Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Воздействия кинематические

Заметим, что при расчетах колебаний в механизмах динамические искажения в скоростях, а особенно в ускорениях оказываются более существенными, чем ошибки перемещений, в силу большей чувствительности первых к скачкообразным воздействиям кинематического возмущения. Для определения q я q могут быть записаны следующие зависимости  [c.99]

При воздействии кинематического возмущения со стороны основания и силовом воздействии от переменной силы резания [12]. Расчетная схема станка приведена на рис. 2, а ее граф — на рис. 3, причем rui — приведенные массы станины с передней бабкой, шпинделя, заготовки, резца и суппорта с, и /с — приведенные коэффициенты жесткости и демпфирования i = 1—5) D — оператор дифференцирования. Время счета составило 4 мин.. (без расчета частотной характеристики).  [c.127]


Вибрационные воздействия. Кинематические и силовые вибрационные воздействия являются колебательными процессами. Силовые воздействия характеризуются функциями времени, выражающими составляющие сил или моментов сил, действующих на объект [О (/) или М (/)] кинематические воздействия характеризуются ускорениями точек источника, связанных с объектом [ш ( )], их скоростями [о (/)] и перемещениями [з ( )].  [c.12]

Знание набора нормальных мод в волноводе является важным фактом при решении вопросов практического их использования. Однако не менее важным является вопрос о способах и эффективности возбуждения того или иного типа волнового движения. Здесь картина оказывается значительно сложнее, чем в рассмотренной в главе 3 задаче о вынужденных колебаниях полупространства. Это усложнение физической картины приводит к постановке ряда сложных краевых задач, не все из которых имеют к настоящему времени достаточно полное решение. Наиболее простые задачи, возникающие при моделировании реальных ситуаций, относятся к бесконечному и полубесконечному волноводам. Для бесконечного волновода задача о возбуждении волн связана с заданием на некоторой части границы системы внешних воздействий — кинематические или силовые граничные условия. Вне этой области границы волновода считаются свободными. Задачи другого типа возникают при моделировании процесса возбуждения волн путем задания внешних усилий или смещений на торце полу-бесконечного волновода. Они оказываются намного сложнее для теоретического анализа.  [c.241]

На фиг. 331 показан шкальный механизм со сбрасывателем, у которого шкала 7 неподвижна. Вращение стрелки 1, сидящей на оси 9, осуществляется от зубчатого колеса 2 и фрикционной муфты 3. Стрелка также связана со спиральной пружиной 8. Все устройство шкалы помещается в корпусе и на верхней его крышке. При нормальной работе шкалы фрикционная муфта 3 должна быть в сцепленном состоянии. При нажатии пуговки 6 на рычаг 5 произойдет расцепление фрикционной муфты, и ось 9 будет свободна от воздействия кинематической цепи. Вследствие этого и под действием предварительного закручивания пружины ось, а вместе с ней и стрелка, повернутся в исходное положение.  [c.422]

Необходимо отметить, что, кроме степеней свободы звеньев и связей, активно воздействующих на характер движения механизмов, в них могут встретиться степени свободы и условия связи, не оказывающие никакого влияния на характер движения механизма в целом. Удаление из механизмов звеньев и кинематических пар, которым эти степени свободы и условия связи принадлежат, может быть сделано без изменения общего характера движения механизма в целом. Такие степени свободы называются лишними степенями свободы, а связи — избыточными или пассивными связями.  [c.39]


Основной задачей синтеза механизмов является воспроизведение заданного движения одного или нескольких звеньев путем непосредственного их воздействия друг на друга или путем введения между ними промежуточных звеньев. Как в первом, так и во втором случае решение этой задачи сводится к проектированию кинематической цепи заданного определенного движения, т. е. механизма.  [c.413]

Применение конструкций с дополнительными связями между элементами кинематической пары возможно при достаточной жесткости звеньев и особенно стойки (корпуса, станины и рамы). Деформация звеньев при воздействии нагрузок не должна приводить к заклиниванию элементов кинематических пар или их повышенному изнашиванию. Механизмы, которые удовлетворяют требованиям приспособляемости к деформации звеньев, надежности, долговечности и технологичности конструкции, обладают оптимальной структурой.  [c.47]

Основные виды изнашивания следуюш,ие механическое — результат механических воздействий коррозионно-механическое — механическое воздействие сопровождается химическим или электрическим взаимодействием со средой абразивное — результат режущего или царапающего действия твердых частиц, находящихся в свободном или закрепленном состоянии эрозионное — результат воздействия потока жидкости или газа усталостное — выкрашивание частиц материала поверхностного слоя при Периодически меняющейся нагрузке (этот вид изнашивания особенно характерен для высших кинематических пар) изнашивание при заедании — результат схватывания, глубинного вырывания материала, переноса его с одной поверхности трения на другую (заедание или схватывание характеризуется сильным местным нагревом вследствие высоких скоростей скольжения и больших удельных давлений такому виду изнашивания чаще всего подвержены незакаленные трущиеся поверхности кинематической пары из однородных материалов).  [c.243]

Иногда бывают заданы не динамические воздействия, а перемещения точек крепления связей к источнику. Такие воздействия называются кинематическими. Силовые и кинематические воздействия часто объединяются общим термином — механические воздействия.  [c.268]

Линейными перегрузками называются кинематические воздействия, возникающие при ускоренном движении источника колебаний. Особенно значительные линейные перегрузки возникают на транспортных машинах, в особенности на летательных аппаратах, при увеличении скорости, торможении, а также различных маневрах (виражи, разворот и т. д.). Основными характеристиками линейных перегрузок являются постоянное ускорение Со (рис. 10.2) и максимальная скорость изменения ускорения da/dt.  [c.268]

Если в механизме имеются подвижные соединения с зазорами (например, кинематические пары в механизмах), вибрационные воздействия могут вызвать соударения сопрягаемых поверхностей, приводящие к их разрушению и генерированию шума. В большинстве случаев разрушение объекта при вибрационных воздействиях связано с возникновением резонансных явлений. Поэтому при поли-гармонических воздействиях наибольшую опасность представляют те гармоники, которые могут вызвать резонанс объекта.  [c.272]

Метод динамического гашения колебаний состоит в присоединении к объекту виброзащиты дополнительных устройств с целью изменения его вибрационного состояния. Работа динамических гасителей основана на формировании силовых воздействий, передаваемых на объект. Этим динамическое ган]ение отличается от другого способа уменьшения вибрации, характеризуемого наложением на объект дополнительных кинематических связей, например закреплением отдельных его точек.  [c.286]

Контакт элементов в высшей кинематической паре может обеспечиваться геометрическим замыканием а счет па юв (рис. 17.2, Г), ж, и], охватывающих роликов (рис. 17.2, г) и т. п. или силовым замыканием пары путем воздействия силы тяжести, упругости пружин (см. рис. 17.1,6, а, е, ж, з), давления жидкости или воздуха и т. п.  [c.445]


Кинематические пары обладают определенной способностью передавать усилия. Воздействие одного звена на другое в кинематической паре осуществляется посредством их силового взаимодействия, так что наложение условия связи на звено, отнимающего свободу его перемещения в определенном направлении, подразумевает противодействие этому перемещению определенной силой или моментом. Поэтому каждому условию связи соответствует определенная реактивная сила или момент, который передается от одного звена к другому с помош,ью кинематической пары. Следовательно, число независимых реактивных сил и моментов, передаваемых кинематической парой, всегда равно числу условий связи. Классификация кинематических пар по классам приведена в табл. 2.1.  [c.16]

Современная техника выдвигает повышенные требования к точности работы механизмов. Это потребовало отказаться от методов расчета механизмов, основанных на предположении об абсолютной жесткости звеньев. Сейчас получили распространение методы кинематического и динамического исследования механизмов с учетом деформируемости звеньев, их колебаний, воздействия вибраций на окружающую среду и человека.  [c.4]

При силовом расчете многозвенных механизмов с низшими парами, как и при кинематическом расчете, применяют метод последовательного обращения к операторным функциям, реализующим алгоритмы силового расчета отдельных групп. Расчет начинают с групп, наиболее отдаленных в структурном отношении от ведущего звена механизма, на звенья которых воздействуют системы внеш-  [c.265]

Движение звеньев механизма происходит под влиянием действующих на них сил. Их величины, характер воздействия и точки приложения циклически изменяются по трем основным причинам изменение нагрузок сопротивления как на рабочем органе, так и в самом механизме изменение движущих сил, обусловленных процессами, происходящими в двигателе машины изменение положения звеньев за цикл работы механизма. Совокупное изменение условий нагружения приводит к ускорениям или замедлениям движения звеньев, что вызывает инерционные воздействия на них и, как следствие,— изменение скоростей. Следован ел ьно, кинематические параметры звеньев — функции внешних сил. Они зависят от масс звеньев и их распределения по ним с учетом конкретной формы и размеров. Задача определения закона движения звеньев о определенной геометрической формой, размерами и массой при известных внешних силах и моментах сил и законов их изменения во времени решается на основе обидах принципов теоретической механики и называется динамическим расчетом.  [c.278]

Известно множество способов построения комплексных целевых функций. Среди них наиболее часто при синтезе механизмов используют метод взвешенных сумм, при котором все выходные параметры объединяют в две группы. В первую группу входят параметры, значения которых нужно повышать КПД, производительность, точность воспроизведения заданной функции или траектории, а в частном случае — изгибная и контактная прочность зубьев, коэффициент перекрытия и т. п. Целевые функции, соответствующие этим выходным параметрам, обозначим Ф/". Во вторую группу входят параметры, значения которых нужно снижать, например, габаритные размеры, скорости скольжения, углы давления, силы, действующие на звенья и кинематические пары, вибро-активность, неравномерность движения, силовое воздействие на стойку вследствие проявления инерционности. Целевые функции, соответствующие этим параметрам, будем обозначать Ф/". Тогда для случая минимизации комплексной целевой функции свертка векторного критерия будет иметь вид  [c.315]

Пусть а решение задачи (5.241) — (5.243), отвечаюш,ее заданным внешним воздействиям, и пусть — кинематически допустимое поле перемещений [удовлетворяющее граничному условию  [c.272]

Силой называется такое воздействие других материальных тел на данное, в результате которого данное тело пришло в движение или изменило уже имеюш,ееся движение (или, как говорят, изменилось кинематическое состояние тела). Из этого определения следует, что всякая сила есть результат действия одного тела на другое. В качестве примеров сил можно привести силу земного притяжения, называемую силой тяжести, силы тяготения — силы взаимодействия между планетами, мускульную силу людей, силу ветра, давления воды, пара и др.  [c.8]

Аналогичные выражения можно получить для определения любого силового или кинематического фактора в заданной точке от любого силового или кинематического воздействия, приложенного в некоторой точке плиты.  [c.170]

Кинематика жидкости — один из важнейших разделов аэромеханики. Решение основной задачи аэродинамических исследований, связанной с нахождением в каждой точке потока параметров, определяющих движение жидкости (давление, плотность, температура и др.), можно свести при определенных условиях к нахождению поля скоростей, т. е. к решению кинематической задачи. По известному распределению скоростей можно вычислить остальные параметры течения, суммарное силовое воздействие, а также определить теплообмен между телом и омывающим газом.  [c.39]

Блок-схема управления руки одного из ПР представлена на рис. 18.9. Открытая кинематическая цепь механической руки I—VI заканчивается схватом. Приводы —IV, количество которых равно числу степеней свободы ПР, преобразуют управляющие сигналы и в силы или моменты сил, воздействующие на звенья -й кинематической пары механической руки.  [c.509]


Ранее (см. 1.3 и 3,1) отмечалось, что теплота процесса и де юр-мационная работа есть способы энергетического воздействия окружающей среды на рабочее тело. Встречаются и другие способы энергетического воздействия — химическое, электрическое, кинематическое (изменением кинетической энергии видимого движения), динамическое (действием внешних силовых полей) и т. п. Мерой всех таких воздействий является работа, определяющаяся соответствующим потенциалом взаимодействия.  [c.134]

Силы внешние и внутренние. По характеру воздействия на движение механизма все силы можно разделить на внешние и внутренние. Внутренними силами являются силы взаимодействия звеньев кинематической цепи. Внешними силами являются силы действия на звенья механизма объектов, не входящих в состав кинематической цепи. В свою очередь, внешние силы разделяются на силы движуш,ие и силы полезных и вредных сопротивлений. Под силами полезных сопротивлений подразумеваются те силы и моменты, для преодоления которых и служит механизм. Например, сила тяжести поднимаемого груза является полезным сопротивлением. Сила сопротивления пашущего плуга также сила полезного сопротивления. В качестве примера силы вредного сопротивления можно назвать сопротивление воздуха движущемуся автомобилю.  [c.42]

Балансировка роторов. Неуравновешенность механизма бывает связана не только с особенностями его кинематической схемы, но также и с производственными ошибками. Для быстро вращающихся звеньев воздействие сил инерции на стойку может быть очень значительным даже при очень небольшой неуравновешенности. Поэтому одной из важных технологических операций является уравновешивание, или балансировка, таких звеньев. Обычно эти звенья имеют форму тел вращения и называются роторами. Рассмотрим этот вопрос подробнее.  [c.55]

Все охватывающие соединения по посадкам, т. е. по значениям получающихся в них зазоров и натягов, можно разделить на две группы. Первую образуют посадки с натягами, достаточными для образования на посадочной поверхности силы трения, способной уравновешивать внешние воздействия (продольную силу Ра и крутящий момент Т) вторую — переходные посадки с малой величиной натяга или зазора А. Причем вследствие технологических погрешностей в одних экземплярах соединяемых деталей, изготовленных по одному и тому же чертежу, может получиться натяг, а в других — зазор. Эта группа применяется тогда, когда требуется облегченная сборка и разборка соединения или когда соединение превращается в кинематическую пару при операциях управления машиной (как, например, в соединении подвижных шестерен с валами коробки скоростей). В этих случаях для передачи крутящего момента (если он нагружает соединение) должны использоваться другие устройства, о которых будет сказано в следующем параграфе.  [c.357]

Вибрационные воздействия (кинематические и силовые) являются колебательными процессами. Силовые воздействия характеризуются функциями времени составляющих сил F(t) или моментов сил M(t), действующих на объект кинематические воздействия характеризуются ускорениями a(t) точек источника колебаний, связанных с объектом виброзашиты, их скоростями v(ii и перемещениями s(l).  [c.268]

Боттерилл и Десаи [83], с одной стороны, изучали влияние давления на теплообмен псевдоожиженного слоя с поверхностью, а с другой — использовали его как фактор, изменяющий вязкость газа с целью выявления ее роли в механизме теплопереноса. Было найдено, что данные ряды экспериментов в атмосферах гелия, неона, воздуха и углекислого газа могут быть представлены в виде зависимости величины, обратной максимальному коэффициенту теплообмена, 1/ 1пах от комплекса (l/fe)X X (ц/р)[87]. Однако двукратного увеличения максимального коэффициента теплообмена, ожидаемого, в соответствии с приведенным соотношением, при изменении давления от атмосферного до 0,8 МПа в опытах [83] с плотным движущимся слоем не произошло При увеличении рабочего давления до 1 МПа во всех исследованных системах газ — твердые частицы коэффициенты возросли всего на 15%. Это позволило сделать вывод о том, что кинематическая вязкость не является главным фактором, который определяет интенсивность переноса тепла, и оказанное ею коррелирующее воздействие было случайно. В опытах с псевдоожиженным слоем наблюдалось существенное влияние изменения давления в аппарате на величину коэффициентов теплообмена с поверхностью при использовании в качестве сжижаемого материала крупных частиц узкого фракционного состава. Например, для псевдоожиженного воздухом слоя медной  [c.69]

Возникновение реакций в кинематических парах обуслонлеио не только воздействием внешних сил, но н движением звеньев с ускорениями. Дополнительные динамические составляющие реакций учитывают путем введения в расчет сил инерции звеньев. В тихоходных механизмах, где ускорения, а следовательно, силы инерции.  [c.139]

Чтобы корректно учесть эффект Магнуса, связанный с F12, необходимо учитывать вращение частпц и в общем случае вводить соответствующий кинематически независимый от поля с., параметр ы.,. Если при этом принимать во внимание внешнее мо-5 ентное воздействие (магнитное поле), инерционные п динамичес-кпе эффекты этого вращения, то тензор напряжений фаз может быть несимметричным, и нужно использовать уравнение сохранения момента количества движения фаз ).  [c.36]

В технологических процессах интерес представляет случай дисперсной смеси с частицами из ферромагнитного материала в магнитном поле, которое оказывает непосредственное моментное воздействие лишь на частицы (2-я фаза). Это приводит к их ориентированному мелкомасштабному враш,ению (Mj =5 0) с угловой скоростью 2, кинематически независимой от поля их осреднен-ных скоростей v . Вращение частиц за счет сил трения передается и несущ,ей фазе и приводит к мелкомасштабному с характерным линейным размером, равным размеру частиц, ориентированному вращению несущей жидкости М =7 0), Если магнитное поле не оказывает непосредственного воздействия на несущую фазу, т. е. она остается неполярной, то тензор напряжения в ней будет симметричным, а во второй фазе— несимметричным, причем его несимметрическая часть определяется воздействием внешнего магнитного поля на частицы. Симметричность тензора напряжений несущей фазы вытекает из симметричности тензора микронапряжений o l и совпадения среднеповерхностпых и среднеобъемных величин, что в свою очередь вытекает из регулярности этих величин. Несмотря на эти допущения, уравнения импульса и внутреннего момента несущей фазы могут быть приведены к некоторому виду, где, как и для дисперсной фазы, фигурирует несимметричный тензор поверхностных сил aji (см. 1,6 гл. 3).  [c.83]

Так же, как и в спусковых регуляторах с несвободным ходом, ходовое колесо регулятора со свободным ходом имеет возможность поворачиваться только в период прохождения колеблющейся системы через положение равновесия. В это время зуб ходового колеса воздействует на одну из палетт анкерной вилки. Вилка, в свою очередь, передает импульс через импульсный камень балансу. Между балансом и ходовым колесом кинематическая связь осуществляется только при перебрасывании вилки из одного положения в другое. Остальную, большую часть периода колебаний баланс движется свободно и не затрачивает энергии на трение между палеттами анкера и зубьями ходового колеса. Моментная пружина, связанная одним концом с балансом, а другим закрепленная неподвижно на платине, вначале накапливает энергию, а затем, при изменении направления вращения, отдает ее балансу. Неизбежные потери энергии восполняются при передаче импульса от ходового колеса через анкерную вилку к балансу.  [c.120]


Примерные значения амплитуд отдельных гармоник полигармо-нических кинематических воздействий, лежащих в различных частотных диапазонах, следующие  [c.271]

Возбуждения кинематического ударного типа Й,озникают при резких изменениях скорости движения источника ( 1апример, при посадке самолета, запуске ракеты, наезде колеса автомобиля на глубокую выбоину, при пере<50пряжении зубьев зубчатых колес и т. [I.). Часто эти явления сопровождаются возникновением колебаний конструкций источника и возбуждением вибрационных воздействий.  [c.271]

НИК и объект считаются твердыми телами, движуид,имися поступательно вдоль некоторой оси А. На рис. 10,11 дана принципиальная схема виброзащитной системы а общий случай б — силовое возбуждение F=F 1) в — кинематическое возбуждение 1 1(1). Приложенные к системе вне[иние силы F (возмущения), а также внутренние силы R и R, с которыми виброизолирующее устройство, расположенное между источником и объектом, воздействует на них, считаются направленными вдоль оси х тем самым ось х служит осью рассматри ваемого виброизолируюнюго устройства.  [c.283]

Эффективность виброзащитных систем при полигармонических воздействиях. ГТолигармоническим называется процесс, представимый в виде конечной тригонометрической суммы. Например, ноли-гармоническое возмущение кинематического типа задается суммой  [c.286]

Первый закон Ньютона — закон-ннерцрпр-описывает простейшее из возможных механических 71ВТШЕНЙЙ — движение материальной точки в условиях полной ее изолированности от влияния на нее других материальных тел. Закон инерции формулируют так всякая изолированная материальная точка, т. е. точка, не подверженная воздействию каких-либо других материальных объектов, может находиться относительно неподвижной системы отсчета только в одном кинематическом состоянии, в состоянии равномерного прямолинейного движения (у = onst) или в состоянии покоя (v = 0).  [c.205]

Работа машинного агрегата сопровождается динамическими воздействиями его.на окружающую среду. Гфи относительном движении звеньев усилия в кинематических парах изменяются, что приводит к переменному нагружению стойки механизма. Вследствие этого фундамент, на которо.м установлен машинный агрегат, испытывает пиклически изменяют,иеся по величине и направлению силы. Эти силы через фундамент передаются на несущие конструкции здания, соседние машинные агрегаты и приборы и приводят к колебаниям и вибрациям. Неравномерность движения звеньев механизмов приводит к возникновению дополнительных сил инерции. Эти силы увеличивают колебания и вибрации звеньев механизма и машины в целом и сказываются на точности их работы. Если амплитуда колебаний достаточно велика (например, при работе в зоне резонанса), то в деталях звеньев возникают напряжения, превышающие допускаемые, что приводит к их разрушению. Вибрации — это причина выхода из строя деталей самолетов и вертолетов, элементов газовых и паровых турбин, неточностей в работе станков, роботов и т. п.  [c.351]

Так как звенья низших кинематических пар соприкасаются по поверхности, то удельное давление в них меньше, чем в высших. Поэтому низшие пары меньше, чем высшие, подвержены износу и позволяют, при прочих равных условиях,. передавать значительные нагрузки от одного звена к другому. Нагрузочная способность высших кинематических пар сравнительно невелика, поскольку усилия в ней передаются через малые контактные площадки, возникающие в местах соприкосновения звеньев под воздействием нагрузок. Однако эт1[ пары оказываются более рациональными в отношении потерь мощмостгг на преодоление трения ввиду того, что трение скольжения в них полностью или частично можно заменить трением качения.  [c.496]

Заметим, что операция умножения на интегральные операторы (операция интегрирования по времени) и операция дифференцирования или интегрирования по пространственным координатам пере-ставимы между собой. Отсюда следует простое правило построения решения задачи теории вязкоупругости, которое носит название принципа Волътерры. Принцип заключается в том, что решение задачи для вязкоупругого тела может быть получено так же, как решение аналогичной задачи для упругого тела, если в процессе решения с интегральными операторами обращаться как с упругими постоянными. В итоге решение будет представлено как произведение функции от упругих постоянных и от пространственных координат на известную функцию времени. Последняя определяется по заданным силовым или кинематическим воздействиям. Далее следует заменить упругие постоянные интегральными операторами и произвести необходимые операции над ними.  [c.351]

Гетерогенные смеси, их движения, последствия воздействия на них, возникающие в них волны чрезвычайно многообразны, что является следствием многообразия комбинаций фаз, их структур, многообразия межфазных и впутрифазных взаимодействий и процессов (вязкость и межфазное трение, теплопроводность и межфазный теплообмен, фазовые переходы и химические реакции, дробление и коагуляция капель и пузырей, различные сжимаемости фаз, прочность, капиллярные силы и т. д.) и многообразия различных видов воздействия на смеси. Например, в га-зовзвесях образуются размазанные волны, структура и затухание которых определяются главным образом силами межфазного трения с газом и дроблением капель или частиц. В жидкости с пузырьками газа или пара из-за радиальных пульсаций пузырьков, помимо размазанных волп, характерными являются волны с осцилляционной структурой, сильно зависящей от процессов тепло- и массообмена, а также дробления пузырьков. Далее в конденсированных средах фазовые переходы, инициируемые сильными ударными волнами, могут привести к многофронтовым волнам из-за немонотонного изменения сжимаемости среды при фазовых превращениях. Своеобразные волновые течения с кинематическими волнами возникают и при фильтрации многофазных жидкостей.  [c.5]

Но часть того же примера связана с определением деформации е через удлинение Д/, которое можно рассматривать как продольное перемещение одного из концов стержня, если другой конец считать неподвижным. Эта часть задачи чисто геометрическая (кинематическая) и решается независимо от уравнений статики. Для полноты формулировки задачи пока недостает информации о механических свойствах материала, т. е. о его способности сопротивляться силовому воздействию. Эту информацию в механике твердого тела получают из эксперимента, с помощью которого устанавливают зависимость (1.4) деформации б от напряжения а. Эксперимент осуществляют на специальных испытательных машинах, в которых испытаниям подвергают стандартные образцы, и получают зависимость а —г в виде графика, показанного на рис. 1.5. Эта условная диаграмма растяжения a = FlAa, в = = AIIIq), на которой отмечены ряд характерных участков и точек Спи — предел пропорциональности,  [c.12]


Смотреть страницы где упоминается термин Воздействия кинематические : [c.292]    [c.270]    [c.11]    [c.44]    [c.36]    [c.280]   
Вибрации в технике Справочник Том 6 (1981) -- [ c.12 ]



ПОИСК



Защита оборудования и фундамента от кинематических и силовых внешних воздействий



© 2025 Mash-xxl.info Реклама на сайте