Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кривые деформирования и в условиях разрушения

Кривые деформирования и в условиях разрушения 438  [c.547]

Г. А. Смирнов-Аляев считает испытание на осадку одним из самых подходящих для определения зависимости е,- — (01 + 03 + + Оз)/0г в момент разрушения. По его мнению, чтобы получить эти зависимости, достаточно провести испытание на осадку, варьируя от опыта к опыту условия трения и размеры цилиндров. Указанным выше способом определяются степень деформации и напряженное состояние на любой стадии осадки и в момент разрушения—появления трещины. На рис. 3 представлены опытные данные для различных сталей. Сплошные кривые показывают изменение напряженно-деформированного состояния на поверхности бочки в процессе осадки. Пунктирные кривые соответствуют искомой зависимости и в ее районе расположились опытные точки, отметившие момент разрушения. Здесь же приведены опытные точки, отмеченные буквой Р, соответствующие разрушению при одноосном растяжении. В действительности разрушение при растяжении наступает при показателе напряженного состояния больше единицы вследствие образования шейки и возникновения схемы трехосного растяжения в ее центре. Этого диаграмма не учитывает.  [c.27]


Для проведения испытаний с целью изучения закономерностей неизотермической малоцикловой прочности, а также неизотермического деформирования используются установки растяжения — сжатия, снабженные системами программного регулирования. В этих установках основные решения вопросов управления режимами неизотермического нагружения, измерения процесса деформирования и нагрева, регистрации параметров соответствуют использованным в исследованиях сопротивления деформированию и разрушению в условиях длительного малоциклового нагружения, а также в описанной выше крутильной установке. Применены системы слежения с обратными связями по нагрузкам (деформациям) и температурам, отличающиеся непрерывным измерением и регистрацией основных характеристик процесса (напряжение, деформация, температура) в форме диаграмм циклического деформирования, развертки изменения параметров во времени, а также кривых ползучести и релаксации при однократном и циклическом нагружении.  [c.253]

Обратим внимание на то, что если в случае моделирования только напряженных состояний при постоянной температуре и упругом деформировании достаточно, чтобы деформирование моделируемого и модельного материалов было упругим, то в случае, когда предполагается доведение конструкции до разрушения, необходимо подбирать материал таким образом, чтобы условия достижения предельных состояний для них были подобными. Еще более важным и сложным вопросом является необходимость подобия кривых деформирования в случае наличия не только упругих, но и пластических деформаций.  [c.31]

Как указано выше, в сплавах на основе Си границы зерен являются местами концентрации напряжений и служат причиной деформации скольжением и интеркристаллитного разрушения. Если подвергать образцы циклической деформации в условиях, в которых при однократном деформировании наблюдается кажущееся полное восстановление формы, то деформация скольжения накапливается, в результате чего изменяется вид кривых напряжение — деформация. При увеличении числа циклов нагружения в конце концов происходит усталостное разрушение. Почти во всех случаях оно является интеркристаллитным разрушением. Таким образом, важной проблемой является необходимость определения различных механических свойств сплавов на основе меди с целью их практического применения. Эта проблема подробно рассматривается ниже.  [c.110]


В общем случае в результате сложных геометрических форм конструктивных элементов и специфических сочетаний режимов механического и теплового нагрул<[ений напряженное и деформированное состояния опасных зон оказываются многокомпонентными. Однако в поверхностных объемах детали реализуется преимущественно плоское напряженное состояние (корпус паровой турбины, элементы трубопроводов и др.). Поэтому для характеристики закономерностей разрушения можно использовать данные, получаемые при испытаниях в условиях сравнительно простых напряженных состояний. На рис. 2.52 приведены кривые усталости, построенные на основании расчета (через условные упругие напряжения) в приведенных деформациях [в соответствии с теориями наибольших деформаций (У), наибольших касательных напряжений (2), энергии формоизменения (5)] и в интенсивностях деформаций (4).  [c.115]

Если исходить из гипотезы о единой кривой течения в координатах Сто — ёо, то из условия (4.23) следует, что накопленная деформация к моменту разрушения это некоторая определенная для данного материала, но единая для различных напряженных состояний и историй деформирования функция коэффициента жесткости напряженного состояния т], что и соответствует условию (4.22).  [c.142]

Основное внимание в справочнике уделено характеристикам неупругого деформирования и разрушения материалов при кратковременном, длительном и циклическом нагружениях в условиях нормальных и повышенных температур После традиционных сведений о химическом составе, общепринятых характеристиках (Оо2, Og, 5, /) и их нормируемых минимальных значениях дается по возможности подробная информация об истинных (действительных) диаграммах деформирования, циклических кривых, параметрах длительной и малоцикловой прочности При этом широко используется аппроксимация опытных данных приводятся параметры степенной аппроксимации действительной кривой деформирования, циклической кривой, кривых малоцикловой усталости  [c.257]

Цель этих исследований состояла в том, чтобы выяснить, возможно ли рассчитать несущую способность (определить предельные номинальные напряжения для заданного уровня деформаций) образцов с концентраторами напряжения при изгибе при многоцикловом нагружении, зная диаграммы циклического деформирования и кривые усталости в условиях линейного однородного напряженного состояния (растяжения — сжатия) и приняв в качестве критерия разрушения при одном и том же числе циклов нагружения равенство максимальных циклических деформаций при растяжении — сжатии и изгибе образцов с концентраторами.  [c.263]

Из соотношения (105) следует, что скорость роста трещины зависит только от одной переменной, так как п является структурно-чувствительным параметром, не зависящим от условий нагружения [32]. В гл. IV дан обзор экспериментальных данных, показывающих, что изменение внешних условий нагружения не влияет на п при обеспечении условий автомодельности напряженно-деформированного состояния на фронте трещины. В качестве примера на рис. 41 представлены кинетические диаграммы усталостного разрушения для сплава Ti — 6А1 — 4V, полученные [66] при варьировании асимметрией цикла в широком диапазоне. Эти же кинетические кривые представлены на рис. 42 после смещения их в точку с координатами А и В. Видно слабое влияние R на параметр п при R — 0,04-0,7 (линия 1) параметр = 3,1 при / = 0,1 получены два значения п = 3,1 и 3,5 (линия 2) и, наконец, при R = = 0,1 —1,0 —3,0 и —5,0 значение п снизилось до 2,6. Некоторое изменение п может быть связано в данном случае с высоким начальным номинальным напряжением, обусловливающим нарушение автомодельности напряженно-деформированного состояния на фронте трещины уже в момент ее старта.  [c.79]

Крестиком на диаграммах отмечен момент прекращения опыта по причине потери устойчивости образца. Гофр, как правило, образовывался возле головки образца (в зоне галтели). При сравнительно высоких температурах образование гофра не сопровождалось разрушением. Это позволяло продолжать испытания и по показаниям тензометра, установленного в средней зоне рабочей части образца, построить кривую деформирования вплоть до начала упрочнения. Разрушение образца при температуре —180° С в условиях одноосного сжатия часто происходило по первому витку резьбовой головки, что объясняется, очевидно, концентрацией напряжений в резьбе и высокой хрупкостью материала при указанных условиях испытания.  [c.307]


В. Серенсен, Н. А. Махутов и Р. М. Шнейдерович (1964—1966) предложили описание условий малоциклового разрушения на основе силовых и деформационных критериев разрушения. Анализ условий малоциклового разрушения получен ими на основе деформационных критериев. В качестве критерия квазистатического разрушения предложена величина предельной односторонне накопленной пластической деформации равной деформации при разрушении от однократной нагрузки для однородных и неоднородных напряженных состояний. Использование обобщенных кривых циклического деформирования и деформационных критериев позволило этим авторам (1966 и сл.) определить предельные состояния при усталостных малоцикловых процессах. Для случаев малоциклового нагружения, при которых интенсивности накопления квазистатических и усталостных повреждений сопоставимы, предельное число циклов устанавливается на основе гипотезы суммирования этих повреждений.  [c.412]

При неоднородном напряженном состоянии наличие надреза на образце (или детали) изменяет характер распределения энергии, между отдельными объемами вследствие их неравномерного деформирования. В условиях однородного напряженного состояния до момента образования шейки (или трещины) распределение поглощаемой энергии является сравнительно равномерным (речь идет о некоторой средней величине энергии на любом макроучастке базы образца), хотя, как будет показано далее, и в условиях однородного напряженного состояния вследствие микронеоднород-ности развития деформаций поглощаемая энергия неодинакова для отдельных объемов. Неравномерность деформации в зона надреза обусловливает и неравномерность распределения энергии между отдельными объемами. Причем чем выше коэффициент концентрации напряжений (деформаций) в зоне надреза, тем вышн эта неравномерность, и общее количество энергии, затрачиваемое на разрушение и определяемое площадью под кривой статического растяжения для двух образцов, имеющих одинаковые номинальные сечения, меньше для образца, у которого выше коэффициент концентрации напряжений (острее надрез).  [c.124]

Научная и практическая актуальность проблемы исследования физических закономерностей пластической деформации и разрушения поверхностных слоев твердого тела обусловлена тем обстоятельством, что свободная поверхность, являясь специфическим видом плоского дефекта в кристалле, оказьтает сзш1ественное влияние на его физико-механические свойства, в частности на упругую стадию деформирования, предел пропорциональности и предел текучести на общий характер кривой напряжение—деформация и различные стадии деформационного упрочнения (на коэффициенты деформационного упрочнения и длительность отдельных стадий) на процессы хрупкого и усталостного разрушения, ползучести, рекристаллизации и др. Знание особенностей и основных закономерностей микродеформации и разрушения поверхностных слоев материалов необходимо не только применительно к обычным методам деформировани (растяжение., сжатие, кручение, изгиб), но и в условиях реализации различного рода контактных воздействий, с которыми связаны многочисленные технологические процессы обработки материалов давлением (ковка, штамповка, прокатка и др.), а также процессы трения, износа, схватывания, соединения материалов в твердой фазе, поверхностных методов обработки и упрочнения, шлифования, полирования, обработки металлов резанием и др.  [c.7]

Изменение температурного режима испытаний оказывает влияние на весь комплекс деформационных характеристик материала, от которых зависят усилия и напряжения, возникающие в образце (модуль упругости, параметры кривых деформирования и характер циклической нестабильности, скорость ползучести). В этом смысле наибольшие затруднения возникают при интерпретации результатов при Г , = onst, когда варьируют Г пах- В испытаниях с варьируемой жесткостью установки ее нижняя граница должна быть определена предварительно по напряжениям, при которых разрушение в рассматриваемых температурных условиях укладывается в диапазон чисел циклов, характерных для малоцикловой усталости. В связи с этими соображениями наибольшее распространение получили испытания при = onst.  [c.121]

Подход Петита — Ваддоупса предполагает постоянную податливость композита в пределах каждой ступени нагружения и взаимную независимость различных механизмов разрушения. Тангенциальные модули, используемые при вы-числениях податливостей, зависят только от одной компол ненты деформации, т. е. на величину тангенциального модуля в направлении волокон не влияют деформации в поперечном направлении или сдвиговые деформации и т. д. Рассматриваемый подход ограничивается анализом несущей способности слоистых композитов, симметричных относительно срединной плоскости (Bij = 0), в условиях одноосного или пропорционального двухосного нагружения в плоскости армирования. Поскольку в основу подхода положена классическая теория слоистых сред, межслойные взаимодействия не учитываются. Как и в предыдущем методе, для слоистых композитов с одинаковой схемой армирования в плоскости, но разным расположением слоев по высоте предсказываются идентичные предельные кривые и диаграммы деформирования. В действительности разное расположение слоев по высоте композита может внести значительные изменения в величину прочности.  [c.151]

Для построения кривой располагаемой пластичности материала использованы данные по длительной пластичности в условиях испытаний на ползучесть (фполз) и статического нагружения с широкой вариацией времен до разрушения (фстат)- На рис. 1.2.3 приведены соответствующие экспериментальные данные. Наблюдается выраженная зависимость располагаемой пластичности от времени, причем в диапазоне времен деформирования до 50 ч происходит переход от внутризеренного к межзеренному разрушению. Несколько больший темп охрупчивания характерен для испытаний на ползучесть, однако уже после 25—50 ч разница практически исчезает и происходит стабилизация процесса изменения пластичности. Не наблюдается различия также и в пределах весьма малых времен разрушения.  [c.24]


Сформулированные выше основные закономерности малоциклового деформирования и разрушения необходимы в связи с разработкой методов оценки прочности элементов конструкций. Для обоснования расчетной процедуры и уточнения запасов прочности в инженерной практике проводятся мснытанвя моделей и натурных элементов. Основными задачами, которые решаются в таких испытаниях, являются сопоставление расчетного и экспериментального распределения деформаций и напряжений (особенно в зонах концентрации с учетом поциклового перераспределения), а также изучение условий достижения предельного состояния по разрушению (образованию трещины). При этом для оценки прочности в условиях циклического упругопластического деформирования необходимы данные о кинетике деформированного состояния конструкции, а также кривые малоцикловой усталости материала при однородном напряженном состоянии.  [c.135]

В испытаниях на термическую усталость с варьируемой жесткостью нагружения [4,5, 10] это связано прежде всего с режимом неизотермического малоциклового нагружения (жесткость нагружения, уровень максимальной температуры цикла, скорость нагрева и охлаждения, длительность выдержки) и определяется различным сопротивлением статическому и циклическому деформированию частей образца, нагретых в разной степени из-за продольного градиента температур, и протеканием реологических процессов на этапе выдержки при высокой температуре [4, 10]. На рис. 4, б показано, что зффект одностороннего накопления деформаций существенно проявляется в характерной для малоцикловой усталости области чисел циклов (до 10 ) и в определенных условиях (большая жесткость нагруяшния — до 240 Т/см и длительная выдержка — до 60 мин), возможно накопление перед разрушением деформаций, близких к величинам статического однократного разрыва (кривые 7,5, 5) при соответствующем времени деформирования в условиях неизотермического нагружения. При этом реализуется смешанный или квазистатический (длительный статический) характер малоциклового разрушения.  [c.40]

Процесс малоцикловой усталости при повышенных температурах, при которых уже проявляется влияние длительности и скорости деформирования на накопление пластической деформации и статического повреждения, неизбежно связан с формой и длительностью цикла. Это способствовало привлечению таких интерпретаций условий термодиклического разрушения, в которых в явной форме отражена частота v = 1/Г, где Т — период цикла. С помощью частотных представлений предлагается также охарактеризовать роль выдержек при постоянной деформации или напряжении, столь свойственных работе металла во многих конструкциях. Анализ соответствующих зависимостей,. вытекающих из опытных данных, предложенных рядом авторов, позволил уравнение кривой малоцикловой усталости в размахах 2г р пластической деформации выразить так [3]  [c.4]

Задача об определении сопротивления малоцикловому разрушению при температурах более высоких, чем указанные, когда циклические пластические деформации сочетаются с деформациями ползучести, существенно усложняется. В настояш,ее время осуществляются интенсивные экспериментальные исследования уравнений состояния и критериев разрушения при длительном цикличес-ком нагружении в условиях однородных напрян енных состояний при жестком и мягком нагружении. Результаты этих исследований освещены в трудах конференций в Киото (1971), Каунасе (1971), Будапеште (1971), Филадельфии (1973) [1, 3, 6, 7], а также конференций в Лондоне (1963, 1967, 1971), Сан-Франциско (1969), Брайтоне Х1969), Дельфте (1970) и др. Однако несмотря на большой объем экспериментальных работ, пока не удалось разработать общепринятые предложения по кривым длительного циклического деформирования и разрушения это не позволяет перейти к расчетной оценке напряженных и деформированных состояний в элементах конструкций для определения их прочности и долговечности на стадии образования трещин и тем более на стадии их развития.  [c.100]

Таким образом, применяя метод оценки долговечности в условиях длительного повторного нагружения, можно определить скорость накопления повреяодений в зависимости от типа напряженного состояния, режима нагружения и свойств конструктивного материала, а следовательно, прогнозировать место разрушения. В качестве базовых данных при оценке долговечности используют кривые длительной малоцикловой усталости и располагаемой пластичности конструкционного материала. При анализе кинетики НДС в рассмотрение вводят диаграммы длительного циклического деформирования и кривые циклической ползучести. Б этом случае сопротивление деформированию характеризуется соответствующими мгновенной и изохронными кривыми деформирования.  [c.11]

Другим важным вопросом обеспечения прочности и ресурса атомных реакторов, не получавшим отражения в традиционных расчетах энергетических установок по уравнениям (2.1) —(2.3), являлся анализ сопротивления деформациям и разрушению при циклическом нагружении [2,5-7,16]. Как следует из данных гл. 1, в процессе эксплуатации атомных реакторов число циклов нагружения на основных режимах изменяется в достаточно широких пределах - от (2- 5) 10 при гидроиспытаниях до (1 2) Ю при программных изменениях мощности и до 10 —10 с учетом вибро-нагруженности. Систематические исследования прочности в этом диапазоне числа циклов были начаты применительно к энергетическим установкам в середине 50-х годов, а в середине 60-х годов были сформулированы основные (преимущественно деформационные) критерии разрушения и свойства диаграмм циклического деформирования [17,18 и др.]. По опытным данным, полученным на лабораторных образцах, было показано, что при числе циклов до 10 циклические пластические деформации оказываются сопоставимыми (в диапазоне числа циклов 10 —10 ) или существенно большими (в диапазоне числа циклов 10 -5 10 ), чем циклические упругие деформации. При этом в зависимости от типа металлов и условий нагружения (с заданными амплитудами деформаций или напряжений) пластические деформации по мере увеличения числа циклов могут возрастать (циклически разупрочняющиеся металлы), уменьшаться (циклически упрочняющиеся металлы) или оставаться постоянными (циклически стабильные металлы). Указанные особенности поведения металлов при циклическом упругопластическом деформировании обусловливают нестационар-ность местных напряжений и деформащ1Й в зонах концентрации при стационарных режимах внешних нагрузок. Для малоцикловой области уравнения кривых усталости и сами кривые усталости при числах циклов 10 —Ю представлялись не в амплитудах напряжений (как для обычной многоцикловой усталости при числах циклов 10 —10 ), а в амплитудах упругопластических деформаций.  [c.40]

Постоянная т для сплава ЭИ-607А при той же температуре равна восьми, а постоянная в выражении для А принималась равной 400 МПа. Положим для примера Oq = 500 МПа и подсчитаем время t согласно (4.11). В результате получаем t= 1,28-10 с. Сравнивая t с долговечностями по кривой статической усталости 1 (рис. 4.1), построенной по данным испытаний на длительное разрушение при различных уровнях истинных напряжений, видим, что время t согласно (4.11) при Tq = 500 МПа примерно на порядок больше (Ig 1,28-10 = 5,11) средней долговечности при а = 500 МПа. В действительности же долговечность при постоянном условном напряжении должна быть меньше, чем при таком же истинном напряжении. Полученный результат понятен, так как равенство (4.11 является не условием разрушения, а условием, определяющим границу применимости уравнения (4.10). Наилучшая корреляция между предельным временем деформирования согласно (4.11) и действительными долговечностями при ст = onst получается в тех случаях, когда разрушению предшествуют значительные вязкопластические деформации (порядка 10—20 %), причем до полного разрушения успевает развиться  [c.109]


Для уточненной] оценки прочности и долговечности элементов резьбовых соединений необходимо располагать расчетными или экспериментальными данными по изменению усилий, номинальных напряжений, деформаций и температуры в шпильках и по кривым малоциклового разрушения натурных соединений или их моделей. Кроме того, проводят исследование основных механических и циклических свойств применяемых материалов с установлением соответствующих параметров деформирования и разрушения [8, 14]. Ниже приведены результаты экспериментальных исследований сопротивления деформированию и разрушению сталей 25Х1МФ и ХН35ВТ, используемых для изготовления натурных шпилек основного разъема энергетических аппаратов [8]. Испытания проводились при мягком и жестком нагружениях на гладких цилиндрических образцах 011 мм в условиях комнатной температуры на программной испытательной установке фирмы  [c.201]

Термоусталостному нагружению, как показывает анализ результатов испытаний [29, 50, 55] и поведение элементов в таких условиях [9, 13, 43, 130], присущи характерные особенности неста-ционарность процесса циклического упругопластического деформирования образца и накопление с числом циклов односторонней деформации растяжения и сжатия (кривые 4...6) вследствие формоизменения рабочей, части (рис. 2.15). Указанные закономерности для исследуемых сплавов, полученные путем соответствующих измерений в зоне разрушения ( шейка ), представлены в виде кривых 4, 5, 6 на рис. 2.15.  [c.61]

Во многих практических приложениях размеры пластической зоны у вершины трещины становятся настолько большими, что предположение о малости эффекта текучести уже несправедливо и линейной теорией упругости пользоваться нельзя. В тонкостенных элементах современных кораблей, мостов, сосудов высокого давления, строительных и машиностроительных конструкций используется большое количество сталей с малыми и средними по величине пределами прочности, так что условия плоского деформированного состояния в вершинах трещин, как правило, не выполняются. Применять в таких случаях методы механики линейноупругого разрушения и использовать в критериях прочности величину К]с уже нельзя. Попытки распространить идеи механики разрушения на случай упругопластического деформирования привели к созданию некоторых подающих надежды методов (см., например, [19, гл. 4],) среди которых (1) методы перемещения раскрытия трещины ( OD), (2) методы / -кривых и (3) методы J-интеграла. Хотя подробное изложение этих методов не входит в задачи данной книги, краткое описание основных положений может оказаться полезным.  [c.78]

Кривые сопротивления, или -кривые, позволяют охарактеризовать сопротивление материала разрушению во время медленного установившегося движения трещины под действием увеличивающихся внешних нагрузок. В условиях плоского деформированного состояния вязкость разрушения К,с материала зависит только от двух переменных температуры и скорости деформации. В противоположность этому в условиях плоского напряженного состояния вязкость разрушения Кс зависит не только от температуры и скорости деформации, но также и от толщины материала в районе трещины и от ее размеров. / -кривая полностью описывает изменение величины Кс в зависимости от изменения размера трещины. Таким образом, / -кривая представляет собой зависимость сопротивления росту трещины /Сд от изменения размера трещины при заданных значениях температуры, скорости нагружения и толщины материала. Современные методы экспериментального определения / -кривых описаны в специальной публикации ASTM [25].  [c.79]

Предсказание разрушения и выбор формы и размеров, при которых можно избежать разрушения детали или конструкции, не представляют особых затруднений, если она находится в условиях одноосного статического напряженного состояния. Необходимо лишь иметь в распоряжении кривую зависимости между напряжением и деформацией при одноосном деформировании исследуемого мате риала, которая достаточно просто получается из одного или не скольких испытаний на простое растяжение и сжатие. Например если текучесть является основной представляющей опасность фор мой разрушения исследуемой детали, находящейся в условиях од ноосного состояния, то можно предсказать, что деталь разрушится когда максимальное нормальное напряжение в ней достигнет пре дела текучести, который можно определить из кривой зависимости напряжения от деформации в опыте на простое растяжение.  [c.130]

У типичных высокоэластичных жидкостей на начальном этапе их деформирования при у = onst темп роста разности нормальных напряжений рц — р 2 отстает от темпа роста т. Поэтому только при малых деформациях т = pji > рц — раг- С нарастанием деформаций нормальные напряжения быстро обгоняют касательные. Соответственно, достигаемые при непрерывном деформировании в условиях у = onst максимальные значения а обычно бывают больше максимальных касательных напряжений. Максимумы на кривых а (у) и т у) имеют одинаковую природу. Оба они связаны с разрушением структуры материала при достижении некоторых критических значений напряжений и деформаций так,  [c.93]

Сверханомалия — снижение сопротивления деформированию в условиях перехода от одного к другому установившемуся режиму течения, при повышении скоростей представлена на кривой А1В2С участком АВ, который соответствует интенсивному необратимому разрушению структуры системы. Это подтверждается, во-первых, видом кривых 1 и 2, показанных в правой части рис. 61, которые свидетельствуют о медленности достижения установившихся режимов течения, что характерно для необратимого разрушения структуры пластичных систем во-вторых, тем, что после достижения точки В и снижения скорости была по-130  [c.130]

Сопротивление деформированию и разрушению при малом числе циклов нагружения определяется структурным состоянием материала и условиями нагружения. По циклическим свойствам принято различать циклически упрочняющиеся материалы, у которых ширина петли пластического гистерезиса с ростом числа циклов нагружения уменьшается разупрочняющиеся, деформирование которых сопровождается прогрессирующим увеличением ширины петли гистерезиса вплоть до разрушения, а также циклически стабилизирующиеся, для которых характерна неизменность ширины петли гистерезиса за исключением начального и конечного участков нагружения [1]. Один и тот же материал в зависимости от исходного структурного состояния может быть либо упрочняющимся, либо разупрочняющимся, либо циклически стабилизирующимся. О характере поведения материала при малоцикловом нагружении можно судить по его статическим свойствам материалы, у которых отношение величины равномерной деформации и общей при статическом разрушении больше 0,5, являются упрочняющимися, при 8в/8< 0,5 они разупрочняются, апри8в/е = 0,5 — стабилизируются [2]. Сопротивление конструкционных материалов малоцикловому разрушению определяется их исходной пластичностью и темпом ее исчерпания [3, 4]. Для упрочняющихся материалов характерен затухаюший темп накопления повреждений (рис. 1, кривая 1, алюминиевый сплав АД-33), для разупрочняющихся — прогрессирующий (кривая 3, сталь ТС) и для циклически стабилизирую щихся материалов — равномерный (кривая -2, сталь 22К) темп накопления повреждений. В последнем случае это накопление сравнительно равномерно в связи с тем, что петля гистерезиса не изменяется с ростом числа циклов нагружения, и неравномерность наблюдается лишь при квази-статическом разрушении, когда интенсивно накапливается односторонняя деформация, определяющая уровень квазистатического повреждения.  [c.51]

На участке I т = п, кривая длительной прочности является зеркальным отображением графика сопротивляемости ползучести, деформационная способность при разрушении не зависит от приложенных напряжений (времени). На участке II т>п и пластическая деформация уменьшается с уменьшением напряжения (увеличением времени). На участке III возможны три случая т> >k, m=k и m< k. В первом случае пластическая деформация более резко снижается с увеличением времени испытаний, во втором случае стабилизируется, в третьем увеличивается. Очевидно влияние показателя ползучести т на характер изменения условий деформирования и разрушения при смене механизмов микроразру-шения. Поскольку константы а, Ь, с экспоненциально зависят от 1/Г, условие независимости микромеханизмов разрушения при ползучести приводит к принципу геометрического подобия кривых длительной прочности, предложенному В. И. Ковпаком.  [c.23]

Следует отметить, что описанная теория деформируемости Г. А. Смирнова-Аляева справедлива для процесса осадки. Ее применение для других случаев обработки металлов давлением с иным законом изменения напряженно-деформированного состояния в процессе деформирования перед разрушением еще не доказано. На наш взгляд, теория разрушения должна учитывать историю деформирования металла. Действительно, опыты Г. А. Смирнова-Аляева по осадке необточенных цилиндров из калиброванного металла (поверхностный слой получил предварительно существенную степень деформации) показали пониженную пластичность [141, 143], т. е. разрушение происходило раньше, чем металл достиг предельного состояния (пунктирная кривая на рис. 3). Варьируя условия осадки таких необточенных цилиндров, можно было бы получить для них также диаграмму зависимости критической степени деформации от показателя напряженного состояния, которая будет отличаться от диаграммы на рис. 3. Для каждого сложного процесса, состоящего в одном случае из осадки, в другом калибровки и осадки и т. д., имеется своя диаграмма. Сложность накопления такого числа экспериментальных данных очевидна. Ниже, во П главе, будет показано, что для оценки возможности разрушения в различных процессах обработки металлов давлением можно обойтись одной диаграммой пластичности. На наш взгляд, преимущество теории Г. А. Смирнова-Аляева перед другими теориями деформируемости состоит в том, что она пользуется правильным определением меры пластичности — степенью деформации в формулировке А. А. Ильюшина. Выбран удачный показатель напряженного состояния, процесс разрушения рассматривается локально, т. е. эта теория связывает напряженное  [c.27]


По данным работ [22, 114], в которых описаны результаты испытаний некоторых высокопрочных и легированных сталей при плоском напряженном состоянии в условиях повышенных температур, существенного изменения закономерностей деформирования и разрушения исследованных материалов с повышением температуры не наблюдается. Тем не менее испытания сложнолегированной высокопрочной стали [22] показали (рис. 194), что наблюдаемое с повышением температуры сокращение области безопасных состояний сопровождается некоторым изменением формы предельных кривых. Наиболее заметно сокращение областей, соответствующих меньшим допускам на остаточную деформацию при этом с повышением температуры экспериментальные точки перемещаются внутрь эллипса Мизеса ближе к прямоугольнику Кулона.  [c.366]

Таким образом, расчет истинных предельных напряжений по деформациям в зоне равномерного деформирования не дает (в пределах неизбежного разброса) качественно новых предельных кривых по сравнению с соответствующими предельными кривыми, построенными в условных напряжениях. И в том и в другом случае предельные кривые разрушения хромоникелевой стали Х18Н9Т в диапазоне температур от нормальных до 820° С находятся в зоне, ограниченной условием Мизеса и условием Кулона. При высоких температурах экспериментальные точки больше тяготеют к условию Кулона.  [c.369]

Поведение термопластичных полимеров при кратковременном нагружении в температурном интервале их эксплуатации наиболее полно описывают кривые в координатах нагрузка — деформация (кривые о — е), полученные при различных видах деформирования и различной скоростью приложения нагрузки. Эти кривые характеризуют поведение полимера вплоть до разрушения. По кривым ст — е, снятым в строго определенных (стандартных) условиях, находят сопоставимые между собой стандартные показатели механических свойств — кратковременный модуль зохругости, предел пропорциональности, предел текучести, разрушающее напряжение, деформацию при разрушении и энергию, затрачиваемую на разрушения.  [c.29]


Смотреть страницы где упоминается термин Кривые деформирования и в условиях разрушения : [c.66]    [c.17]    [c.417]    [c.45]    [c.45]    [c.67]    [c.106]    [c.29]    [c.51]    [c.13]    [c.213]    [c.325]    [c.210]   
Справочник машиностроителя Том 3 Изд.2 (1956) -- [ c.438 ]

Справочник машиностроителя Том 3 Издание 2 (1955) -- [ c.438 ]



ПОИСК



Кривые деформирования и в условиях

Разрушение Условие



© 2025 Mash-xxl.info Реклама на сайте