Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Места разрушения

Определение надежности (испытание на удар). Для установления степени надежности материала необходимо определение сопротивления разрушению вязкому (Ор), хрупкому (Гв —7 н или Т ц) или вязкости разрушения (Ki ). Об определении Ki коротко говорилось ранее, об определении сопротивления разрушению при ударных испытаниях, получивших в особенности за последнее время широкое расиространение, скажем немного подробнее. Практически оказалось удобнее разрушать образец ударом при еш изгибе и фиксировать место разрушения надрезом).  [c.80]


При оценке статической прочности резьбовых соединений необходимо учитывать прочность материала болта и гайки. Если прочность материала болта выше прочности материала гайки (что должно быть правилом), то менее прочной является резьба гайки, хотя площадь сечення ее витков в месте разрушения больше площади сечения витков резьбы болта. В таких соединениях с высотой гайки меньше критической срезается резьба гайки, а не резьба болта. Критической высотой гайки / .р называют высоту, при которой прочность витков резьбы на срез или смятие равна или несколько выше прочности стержня болта на разрыв.  [c.291]

Лр,л=1дф, где Лр.ср — усредненная по длине образца /о диаметром d степень деформации при скручивании за П оборотов Лр,п —локальная, т. е. в месте разрушения при скручивании деформации [обычно Лр,л (2Ч-4) Ар.ср] Ф — угол наклона риски, совпадающий до деформации с образующей цилиндрического образца.  [c.489]

Схема температурных зависимостей механических свойств при статическом растяжении представлена на рис. 3.1. На ней, так же как и на рис. 1.5, приведены зависимости истинного сопротивления разрыву 5к, предела прочности Sb, предела текучести St, сужения шейки if) и доли вязкой части излома в месте разрушения F . Эта диаграмма детализирует приведенные в 1 температурные зависимости в связи с характеристиками вязкости разрушения Ki - В области хрупких разрушений они описываются закономерностями линейной механики разрушения, основные понятия которой изложены выше. Предельные значения коэфф --10  [c.40]

Истинное сопротивление разрыва — напряжение, создаваемое в момент разрушения образца в его материале в месте разрушения. Для его вычисления надо нагрузку в момент разрушения образца Рк разделить на площадь поперечного сечения в месте разрыва S = PJF .  [c.19]

В эксплуатации имели место разрушения дисков III ступени турбины на двух двигателях НК-8-2у, условные номера Р-1 и Р-2. Разрушение обоих дисков происходило аналогичным образом на исполнительном старте в момент пробега самолета по полосе. Это давало основание полагать, что оба разрушения дисков турбины одноименной ступени имели место по одной и той же причине.  [c.542]

Одной из целей усталостных испытаний является выявление слабых мест и опасных зон в конструкции. Для выполнения этой задачи также весьма важно выбрать правильно базу испытания, так как в зависимости от цикловой базы и уровня нагруженности может изменяться место разрушения. При числе циклов до разрушения 4Х ХЮ разрушение сосудов происходило по образующей цилиндра, т. е. носило квазистатический характер. Увеличение предельной долговечности до 7-103 циклов (уменьшение уровня напряжений) привело к разрушению усталостного типа в заделке [163].  [c.111]


Зная распределение радиоактивного аппрета после расслаивания соединения эпоксидная смола — аппрет— стекло, можно более точно определить места разрушений. Например, если весь аппрет сохраняется на стекле, возможны варианты 1 и 2. Если аппрет остается на стекле и смоле, возможен случай 3 при условии однородного расслаивания. Если весь аппрет сохраняется на смоле, то разрушение соединения может произойти по вариантам 4 или 5.  [c.133]

Перераспределение нагрузки через матрицу приводит к тому, что уменьшение жесткости материала происходит только в крайне ограниченной области, непосредственно примыкающей к месту разрушения волокна. Местная пластичность и текучесть, повышенная деформативность матрицы или поверхности раздела между волокном и матрицей локализуют места разрушения и перераспределяют нагрузку между армирующими элементами. Именно эти качества играют главную роль в обеспечении надежности композиционного материала, подобно пластичности кобальта в цементированном карбиде или трению, обеспечивающему перенос нагрузки в обычном канате, сплетенном так, что растягивающая нагрузка вызывает сжатие между волокнами.  [c.18]

Хрупкое разрушение сепаратора подшипника из алюминиевого сплава АК4-1 произошло вследствие пониженных свойств материала прочности и, главное, пластичности, из-за перегрева при закалке. Перегрев был местный, что выявилось анализом изломов, микроструктуры и механическими испытаниями образцов, вырезанных вблизи и вдали от места разрушения. Эксплуа-  [c.50]

Особое внимание следует обратить на состояние поверхности детали вблизи излома, нет ли на детали дополнительных трещин и как они расположены по отношению к месту разрушения. Во многих случаях направление дополнительных трещин помогает установить место начала разрушения и общее направление разрушения (см. рис. 87, 108).  [c.175]

Эти производные таким образом терпят разрыр непрерывности вдоль фронта волны, оставаясь, вместе с тем ограниченными. Если они обращаются в бесконечность вдоль фронта, то волна испытывает разрушение и уравнения теряют свою силу вблизи места разрушения.  [c.207]

Микроструктурный анализ показал, что металл труб вдата от мест разрушения имел феррито перпитную структуру свидетельствующую об отсутствии существенного перегрева. В зоне разрушения структура металла состояла из сфероидизированного перлита, что указывало на i.-регрев металла в процессе эксплуатации до температуры 540°С.  [c.46]

Характерен вид места разрушения образца при вязком разрушении поверхность излома матовая, 1волокнистая, мелкозернистая при хрупком — блестящая, зернистая, с малозаметными остаточными деформациями.  [c.146]

Как известно, усталостные разрушения начинаются в зоне наибольшего напряжения с образования трещины на поверхности или на небольшой глубине ослабленного сечения (надрезы, отверстия, риски или другие концентраторы напряжения). Разрушение от статического растяжения обычно вызывает сокращение площади поперечного сечения образца вблизи места разрушения. Усталостное разрушение образца заметного сокращения площади его поперечного сечения практически не вызывает. Поверхность усталостного излома, как правило, имеет две зоны собственно усталостного разрушения и окончательного разрушения (долома). Зоны усталостного излома по внешнему виду поверхности обычно характеризуются мелкозернистостью структуры металла и нали-  [c.248]

Определение жаростойкости показало (рис. 1), что от высокотемпературного окисления хорошо защиш,ают сталь хромирование (до 800—900° С) и алитирование (вплоть до 1000° С). Ванадиро-вание в интервале температур 200—800° С почти не влияет на повышение жаростойкости стали. Металлографические исследования показали, что при температурах 500—600° С алитированные и хромированные слои хорошо сохраняются. Однако при повышении рабочей температуры наблюдается утонение слоев, а затем и разрушение их. В местах разрушения слоя происходит интенсивное выгорание углерода с поверхностных слоев металла.  [c.163]

Предел прочности в продольном направлении и относительное удлинение различных металлических покрытий оценивак тся на трубчатых образцах [61 ]. На стальную трубку 3 (рис. 3.19, а), на концах которой имеются утолщения с внутренней резьбой, наносится покрытие 1. Для локализации места разрушения в покрытии в центральной его части делается проточка глубиной 0,05 мм. После удаления трубки образец устанавливается в захватах разрывной машины при помощи резьбы в утолщениях 2, Для облегчения удаления трубки М. Милевский предлагает на ее поверхность перед напылением нанести тонкий слой поваренной соли, которую потом нужно растворить в воде.  [c.51]


В рассматриваемых реакциях вследствие пирогидролиза хлористого титана происходит образование соляной кислоты, которая поддерживает в активном состоянии поверхность титана в местах разрушения окисной пленки, способствует процессам локального растворения и насыщения металла водородом. Чем больше химическая гетерогенность металла, тем более интенсивно протекают процессы локального растворения и тем активнее происходит насыщение металла водородом. При этом следует иметь в виду, что склонность к водородной хрупкости при нагружении металла в области температур 250—500°С существенно отличается от хрупкости при 20°С. При температурах горячесолёвого растрескивания выделения гидридов, по-видимому, не происходит из-за очень высокой растворимости водорода в металле, и сами гидриды не могут проявить хрупкость при данных температурах. Водородная хрупкость в этом интервале температур возможна лишь при сравнительно высоких концентрациях водорода как обратимая водородная хрупкость, связанная с повышенной концентрацией водорода на границах зерен. Эта концентрация способствует возникновению локального вязкого течения и соответственно охрупчиванию металла.  [c.77]

Рис. 9.9. Схема (а) фрагмента диска I ступени КНД двигателя Д-30 с зоной разрушения, (6), (в) излом по месту разрушения межпазового выступа одного из дисков и (г) бороздчатый и (Э) фасеточный рельефы этого излома Рис. 9.9. Схема (а) фрагмента диска I ступени КНД двигателя Д-30 с <a href="/info/592112">зоной разрушения</a>, (6), (в) излом по месту разрушения межпазового выступа одного из дисков и (г) бороздчатый и (Э) фасеточный рельефы этого излома
В полете самолета Руслан имело место разрушение части лопаток первой ступени вентилятора двигателя Д-18. Лопатки изготовлены из титанового сплава ВТЗ-1 с глобулярной структурой. Осмотр двигателя при посадке самолета показал, что он не имеет обтекате.дя. Разрушены по основа- нию две лопатки, еще в трех лопатках, также по основанию, имели место трещины протяженностью вплоть до 20 мм со стороны входной кромкн, а часть лопаток вблизи зоны разрушения деформирована (рис. 11.9).  [c.581]

В редукторе ВР-8А имело место разрушение промежуточного зубчатого колеса с отделением куска размером 27 х 7 х 10 мм (рис. 13.18). Усталостные трещины зародились во внутренних объемах материала зуба от первоначально образовавшегося здесь протяженного и разветвленного расслоения материала по металлургическим дефектам в виде окисных плен. Развитие трещины сопровождалось формированием регулярных макролиний усталостного разрушения. Оценка по ним длительности  [c.689]

В эксплуатации еще имело место разрушение промежуточной шестерни-сателлита редуктора ВР-14 вертолета Ми-8МТВ. Разрушение шестерни заключалось в отделении от нее части обода с задним зубом. Произошло разрушение практически до основания соседнего с отделившимся зуба, вторичного к отделившемуся от ЗК по очередности входа в контакт с колокольным зубчатым колесом. На полотне ЗК имелась трещина длиной около 110 мм, идущая примерно по хорде от зоны отсутствующей части обода к ступице (рис. 13.19). Установлено, что разрушение ЗК явилось результатом образования и последующего слияния между собой двух усталостных трещин от впадин отделившегося и отсутствовавшего зуба. В очаге одной первоначально возникшей трещины имелись участки межзеренного растрескивания материала, а в другом очаге — металлургические дефекты материала в виде окисных плен.  [c.691]

Рис. 13.33. Внешний вид разрушенного вала винта АВ-72Т двигателя АИ-24ВТ и рельеф (по стрелке "А") его излома по месту разрушения — зона разрушения от галтели "2" и "3 — участки излома по одной и второй трещине, зародившейся первоначально во фланце, "4" — зона разрушения от галтели под углом к зоне Рис. 13.33. Внешний вид разрушенного вала винта АВ-72Т двигателя АИ-24ВТ и рельеф (по стрелке "А") его излома по месту разрушения — <a href="/info/592112">зона разрушения</a> от галтели "2" и "3 — участки излома по одной и второй трещине, зародившейся первоначально во фланце, "4" — <a href="/info/592112">зона разрушения</a> от галтели под углом к зоне
Применительно к стыковочному узлу концевой и хвостовой балок вертолета Ми-8 на начальном этапе эксплуатации наблюдались слз чаи отрыва в полете концевой балки из-за раскрытия стыка, которое приводило к усталостному разрушению болтов ее крепления к хвостовой балке. Для предотвращения раскрытия стыка была проведена конструктивная доработка, по которой болты 08 мм были заменены болтами 010 мм, а болты 010 мм — болтами 012 мм. Дополнительно было введено усиление угольников стыка концевой и хвостовой балок, которые изготавливают из алюминиевого сплава Д16Т. В процессе замены угольников имело место разрушение неусиленного угольника при выполнении вертолетом висения на высоте 5-7 м, в результате чего произошел отрыв концевой балки от хвостовой балки (рис. 13.34). К моменту происшествия вертолет налетал 8176 ч и совершил 12901 посадку.  [c.713]

С повышением уровня действующих напряжений может изменяться место и характер разрушения. При испытании в лабораторных условиях должен быть получен излом, характерный для разрушения в эксплуатации. Между тем вид. излома, место разрушения и механизм развития зависят от уровня действующих напряжений (при высоких напряжениях разрушения осей происходят по галтели, тогда как при низких — в запрессованной части. При высоких напряжениях накладки в стыках ломаются в зазоре между рельсами, где действует наибольший изгибающий момент, тогда как при низких — по пятнам фактического контакта накладки с рельсом, где развивается фрет-тинг-коррозия и возникают патиры).  [c.111]

Другой подход к проблеме растворимости был использован Брентналлом и др. [7] при исследовании системы ниобий — вольфрам. Максимальное количество вольфрама, которое может быть введено в обычные ниобиевые сплавы, ограничено 20—30% из-за снижения ковкости сплава. Композитный материал из ниобиевой матрицы с вольфрамовой проволокой теряет стабильность вследствие растворения проволоки. Однако продукты растворения представляют собой высокопрочные сплавы системы Nb — W, которые обычно являются нековкими. Образование этих сплавов компенсирует потерю прочности, вызванную растворением вольфрамовой проволоки. На рис. 4 показано влияние выдержки (до 100 ч) при 1477 К на прочность при растяжении Nb-сплава с 24 об.% проволоки (W с добавкой 37о Re). Имеются два фактора, снижающие прочность. Первый из них — это уменьшение сечения вольфрамовой проволоки из-за растворения, второй— возврат, приводящий к разупрочнению. Прочность проволоки уменьшается с 119 кГ/мм в исходном состоянии до 77 кГ/мм после выдержки 100 ч при 1477 К. В то же время прочность композита не изменяется. Предполагается, что постоянная величина прочности композита обеспечивается образованием высокопрочных Nb — W-спла-вов. На рис. 5 сопоставлены микроструктуры вблизи места разрушения при испытании на растяжение образцов в исходном состоянии и после ЮО-часовой выдержки при 1477 К. Матрица становится менее пластичной после отжига из-за большого количества растворившегося в ней вольфрама.  [c.94]


Различие между системами третьего класса (химически взаимодействующими) и системами псевдопервого класса заключается в том, что в первых реакция на поверхности раздела развивается равномерно, а в последних начинается лишь на участках, где разрушена окисная пленка. До тех пор пока пленка не разрушена, композит ведет себя как система первого класса (не взаимодействующая химически и без взаимного растворения компонентов). Места разрушения расположены очень нерегулярно, и реакция развивается неравномерно. Некоторые стадии разрушения окис-ной пленки в системе алюминий—бор представлены на рис. 3 гл. 3. Паттнайк и Лоули [23] и Джонс [13] наблюдали такую же  [c.148]

Как правило, прочность при поперечном растял<ении уменьшается с увеличением продолжительности предварительного отжига при 811 К, а дефо рмация разрушения обнаруживает тенденцию к некоторому росту. Прочность первого образца в табл. 2 (неотож-женного) низка, поскольку матрица не переведена в состояние твердого раствора. Во всех образцах имеет место разрушение смешанного типа. Значит, прочность поверхности раздела и сопротивление волокна расщеплению меняются в широких пределах, что, возможно, отчасти обусловлено постепенным разрушением окисной пленки между волокнами и матрицей. Хотя такая  [c.218]

Купер и Келли [7], а также Тетельман [47], считают, что уравнение (12) позволяет достоверно оценить вклад матрицы в вязкость разрушения меди, армированной вольфрамовой проволокой. Герберих [12] указал, однако, что, несмотря на возможность разумных количественных оценок, уравнение (12) некорректно, поскольку композит трехмерен, а волокна имеют не квадратное, а круглое сечение. По Олстеру и Джонсу [31], в алюминии, армированном от О до 6 об.% вольфрама, упрочнитель не оказывает существенного влияния на вязкость матрицы. Те же авторы предположили, что в композите бор — алюминий, содержащем 50 об.7о упрочнителя, вязкость разрушения матрицы практически не зависит от борных волокон. Такое предположение может быть оправдано лишь в случае, если деформация матрицы у вершины трещины локализована на столь малом участке, что на нее не влияет присутствие волокон. Поэтому к каждому композиту в зависимости от его поведения необходим индивидуальный подход. Будет ли вязкость разрушения матрицы столь же низка, как и для массивного образца материала матрицы, или несколько выше —это, согласно Куперу и Келли [7], определяется влиянием волокон. Если поверхность раздела прочна, а коэффициент вариации прочности волокон велик, то, по Меткалфу и Кляйну [27], места разрушения волокон будут характеризоваться значительным пространственным разбросом это может привести к увеличению деформации матрицы, а последнее, в свою очередь, — к росту вязкости разрушения.  [c.288]

Рис. за. Деталь из сплава B95TI а — излом. Х9 б — поверхность в месте разрушения (стрелка). Х7  [c.51]


Смотреть страницы где упоминается термин Места разрушения : [c.75]    [c.453]    [c.310]    [c.28]    [c.57]    [c.107]    [c.177]    [c.13]    [c.19]    [c.163]    [c.163]    [c.475]    [c.529]    [c.623]    [c.773]    [c.19]    [c.378]    [c.12]    [c.46]    [c.53]    [c.174]   
Смотреть главы в:

Проектирование с учетом усталости  -> Места разрушения



ПОИСК



Изменение модового состава турбулентных пульсаций при акустическом возбуждении струи. Локализация мест спаривания и разрушения когерентных структур при акустическом возбуждении струи. Механизмы акустического возбуждения струи

Места разрушения сварных соединений

Разрушение оболочек в местах перелома поверхности



© 2025 Mash-xxl.info Реклама на сайте