама на сайте