Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деформация, причины

Группа травителей, содержащих медные соли, наряду со способностью выявлять сегрегации, отличается тем, что под их воздействием на поверхности шлифа, особенно из листов малоуглеродистых (котельных) сталей, появляются своеобразные темные полосы, названные фигурами деформации. Причина их возникновения— пластическая деформация в зонах, нагруженных выше предела упругости. Потемнение полос вызвано процессами выделения (особенно деформацией в сочетании с диффузией атомов внедрения, растворенных в кристаллах). Согласно исследованиям Кестера [40], фигуры деформации возникают преимущественно в результате сегрегации нитрида железа в участках зерен, содержащих дефекты кристаллической решетки. В железных сплавах, в которых азот отсутствует, фигуры деформации не наблюдаются. Выделение нитридов происходит особенно интенсивно в температурном интервале 250—400° С. При температуре около 500° С растворимость азота в железе быстро возрастает. После длительных выдержек нитриды выделяются и при комнатной температуре.  [c.60]


При эксплуатации некоторые детали авиационной техники изменяют свою геометрическую форму из-за деформации. Причинами могут быть большие статические и ударные нагрузки, неравномерный нагрев деталей, остаточные напряжения и др.  [c.285]

Остаточные напряжения (иначе внутренние напряжения). Появляются вследствие искажений решетки, возникающих а процессе фазовых превращений п пластической деформации. Причина их возникновения — скопления дислокаций у различного рода препятствий, создание суммарных полей  [c.97]

В ряде случаев детали или инструменты, прошедшие закалку, подвергаются деформациям. Причиной деформации (коробления) являются внутренние напряжения, создаваемые быстрым охлаждением деталей в закалочной жидкости. Чтобы устранить кривизну таких деталей, их подвергают правке (рихтовке).  [c.99]

Разности энергий упругой деформации (причиной которой является анизотропия упругих постоянных) между двумя зернами, различным образом ориентированными по отношению к приложенному напряжению, вызывающему в данном случае только упругую деформацию [197]. Это основной механизм так называемой рекристаллизации, вызванной действием напряжений, которая в большинстве случаев, вероятно, пренебрежимо мала при высокой температуре, когда происходит пластическое  [c.85]

При сварке деталей из алюминиевых сплавов в них возникают значительные внутренние напряжения, которые вызывают деформации. Причинами внутренних напряжений являются большая литейная усадка при охлаждении сплава из расплавленного состояния и высокий коэффициент его линейного расширения. Для снижения внутренних напряжений рекомендуется подогреть детали перед сваркой до температуры 250—300°С и медленно охладить после сварки.  [c.164]

Уже в процессе растяжения бруса в области пластических деформаций при испытании образца наблюдаем деформации, причиной которых является сдвиг, скольжение одних частей материала по другим (линии Чернова).  [c.82]

При сварке в деталях из алюминиевых сплавов возникают значительные внутренние напряжения, которые вызывают деформации. Причинами внутренних напряжений в деталях являются большая литейная усадка при охлаждении сплава из расплавленного состояния и высокий коэффициент его линейного расширения.  [c.167]

Поэтому если при испытании пружины окажется, что пружина по усилию не отвечает заданной деформации, причину нужно искать в отклонении ее геометрических размеров (п. В, й) от заданных чертежом либо диаметр пружины больше или меньше чертежного, либо пружина навита из проволоки не того диаметра, либо при навивке допущена ошибка в числе витков.  [c.243]


Как показали проведенные эксперименты, предварительная термическая обработка чугунной плиты (нагрев до температуры 500—550° С, выдержка 6 ч) до заливки несколько уменьшает деформацию пластмассового облицовочного слоя. Обработка поверхностей плит под заливку строганием практически не влияет на величину деформации. Термическая обработка пластмассового облицовочного слоя приводит к резкому увеличению деформации. Причиной увеличения деформации является повышение линейной усадки, а также возникновение температурных деформаций при остывании вследствие различных коэффициентов линейного расширения пластмассы и чугуна. Поэтому нежелательно подвергать залитые пластмассой чугунные матрицу и пуансон термической обработке. В случае необходимости термической обработки пластмассового облицовочного слоя штампа выбирают состав компаунда, у которого коэффициент линейного расширения близок к металлической основе (например, компаунд с наполнителями — железный порошок и маршалит)  [c.200]

Анализ движения дислокаций позволяет объяснить, почему предел сопротивления скольжению для малы.х монокристалличе-ских образцов из чистых металлов соответствует значительно более низким напряжениям по сравнению с пределом текучести поликристаллических технических металлов, и почему испытания чистых металлов при нормальной или повышенной температуре приводят к очень большим пластически.м деформациям. Причиной этих различий является меньшее количество загрязнений и более правильное строение кристаллической решетки в образцах из чистых металлов, облегчающее движение дислокаций и возникновение скольжения.  [c.108]

Деформация. Причинами деформации являются собственный вес (при неудачном расположении опор), внешняя сила (например, измерительное усилие), одностороннее нагревание, внутренние напряжения. В приведенных ниже примерах для упрощения предполагается,  [c.168]

По диаграмме деформации определяют только прочностные характеристики аи и 00,2- На этой диаграмме модуль нормальной упругости (тангенс на-клена кривой О А) значительно меньше действительного, так как диаграммный аппарат фиксирует и упругую деформацию частей машины. Чтобы определить модуль упругости, на испытуемый образец навешивают тензометры, позволяющие определить малые величины деформаций, и тем самым точно построить участок ОА. Деформационные характеристики — 6 и tp по той же причине определяют также не по диаграмме, а измерением образца до и после испытания.  [c.64]

Деформация, коробление и трещины являются следствием внутренних напряжений, причину возникновения которых мы рассмотрели раньше.  [c.306]

Поведение различных латуней при горячей обработке своеобразно. Пластичные ири комнатной температуре а-латуни оказываются в интервале 500— 700 С менее пластичными, чем Р-латуни Хотя прочность а-латуни при комнатной температуре ниже, чем р-латуни при температурах выше 500°С fi-латуни оказываются менее прочными и более пластичными. По этой причине для прокатки в горячем состоянии наиболее пригодны латуни с таким содержанием циика (более 32—39%), чтобы при высокой температуре структура состояла бы из a-f р- или р-кристаллов (см. рис. 441). Наоборот, для производства тонких листов и проволоки (т. е. для деформации в холодном состоянии) целесообразно применение латунной, обладающих максимальной пластичностью при комнатной температуре (т. е. однофазные а-латуни с содержанием цинка около 30%).  [c.608]

Ввиду пониженной технологической пластичности высоколегированных сталей и труднодеформируемых сплавов их предпочтительнее штамповать в закрытых штампах. В этом случае схема неравномерного всестороннего сжатия проявляется полнее и в большей степени способствует повышению пластичности, чем при штамповке в открытых штампах. По этой же причине наиболее предпочтительна штамповка выдавливанием. Сплавы, у которых пластичность понижается при высоких скоростях деформирования (титановые, магниевые и др,), штампуют на гидравлических и кривошипных прессах. При этом для уменьшения остывания металла и повышения равномерности деформации штампы подогревают до температуры 200—400 °С. Поковки из некоторых труднодеформируемых сплавов получают изотермической штамповкой.  [c.97]


Причины, вызывающие напряжения и деформации при сварке.  [c.77]

Далее, когда обработана установочная поверхность, обрабатывают остальные поверхности, соблюдая при этом определенную последовательность и имея в виду, что обработка каждой последующей поверхности может искажать ранее обработанную поверхность. Это происходит по той причине, что снятие режущим инструментом слоя металла с поверхности детали вызывает перераспределение внутренних напряжений в материале детали, что приводит к ее деформации.  [c.40]

Режущий инструмент изнашивается по передней и задней поверхностям. Износ по задней поверхности особенно влияет на точность обработки. Размеры деталей изменяются также по причине затупления режущей кромки инструмента, что вызывает увеличение радиальной составляющей силы резания и, значит, увеличение деформаций всей системы СПИД.  [c.49]

Величину деформации вала, установленного в центрах токарного станка (без люнета), можно приближенно определить по формуле для изгиба балки, свободно лежащей на двух опорах (рис. 18). Точно определить величину деформаций затруднительно по причине изменения сил резания и закрепления детали в процессе ее обработки эти изменения иногда колеблются в широких пределах.  [c.58]

Тепловые деформации происходят по причинам 1) нагрева теплом, выделяющимся при резании металла 2) нагрева теплом, образующимся при трении движущихся частей станка 3) непостоянства температуры помещения, вследствие чего происходят неравномерный нагрев или охлаждение системы станок — приспособление — инструмент — деталь.  [c.61]

По всей видимости, снижение е/ в зависимости от hjs можно объяснить следующей причиной. Следствием импульсного нагружения являются последующие свободные колебания сварного соединения. Очевидно, что в зоне сопряжения шва с основным металлом эти колебания за счет концентрации напряжений и деформаций могут приводить к циклическому знакопеременному упругопластическому деформированию материала. Разрушение материала в данном случае может быть связано с накоплением усталостных повреждений. Ясно, что критическая деформация, по сути являющаяся остаточной деформацией после импульсного нагружения, будет меньше, чем критическая деформация при монотонном квазистатическом нагружении. Увеличение относительной высоты усиления hjs приводит к росту инерционных сил, за счет которых в зависимости от схемы нагружения растет амплитуда и(или) количество циклов свободных колебаний сварного соединения. Роль усталостного повреждения в этом случае увеличивается, что приводит к снижению критической деформации при динамическом нагружении.  [c.45]

В случае импульсного нагружения элемента конструкции за счет волновых процессов в зонах концентрации напряжений может реализовываться циклическое упругопластическое деформирование. Данный эффект во многих случаях является причиной уменьшения критической деформации по сравнению с идентичным параметром при статическом нагружении.  [c.49]

Переходная область от малоцикловой до многоцикловой усталости находится в районе долговечностей примерно 10 — 10 циклов. Здесь разрушение обусловлено как знакопеременной так и упругой пластической деформацией. Обычно, как и в данной работе, переходную область включают в область малоцикловой усталости многие исследователи считают, что причиной разрушения тех или иных конструкций является малоцикловая усталость, если оно происходит через 5-40 циклов или меньше.  [c.128]

Величина усредненного энергетического параметра в наноструктурном образце после кратковременного отжига больше, чем в крупнокристаллическом образце и неотожженном наноструктурном образце, который обладает большей запасенной энергией. Следует отметить, что усредненное значение /Зд в наноструктурном образце, подвергнутом кратковременному отжигу, увеличивается с накоплением деформации на стадии быстрого упрочнения. Такое поведение подобно поведению крупнокристаллической Си. В то же время оно довольно отличается от соответствующего поведения нео гожженных наноструктурных образцов. Для него характерны ясно различимые флуктуации от начала до окончания циклической деформации. Причина этого до настоящего времени не ясна.  [c.216]

Деформации под-действием нагрева (температурные деформации). Причинами деформаций являются а) теплота, выделяющаяся при трении движущихся детален станка б) теплота, выделяющаяся в процессе резания в) неравномерный нагрев системы станок — деталь — и[1струмент от солнечных лучей, отопительных батарей и т. д.  [c.7]

На рис. 2.52 показаны кривые напряжение — деформация, характеризующие деформационное поведение сплавов Си — 2п — 51. Видно, что наряду с почти совершенным эффектом памяти формы сплавы проявляют [46] совершенную пседоу пру гость в интервале напряжений порядка 200 МПа. Если деформировать образцы при напряжениях выше указанных, то независимо от температурной области выше точки (деформация при 180 °С или 220 °С) даже при снятии нагрузки форма не восстанавливается полностью до исходной, наблюдается остаточная деформация. Причиной этого является постоянная деформация, возникающая вследствие скольжения. В трех компонентных сплавах на основе Си — Zп скольжение происходит легко, это вызывает релаксацию напря-  [c.109]

В работе [353] изучались механизмы упрочнения при выделении частиц карбида ниобия в аустенитной нержавеющей стали (18% Сг—12% Ni—1% Nb) в процессе ползучести и старения при температуре выше 650° С после аустенизации с 1300° С. Автор показал, что при малых деформациях причиной упрочнения является торможение дислокаций атмосферой атомов ниобия, затем выделение частиц (механизм Орована), а при деформации 2% существенную роль играют дефекты упаковки.  [c.312]


Под действием нагрузки в области низких температур фторопласт-4 течет. Каждой температуре и нагрузке соответствуют определенные величины остаточной деформации. Причиной возникновения такого псевдотечения фторопласта-4 является процесс рекристаллизации, начинающийся в образце при достижении определенного напряжения, которое можно назвать пределом псевдотекучести. С повышением температуры предел псевдотекучести резко снижается. Фторопласт-4 имеет совершенную пластическую память или способность к восстановлению первоначальной формы при нагревании выше той температуры, при которой производилось деформирование. Это свойство необходимо учитывать при технологических процессах изготовления из него изделий деформированием при повышенных температурах (температура деформирования должна быть выше рабочих температур).  [c.200]

Номинальные размеры у изготовляемой детали абсолютно точно получить невозможно. Это объясняется различными причинами изнашиванием частей (деталей) механизмов станков и режуи1их кромок инструментов, деформацией самой детали при ее обработке, погрешностью измерительных инструментов, изменением температуры воздуха и др.  [c.176]

Для теплообменных аппаратов типа движущийся продуваемый слой более распространены схемы не прямоточного, а противоточного типа. В этих, далее рассматриваемых случаях до сравнительно недавнего времени аналогично неподвижному слою поле скоростей считали равномерным. Ошибочность этих представлений была обнаружена в основном при изучении укрупненных и промышленных установок. Л. С. Пиоро [Л. 236, 237] изучал распределение газа не только в выходном, но и во внутренних сечениях противоточного слоя. Установленная им неравномерность поля скоростей воздуха не изменялась при 1деформация поля скоростей и максимальное отнощение локальной и средней скоростей выражено тем резче, чем больше оцениваемая симплексом Д/йт стесненность в канале. По [Л. 313] у стенок скорость потока на 80% выше, чем в центральной части камеры. Наличие максимума скорости газа в пристенной части слоя с резким снижением вблизи стенки отмечено также в Л. 342]. В исследовании Гу-бергрица подчеркивается, что в шахтных генераторах имеет место значительная неравномерность распределения газа, приводящая к неудовлетворительному прогреву сланца во внутренней части слоя [Л. 104а]. Можно полагать, что одна из главных причин рассматриваемого явления заключается в следующем. Как показано далее, движение плотного слоя приводит к созданию разрыхленного пристенного слоя, толщина которого может составить от трех до десяти калибров частиц. Этот 18 275  [c.275]

При ynpyroiM деформировании под действием внейшей силы изменяется расстояние между атомами в кристаллической решетке. Снятие нагрузки устраняет причину, вызвавшую изменение межатомного расстояния, атомы становятся на прежние места и деформация исчезает.  [c.61]

Для металлов с пониженной свариваемостью характерно образование горячих или холодных трещин в шве и з. т. в. (рис. 5.48). Причины возникновения трещин снижение прочности и пластичности как в процессе формирования сварного соединения, так и в по-слесварочный период вследствие особенностей агрегатного состояния, полиморфных превращений и насыщения газами развитие сварочных деформаций и напряжений, вызывающих разрушение металла, если они превышают его пластичность и прочность.  [c.229]

С увеличением быетроходности машин возникла настоятельная необходимость в бесшумно работаюш,их зубчатых колесах. Шум, вызываемый зубчатыми колесами, часто обусловлен ненормальными условиями работы зубчатой передачи, влекуш,ими за собой ускоренное изнашивание ее. Шум вредно влияет на человеческий организм. Весь комплекс причин возникновения шума при работе зубчатых колес еще недостаточно изучен. Улучшение качества зубчатых колес, способствующее уменьшению шума, достигается 1) нарезанием зубьев с точностью, выражаемой сотыми и тысячными долями миллиметра 2) термической обработкой с применением цианирования и газовой цементации, дающих значительно меньшую деформацию зубчатых колес, чем обычная цементация и закалка 3) применением рациональных способов окончательной чистовой об работки зубьев, позволяющих достигнуть точности зубчатых колес до 2—3 мк.  [c.320]

Причины шума зависят не только от качеетва обработки зубьев, но и от сборки зубчатых передач, неточности изготовления корпусов и валиков, деформации валиков, несущих зубчатые колеса, смазки и пр.  [c.320]

Рассмотрим принципиальную возможность моделирования влияния пластического деформирования на 5с, исходя из увеличения сопротивления распространению микротрещины в результате эволюции структуры материала в процессе нагружения. Можно предположить, по крайней мере, две возможные причины увеличения сопротивления распространению трещин скола в деформированной структуре. Первая — это образование внут-ризеренной субструктуры, играющей роль дополнительных барьеров (помимо границ зерен), способных тормозить мнкро-трещину. Наиболее общим для широкого класса металлов структурным процессом, происходящим в материале при пластическом деформировании, является возникновение ячеистой, а затем с ростом деформации — фрагментированной структуры [211, 242, 255, 307, 320, 337, 344, 348, 357, 358]. Второй возможный механизм дополнительного торможения микротрещин — увеличение разориеитировок границ, исходно существующих взернз структурных составляющих (например, перлитных колоний). Первый механизм, по всей вероятности, может действовать в чистых ОЦК металлах с простой однофазной структурой. Второй, как можно предполагать,— в конструкционных сталях.  [c.77]


Смотреть страницы где упоминается термин Деформация, причины : [c.122]    [c.311]    [c.167]    [c.12]    [c.8]    [c.65]    [c.608]    [c.25]    [c.134]    [c.346]    [c.364]   
Инструментальные стали и их термическая обработка Справочник (1982) -- [ c.64 ]



ПОИСК



Внутренние напряжения и деформации в сварных изделиях и способы их уменьшения Причины возникновения внутренних нанряжений

Внутренние напряжения и деформации в сварных изделиях, способы их уменьшения Причины возникновения внутренних напряжений

Глава IX. Деформация и напряжения при сварке Причины возникновения термических напряжений и дефорI маций

Деформации и напряжения при сварке , 49. Причины возникновения термических напряжений и деформаций

Деформации и напряжения при сварке Причины возникновения напряжений и деформаций

Деформации причина возникновений

Напряжения и деформации при сварке Причины возникновения напряжений и деформаций и их виды

Общие сведения. Причины возникновения сварочных напряжений и деформаций

Поглощение, дисперсия модели Био и выжимания флюида, оценка поглощения и проницаемости, гидроразрыв и микросейсмы нелинейная вибросейсморазведка деформации поро-пластичных сред как фактор осложнений при бурении и причина техногенной неотектоники ПОСЛЕСЛОВИЕ

Причинность

Причины возникновения и способы устранения деформаций и напряжений

Причины возникновения напряжений и деформаций

Причины возникновения напряжений и деформаций при сварке

Причины деформаций земляного

Причины деформаций земляного полотна

Причины напряжений и деформаций при сварке

Причины неравномерности деформации

Причины появления внутренних напряжений и деформаПредупреждение и уменьшение внутренних напряжений и деформаций

СВАРОЧНЫЕ НАПРЯЖЕНИЯ И ДЕФОРМАЦИИ (инж. Е. К. АЛЕКСЕЕВ) Причины возникновения остаточных напряжений и деформаРазновидности и величина сварочных напряжений и деформаций

Сварочные напряжения и деформации (инж. Е. К. Алексеев) Причины возникновения остаточных напряжений и деформаций



© 2025 Mash-xxl.info Реклама на сайте