Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деформации при поперечном изгибе

Схема деформации. При поперечном изгибе от действия внешних нагрузок в сечениях, перпендикулярных оси балки, возникают касательные напряжения. Возьмем два сечения простой балки  [c.154]

Плоские сечения, перпендикулярные оси стержня до его деформации, при поперечном изгибе поворачиваются и слегка искрив-  [c.127]

Таким образом, полная энергия деформации при поперечном изгибе и = и и" или  [c.182]


Траектории напряжений и деформаций при поперечном изгибе. Эпюры напряжений, действующих в точках поперечного сечения на площадках, не лежащих в нем.  [c.180]

Физический смысл k можно вывести из формулы деформации при поперечном изгибе  [c.91]

Деформации при поперечном изгибе  [c.182]

Деформации при поперечном изгибе можно наглядно показать на примере резинового бруса. Возьмем резиновый консольный брус прямоугольного сечения (фиг. 182). Нанесем на его боковую поверх-  [c.181]

Возникновение касательных напряжений сопровождается появлением деформаций сдвига, в результате чего поперечные сечения балки перестают быть плоскими (гипотеза Бернулли теряет силу). Кроме того, при поперечном изгибе возникают напряжения в продольных сечениях балки, т. е. имеет место надавливание волокон друг на друга.  [c.150]

Образование деформаций при чистом изгибе может рассматриваться как результат поворота плоских поперечных сечений друг относительно друга (рис. 132). Рассмотрим два смежных сечения, отстоящих один от другого на расстоянии г (рис. 133). Примем левое сечение условно за неподвижное. Тогда в результате поворота правого сечения на угол с(б верхние слои удлинятся, а нижние — укоротятся. Очевидно,  [c.125]

Поскольку при переходе от верхней кромки сечения к нижней касательное напряжение изменяется по параболическому закону, деформация сдвига у=т/0 тоже изменяется по этому закону. Поэтому при поперечном изгибе поперечные сечения бруса не остаются плоскими, а искривляются (рис. 2.86).  [c.221]

При поперечном изгибе в сечениях, кроме изгибающих моментов, возникают поперечные силы, совершающие работу, но для достаточно длинных балок их влиянием на величину потенциальной энергии деформации можно пренебречь и энергию деформации вы-  [c.266]

Как было установлено ранее, в поперечных сечениях балки при поперечном изгибе возникают не только нормальные, но и касательные напряжения, вызывающие деформации сдвига. В силу закона парности такие же касательные напряжения будут возникать и в продольных сечениях, параллельных нейтральному слою. Наличие касательных напряжений в продольных сечениях подтверждается появлением в деревянных балках при поперечном изгибе продольных трещин.  [c.252]

Касательные напряжения в балках соответствуют деформации сдвига, в результате чего плоские поперечные сечения при поперечном изгибе не остаются плоскими, как при чистом изгибе, а искривляются (рис. 23.21).  [c.256]


Таким образом, задача об определении деформации при косом изгибе упруго-пластического стержня может быть сведена к рассмотрению деформации в неограниченно-упругом стержне первоначального поперечного сечения, но нагруженного, помимо заданных нагрузок, некоторыми дополнительными внешними, силами. Эпюра моментов в этом случае определяется по формулам (7.3.2).  [c.185]

Образование деформаций при чистом изгибе можно рассматривать как результат поворота плоских поперечных сечений одно относительно другого (рис. 4.12). Рассмотрим два смежных сечения, расположенных между собой на расстоянии dz (рис. 4.13). Примем левое сечение условно за неподвижное. Тогда в результате поворота правого сечения на угол dO верхние слои удлинятся, а нижние - укоротятся. Очевидно, существует слой, в котором удлинения отсутствуют. Назовем его нейтральным слоем и отметим D. В результате поворота сечений изменение кривизны нейтрального слоя будет следующим  [c.168]

Возникновение касательных напряжений г сопровождается появлением угловых деформаций 7. Поэтому, кроме основных смещений, свойственных чистому изгибу, каждая элементарная площадка сечения dF получает еще некоторые дополнительные угловые смещения, обусловленные сдвигом. Касательные напряжения распределены по сечению неравномерно, поэтому неравномерно будут распределены и угловые смещения. Это значит, что при поперечном изгибе в отличие от чистого изгиба поперечные сечения не остаются плоскими. На рис. 4.24 показана типичная картина искривления поперечных сечений.  [c.178]

В результате деформаций сдвига поперечные сечения балки при поперечном изгибе искривляются. Однако это не влияет существенно на деформации продольных волокон, а следовательно, и на распределение нормальных напряжений в поперечных сечениях балки.  [c.256]

При поперечном изгибе изгибающий момент меняется по длине балки. Пластическая деформация возникает в тех сечениях, где изгибающий момент превосходит величину  [c.560]

Характер деформации при чистом изгибе удобно наблюдать на резиновой модели бруса с нанесенной на его поверхности сеткой продольных и поперечных рисок (рис. 1 35, а) На вогнутой стороне поперечные риски при деформации бруса сближаются (волокна бруса испытывают сжатие), а на выпуклой стороне расстояния между этими рисками возрастают (волокна бруса растягиваются) поперечные риски остаются прямолинейными (рис. 135, б).  [c.214]

Угол поворота оси стержня. При чистом изгибе относительный угол поворота концевых сечений стержня определялся формулой (5.15). Такой же угол образуют касательные к оси изогнутого стержня, проведенные на его концах (поскольку концевые сечения остаются перпендикулярными оси стержня и после его изгиба). При поперечном изгибе деформация стержня обусловлена совокупным действием изгиба и сдвига, однако влияние сдвига для длинных стержней незначительно и обычно не учитывается. Так как при поперечном изгибе изгибающий момент не постоянен, а зависит от продольной координаты г, равенство (5.15) справедливо только для элементарного отрезка оси стержня длиной с1г. Для этого отрезка  [c.138]

При поперечном изгибе Мх есть функция координаты г и поэтому часть энергии деформации, обусловленная только напряжением изгиба,  [c.182]

Картину деформации бруса при поперечном изгибе удобнее всего наблюдать на резиновой модели с нанесенной на ее боковые поверхности прямоугольной сеткой. Как показывает опыт, при нагружении бруса прямоугольная сетка искажается изменяются как размеры сторон прямоугольников, так и его углы. Причем угловая деформация, вызванная поперечной силой, по высоте сечения распределяется неравномерно достигает наибольшей величины у слоя, совпадающего с осью балки и падает до нуля в наружном слое (рис. 135). Отсюда следует, что гипотеза плоских сечений здесь не выполняется. Однако искривление поперечных сечений не сказывается на законе распределения нормальных напряжений и их величине. Поэтому считают, что нормальные напряжения при поперечном изгибе. меняются по тому же закону, что и при чистом изгибе, и могут быть определены по формуле (17.10)  [c.164]


Прочность при поперечном изгибе оун, прочность при растяжении Оу, условный предел текучести при сжатии до 0,1% остаточной деформации и твердость как функции содержания Со (сверху — вес.%, снизу — об.%) при постоянном размере частиц / С, около 2 мкм [40].  [c.85]

Влияние отброшенных частей, примыкающих к элементу, заменим внутренними силами, действующими в сечениях стержня, статическим эквивалентом которых при поперечном изгибе являются Qy и Мх- По отношению к элементу эти силы являются внешними. Работа йА, совершаемая ими на соответствующих им и вызванных ими перемещениях, равна потенциальной энергии деформации (Ш, накапливаемой в элементе М  [c.193]

Поперечный изгиб. Пусть для материала балки справедлива диаграмма Прандтля. При поперечном изгибе степень развития пластических деформаций в различных сечениях различна ), так как изгибающий момент не постоянен по длине балки, как это  [c.266]

В главах XI и XII деформация тонкостенных стержней уже обсуждалась. В главе XI рассматривалось свободное кручение тонкостенных стержней открытого и замкнутого профиля и в главе XII — определение касательных напряжений в тонкостенных стержнях при поперечном изгибе и определение координат центра изгиба в поперечном сечении тонкостенного стержня открытого профиля. Ниже излагается теория стесненной деформации тонкостенных стержней открытого профиля.  [c.382]

Рис. 16.15. Деформация элемента балки от сдвига при поперечном изгибе. Рис. 16.15. Деформация элемента балки от сдвига при поперечном изгибе.
Ввиду наличия касательных напряжений в балке несколько искажается принятая нами ранее схема ее деформации. Согласно этой схеме считается, что плоские поперечные сечения стержня остаются в процессе изгиба плоскими, каждое из них лишь поворачивается вокруг нейтральной оси. При поперечном изгибе сечения балки не только поворачиваются, но и слегка искривляются. Рассмотрим иллюстрацию на рис. 10.5а. Здесь элемент балки толщиной dx (из схемы на рис. 10.2) изображен с двумя рядами малых квадратных элементов, равномерно расставленных вдоль левого и правого краев. Каждый элемент изображен находящимся в условиях чистого сдвига, кроме крайних верхних и нижних, которым отвечает условие т = 0. Нормальными напряжениями а пока пренебрежем. Каждый из квадратных элементов исказится под действием касательных напряжений, причем тем больше, чем ближе к оси х. Как показывает опыт, изначально горизонтальные площадки останутся в ходе деформирования практически параллельными друг другу. В этом процессе будет заметен преимущественно  [c.176]

При поперечном изгибе в сечениях балки возникают касательные напряжения г, определяемые поперечной силой Qy. Они также вносят свой вклад в потенциальную энергию упругой деформации стержня  [c.231]

Наличие касательных напряжений Ту сопровождается появлением угловых деформаций Уу . Касательные напряжения, как и нормальные, распределены по сечению неравномерно. Следовательно неравномерно будут распределены и угловые деформации, связанные с ними законом Гука при сдвиге. Это означает, что при поперечном изгибе в отличие от чистого изгиба сечения балки не остаются плоскими (нарушается гипотеза Я. Бернулли).  [c.137]

Определение числа степеней свободы т деформируемого сплош-него тела связано с существенными затруднениями. В ферме это число легко определяется как количество возможных (и независимых) перемещений ее узлов (см. рис. 7.4). Нетрудно его определить и в некоторых других случаях. Например, однородный изотропный брус постоянного поперечного сечения при чистом изгибе от носительно оси симметрии сечения имеет только одну степень свободы соображения симметрии приводят к тому, что поперечные сечения должны оставаться плоскими (края не учитываются), а нейтральная ось независимо от характера деформации (упругая, пластическая) — совпадать с центральной. Обобщенным перемещением здесь служит кривизна. Брус при чистом косом изгибе, если сечение имеет не более одной оси симметрии, имеет три степени свободы (две кривизны и деформация осевой линии представляют три обобщенных перемещения). При поперечном изгибе брус имеет уже, строго говоря, бесконечное число степеней свободы для определе-, ния деформаций нужно задать кривизны и положения нейтральных осей во всех сечениях (сдвиг во внимание не принимается). Но для получения приближенного решения, более простого и в то же время  [c.161]

Теперь исследуем точность, даваемую линейной интерполяцией при поперечном изгибе бруса. 3 этом случае точные значения деформаций имеют вид  [c.159]

При поперечном изгибе аксиомы П.8 и 5.1 не справедливы. Как показывают опыты, в этом случае сечения после деформации не остаются плоскими (имеет место так называемая депланация сечений ), и касательное напряжение Тху ф 0.  [c.136]

Процесс формирования деформаций при чистом изгибе может рассматриваться как результат поворота плоских поперечных сечений друг относительно друга.  [c.72]

А такая картина деформаций показана на рис. 8.27 и подробно исследована в предыдущем разделе. Повторяя без изменений рассуждения, проведенные в пп. 8.2.2 и 8.2.3, приходим снова к формулам, которые определяют нормальные напряжения и кривизну деформированной оси, но теперь уже при поперечном изгибе  [c.198]


В результате деформаций сдвига поперечные сечения балки при поперечном изгибе искривляются. Однако это существенно не влияет на деформации продольных волокон, а следовательно,  [c.286]

Выражение (б) дает величину потенциальной энергии деформации изгиба бесконечно малого элемента балки. Оно получено для элемента, находящегося в условиях чистого изгиба. При поперечном изгибе, помимо изгибающих моментов, возникают поперечные силы, но при определении энергии деформации ими в подавляющем большинстве случаев можно пренебречь и считать зависимость (б) применимой во всех случаях прямого изгиба. Для вычисления энергии деформации балки в целом следует просуммировать значения по всей ее длине. При этом следует учесть, что закон изменения изгибающих моментов для отдельных участков балки различен, поэтому вычисление определенных интегралов надо вести отдельно для каждого участка длиной а затем результаты суммировать.  [c.286]

Потенциальная энергня деформации при поперечном изгибе бруса с п участками  [c.209]

Г а в р и л и в Ю. М. Экспериментальное исследование упругих деформаций при поперечном изгибе двутавровой балки. Докл, Львовск. политехи, ин-та, 1960, 4, вып. 2, 40—45 — РЖМех, 1962, 4В375,  [c.230]

Кроме кинофильмов выпускаются кинофрагменты—-немые ролики для 5-минутной демонстрации с минимальным количеством титров. Все комментарии при их показе дает преподаватель. Кинофрагменты поступают в полное распоряжение техникумов от заказавших их министерств и ведомств. По сопротивлению материалов к настоящему времени выпущены следующие кинофрагменты Метод сечений , Напряжения, линейные и угловые деформации , Статически неопределимые системы , Заклепочные соединения , Напряж енное состояние при кручении , Внутренние силовые факторы при поперечном изгибе , Эпюры поперечных сил и изгибающих моментов , Жесткость при изгибе , Косой изгиб , Изгиб с растяжением , Гипотезы прочности , Применение гипотез прочности , Обобщенный закон Гука , Контактные деформации напряжения (две части, первая посвящена точечному контакту, вторая — линейному) и др.  [c.34]

В последующих же главах во втором томе, в частности в главах XI, XII, XIII, посвященных деформации стержней, аппарат теории сплошных сред (главным образом теория упругости) играет уже чисто служебную роль, как рабочий инструмент, с одной стороны, для оценки гипотез, используемых в элементарной теории, и границ применимости последней, а с другой стороны, для решения тех задач, которые не могут быть решены средствами элементарной теории. К числу последних относятся кручение призматических стержней некруглого поперечного сечения, свободное кручение валов переменного вдоль оси диаметра, определение полного касательного напряжения при поперечном изгибе балки, определение положения центра изгиба в поперечном сечении массивных стержней и др.  [c.13]

Фиг. 184. Поперечные деформации при чистом изгибе л- Промеры толщин по сечению АВ балки толщиной 7,32 мм б—величины (е мк), получаемые при М = 2 кгсм (напря- Фиг. 184. <a href="/info/5860">Поперечные деформации</a> при <a href="/info/4870">чистом изгибе</a> л- Промеры толщин по сечению АВ <a href="/info/405784">балки толщиной</a> 7,32 мм б—величины (е мк), получаемые при М = 2 кгсм (напря-
Кроме деформаций, входящих в соотношения (5.2.4), при поперечном изгибе стенки в ней возникают межслоевые деформации сдвига, которые, как уже отмечалось, осредняются по толщине. Б результате можно записать следующие соотношения, связьшающие средние деформации поперечного сдвига и поперечные усилия  [c.308]

Найдем потепциальпую энергию изгиба балки. При поперечном изгибе в балке возникают нормальные Ох и касательные Тху или Txs напряжения. Выделим из балки поперечными и продольными сечениями элемент (продольное волокно) (рис. 8.61), объем которого dV — = dx dF, и подсчитаем накопившуюся в нем потенциальную энергию деформации dU. При линейно-упругой деформации сила ах dF совершит упругую работу на пути Ех dx, который она пройдет за счет удлинения элемента вдоль оси ж, а сила TxydF совершит упругую работу на пути jxydx, который образуется из-за сдвига jxy в плоскости ху. Эта работа и накопится в волокне в виде потенциальной энергии деформации. Поэтому  [c.228]


Смотреть страницы где упоминается термин Деформации при поперечном изгибе : [c.246]    [c.177]   
Смотреть главы в:

Теория упругости Основы линейной теории и ее применения  -> Деформации при поперечном изгибе



ПОИСК



Влияние деформации поперечного сдвига на изгиб тонкой пластинки

Деформация изгиба

Деформация поперечная

ИЗГИБ Расчет прочности балок V 18. Деформация изгиба. Напряженное состояние при изгибе Поперечный изгиб. Чистый изгиб

Изгиб поперечный

Изгиб цилиндрической оболочки нормальной локальной нагрузВлияние деформации поперечного сдвига на частоту собственных колебаний цилиндрической оболочки и критические напряжения при осевом сжатии

Изгиб — Энергия деформации балок продольно-поперечный

Пластины слоистые с симметричным расположением слоев — Изгиб с учетом деформаций поперечного сдвига

Поперечный изгиб деформации ( Verformung)

Приложение J. Теория изгиба пластин, учитывающая эффект деформации поперечного сдвига

Энергия деформации поперечного изгиба



© 2025 Mash-xxl.info Реклама на сайте