Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нагружение многоцикловое

Обычно повторное нагружение с малой частотой приложения нагрузок сопутствует какому-либо другому виду нагружения — многоцикловой усталости, длительному статическому нагружению и поэтому не всегда учитывается. Однако в настоящее время стало ясно, что повторно-статическое нагружение, или так называемая малоцикловая усталость, оказывает существенное влияние на несущую способность материалов в конструкциях. Разрушения от повторно-статического нагружения встречаются в силовых элементах самолетов, кораблей, деталях систем управления, периодически запускаемых двигателях, сосудах давления и т. д.  [c.97]


Существующие справочники по механическим характеристикам сталей и сплавов [3, 31, 51, 56, 57, 60, 61, 97 и др.] содержат сведения, относящиеся к деформированию и разрушению при кратковременном, длительном и циклическом нагружениях (многоцикловая усталость). В предлагаемом справочнике по-ви-димому впервые в мире сделана попытка охватить область мало-Циклового разрушения с учетом разнообразия программ нагружения, реализуемых в высоконагруженных и термонапряженных конструкциях. Программы могут содержать реверсы скорости деформации выдержки, в течение которых происходят ползучесть, релаксация напряжений либо оба процесса одновременно изменения температуры этапы непропорционального нагру-  [c.3]

При высоких нагрузках, когда имеет место пластическая деформация в течение каждого цикла нагружения, усталость конструкции называют малоцикловой усталостью. При более низких циклических нагрузках, когда число циклов нагружения N > 10 , усталость называется многоцикловой. Различают две методики испытания малоцикловой усталости  [c.386]

Кроме кривых циклического упрочнения (разупрочнения), для оценки поведения металлических материалов в условиях циклического нагружения строят гакже кривые циклического деформирования (рис. I 5) в координагах циклическое напряжение - деформация, причем берут значения циклической деформации при достижении стабилизации (насыщения) параметров петли гистерезиса. При монотонном циклическом упрочнении материала в случае испытания с контролируемым напряжением в многоцикловой области  [c.31]

Вторая группа включает параметры, оценивающие сопротивление материалов переменным и длительным статическим нагрузкам. При повторном нагружении в области многоцикловой усталости определяется предел выносливости на базе 10 -н2-10 циклов. Малоцикловая усталость отделяется от многоцикловой условно выбранной базой испытания (Л >5-10 циклов) и отличается пониженной частотой нагружения ( = 0,1-н5 Гц). Сопротивление малоцикловой усталости оценивается по долговечности при заданном уровне повторных напряжений или пределом малоцикловой усталости на выбранной базе испытаний. Сопротивление длительным статическим нагрузкам определяют, как правило, при температуре выше 20°С. Критериями сопротивления материалов длительному действию постоянных напряжений и температуры являются пределы ползучести (То,2/-с и длительной прочности Сх. Предел длительной прочности определяют при заданной базе испытаний, обычно 100 и 1000 ч, предел ползучести — по заданному допуску на остаточную (обычно 0,2%) или общую деформацию при установленной базе испытаний.  [c.46]


Сопротивление деформациям и разрушению при многоцикловом нагружении  [c.104]

Глава VI. УСТАЛОСТНАЯ ПРОЧНОСТЬ ПРИ МНОГОЦИКЛОВОМ НАГРУЖЕНИИ  [c.137]

Относительно слабое влияние коррозионной среды связано с присущим титановым сплавам продолжительным инкубационным периодом до появления трещины при многоцикловом нагружении. Длительность этого периода определяется временем, необходимым для возникновения на поверхности образца первых разрывов защитной оксидной пленки, происходящих вследствие локальных пластических сдвигов в приповерхностных областях. При малых амплитудах напряжений защитные пленки в основном сохраняются или успевают восстановиться. Этим и объясняется малая чувствительность титановых сплавов ко многим коррозионным средам при многоцикловом нагружении.  [c.160]

Применительно к условиям работы дисков ГТД общее повреждение их материала складывается из повреждений малоциклового Ядг, многоциклового йу и длительного статического щ нагружения. На этапе проектирования информация о вибрационных нагрузках и их связи с ресурсом отсут-  [c.38]

В низкочастотной области нагружения при нагреве титановых сплавов ВТЗ-1 и ВТ-9 имеет место устойчивое формирование усталостных бороздок. Испытания круглых образцов с частотой нагружения 1 Гц были проведены по пульсирующему циклу нагружения на материалах после стандартных режимов термообработки (рис. 7.5). При нагреве более заметное снижение в долговечности получено для сплава ВТ-9. Сопоставление кинетики усталостных трещин для различных уровней долговечности свидетельствовало об устойчивом формировании преимущественно усталостных бороздок в изломе. Качественно полученные кинетические кривые не отличались от аналогичных зависимостей шага бороздок от длины трещины в области многоцикловой усталости (рис. 7.6). Расчет  [c.347]

В составе редуктора ЗК подвергаются двухосному растяжению от динамической нагрузки в результате вращения. Эта ситуация для полотна ЗК полностью аналогична нагружению дисков компрессоров и турбин авиационного двигателя. Существующие вибрации в двигателе, в том числе и от газодинамического потока, могут порождать колебания дисков, что приводит к возникновению многоцикловой усталости и быстрому исчерпанию дисками их долговечности (см. главу 9). Эта же  [c.679]

Таким образом, из представленных данных следует, что распространение усталостных трещин в валиках насосов и в валах воздушных винтов от шлицев реализуется в области многоцикловой усталости. Нагруженность валиков настолько низка, что возникновение в них трещин в эксплуатации возможно только в результате первоначального повреждения материала по тем или иным причинам. Разрушение валов также является следствием нарушений в условиях сопряжения деталей в болтовом соединении, что приводит к возникновению усталостной трещины в болтовом стыке, а далее ее распространение происходит в валу.  [c.713]

В книге изложены основные закономерности изменения циклической и коррозионной прочности титановых сплавов в зависимости от химического состава, структуры и окружающей среды. Детально рассмотрен процесс коррозионного растрескивания сплавов на основе титана и физическая природа этого явления в различных агрессивных средах. Анализ малоцикловой долговечности проведен на основе исследования процесса микронеоднородности протекания пластической деформации в упруго-пластической области нагружения. Многоцикловая усталость рассмотрена с использованием статистических методов анализа. Особое внимание уделено влиянию различных охрупчивающих факторов, состояния поверхности и коррозионных сред на циклическую долговечность, а также методам повышения циклической прочности.  [c.2]

Рассмотренные зависимости относятся к симметричному циклу нагружения. При несимметричном цикле нагружения возникает вопрос о влиянии средних (или максимальных) напряжений и средних деформаций цикла на долговечность. Экспериментально влияние средних напряжений на долговечность изучалось в основном только в области многоцикловой усталости. Показано [99], что с увеличением среднего напрял ения долговечность при заданной амплитуде напряжений снижается. Количественно влияние средних напряжений рассчитывается на основании экспериментально построенных диаграмм Смита [99] или в аналитическом выражении указанных диаграмм соотно-ношениями Гудмена [64] или Р. Е. Петерсона [391]  [c.129]


До сих пор нами обсуждались закономерности мало- и многоцикловой усталости при одноосном нагружении. В работе [388] исследованы крестообразные образцы из ферритной и аус-тенитной сталей при двухосном напряженном состоянии. Авторы работ [317, 437] подвергали тонкостенные трубы из алюминиевого сплава внутреннему и внешнему давлению, а также осевому нагружению. Наилучшее соответствие экспериментальным данным было получено при использовании в качестве критериальной величины интенсивности размаха пластической деформации ДеР. В этом случае зависимость Мэнсона—Коффина представлялась в виде  [c.130]

ДО разрушения конструктивного элемента аппарата. Наряду с механохимической повреждаемостью в процессе циклического нагружения имеет место усталостная (малоцик-повая и многоцикловая) повреждаемость.  [c.386]

Методы определения характеристик выносливости при многоцикловой и малоцикловой усталости регламентируются в ГОСТ 25.502—79. Малоцикловая усталость характеризуется базой испытаний Л <5-10 циклов и пониженной частотой нагружения f = 0J- 5 Гц, а многоцикловая усталость — V>10 f = 20- 50 Гц. Повреждение или разрушение в многоцикловой области происходит в основном при упругом, а в малоцпкловой — при упруго-пластичсском деформировании.  [c.77]

В малоцикловой зоне (участок кривой AB D) при нагружении образца растяжением — сжатием можно выделить три характерные участка. На участках I и II разрушение носит квазистатический характер с образованием шейки в месте излома. На участке III на поверхности разрушения уже отчетливо можно выделить зону усталостного излома. Зона IV, соответствующая динамическому пределу текучести, является как бы границей между малоцикловой и многоцикловой (зона V) областями. Участок VI полной кривой усталости соответствует пределу выносливости.  [c.361]

Циклическое упругопластическое деформирование приводит к накоплению пластических деформаций, зависящему от количества циклов нагружения и амплитуды деформации в каждом цикле. Это накопление может быть односторонним, монотонно нарастающим по мере увеличения количества циклов или не приводящим к однонаправленному росту деформаций. Характер протекания пластических деформаций зависит от условий передачи нагрузки на деформируемый элемент, жесткости сопрягаемых деталей, а также от свойств материала. Накопление деформации при упругопластиЧеском деформировании металлов с низкой частотой приводит к появлению трещин и, в конечном счете, к разрушению конструкций при малоцикловом (несколько сотен или тысяч циклов] и при многоцикловом (10 — 10 циклов) нагружении. Закономерности деформирования и разрушения металлов при малоцикловых и многоцикловых испытаниях имеют ряд различий.  [c.86]

Для определения работоспособности титановых сплавов при многоцикловом нагружении необходимо знать их усталостную прочность. При этом следует иметь в виду, что в литературе по усталостным свойствм титановых сплавов имеется много противоречивых сведений. Это, по-видимому, является результатом не только недостаточной изученности этих свойств, но и их своеобразием. Так, уже сейчас ясно, что точные данные по усталостному поведению титановых сплавов во многих случаях можно выяснить лишь на основании статистической обработки первичных данных, так как при усталостных испытаниях наблюдается повышенный разброс данных. Очень важен статистический подход при определении надежной работы крупных деталей машин при многоцикловом нагружении. Уникальное явление усталости титана —его чувствительность к состоянию поверхности. В частности, в последнее время выяснили, что при числе циклов до 10 трещины зарождаются в самом поверхностном слое, состояние которого полностью определяет уровень предела выносливости. При числе нагружений более 10 разрушение носит подповерхностный (подкорковый) характер, хотя типичное усталостное разрушение наблюдается при числе циклов нагружения по крайней мере до 10 ° [91]. Пренебрежение к финишным поверхностным обработкам титановых деталей, работающих на усталость, явилось причиной снижения их долговечности на начальном этапе внедрения титана в технике.  [c.137]

Сильно влияет на распространение трещины изменение микроструктуры сплава, связанное с выделением ач азы. Высокие критические значения коэффициентов интенсивности напряжений получены при горячей пластической деформации в (а + )-области и уровне прочности сплава 1200 МПа. По мнению В. С. Ивановой, оптимальным уровнем прочности титановых сплавов в условиях многоциклового нагружения следует считать1100-1200МПа[26, с. 23-28 110 117, с. 435-441].  [c.148]

Многочисленные исследования показали, что одним из наиболее эффективных методов воздействия на состояние поверхности, приводящих к повышению циклической прочности, является предварительное поверхностное пластическое деформирование (ППД). При этом применение ППД повышает циклическую прочность не столько в области многоцикловой усталости, сколько при больших перегрузках. Известны примеры, когда применение методов ППД позволяет повысить долговечность деталей из титановых сплавов, работающих в области малоциклового нагружения, в 17 — 20 раз, а предел выносливости—в 2 раза [ 187, с. 35, 43]. Вместе с тем по сравнению с многоцикловой усталостью эффективность применения ППД для деталей, работающих в малоцикловой области, изучена меньше. До последних лет отсутствовало даже научно обоснованное объяснение влияния ППД при больших перегрузках (выше предела выносливости), так как при этом роль остаточных сжимающих напряжений не может быть решающей. Возникающие при ППД остаточные сжимающие напряжения при значительных циклических пластических деформациях неизбежно релаксируют при первых же циклах нагружения. С целью установления природы влияния ППД на малоцикловую долговечность титановых сплавов были поставлены специальные опыты по изучению влияния ППД на статическую прочность и характер деформации. Исследование проводили на цилиндрических образцах сплава ВТ5-1 диаметром 10 мм. После механической шлифовки и полировки часть образцов подвергали электрополированию до полного удаления наклепанного слоя. Поверхностное пластическое деформирование осуществляли в трехроликовом приспособлении для обкатки (диаметр ролика 20 мм, радиус профиля ролика г= 5 мм, усилие на ролик изменялось от 300 до 1200 Н при определении статической прочности и равнялось 900Н при оценке характера деформирования). Обкатку вели на токарном станке в 2 прохода при скорости вращения шпинделя 100 об/мин  [c.193]


Таким образом, снижение шероховатости поверхности, устранение макро- и микроконцентраторов, проведение поверхностного пластического деформирования являются основными факторами, повышающими циклическую прочность титановых сплавов при малоцикловых и многоцикловых нагружениях.  [c.201]

Возрастание соотношения главных напряжений ифает аналогичную роль в изменении долговечности, как и снижение уровня напряжения в случае одноосного нагружения. В области отрицательных соотношений главных напряжений следует рассматривать ситуацию малоциклового разрушения в условиях опыта, тогда как в области положительных соотношений главных напряжений реализуется многоцикловое разрушение. Это заключение подтверждается данными о соотношении между периодом роста трещины и долговечностью в подобных условиях опыта.  [c.327]

Полученные при исследовании кинетические кривые (рис. 7.28) показывают, что при наложении на выдержку около 1000 циклов малой амплитуды с частотой 150 Гц материал начинал проявлять чувствительность к бигармоническому нагружению уже при / niax < 20 МПа-м / . Этот результат совпадает с данными, представленными ранее (см. рис. 7.14). Число циклов низкой амплитуды оказывало сушественное влияние на величину продвижения трещины за блок нагружения. При этом блок нагружения по своим параметрам соответствовал условиям многоциклового вибрационного нагружения диска за ПЦН. Сопоставление фрактографических параметров излома при разных условиях нагружения показало, что при СРТ в пределах 10 м/цикл от циклов малой амплитуды на изломе формировались только фасетки ква-зихрупкого внутризеренного и внутрифазного разрушения материала, а усталостных бороздок в изломе не было. Бигармоническое нагружение при СРТ, когда материал проявлял чувствительность к циклам малой амплитуды, вызывало формирование преимуп1 ественно фасеточного отражающего пластинчатую щ + (3 ,)-структуру материала рельефа излома, на фоне которого имелись локальные  [c.384]

Малоцикловые испытания проведены на машине Инстрон, а многоцикловое нагружение осуществлено на стенде ЦДМ-10ПУ. Результаты выполненных испытаний образцов представлены в табл. 10.4.  [c.555]

Из условия естественного перехода к долому в титановом сплаве ВТЗ-1 для развития длинных трещин до а = 20 мм при уровне коэффициента интенсивности напряжения для титановых сплавов Кус = 62 МПа м / уровень напряжения составляет не более 158 МПа. Выполненная оценка соответствует росту усталостной трещины в области многоцикловой усталости, когда в рассматриваемом титановом сплаве имело место низкоамплитудное нагружение существенно ниже предела усталости материала. Выявленный низкий уровень напряжения в лопатке указывает на существование высокого уровня концентрации напряжений, поскольку без локальной концентрации напряжений зарождение трещины в течение многих сотен миллионов циклов не должно было иметь место. Это согласуется с выявленным интенсивным повреждением поверхности лопатки в виде фреттинга. Именно он привел к возникновению трещины.  [c.586]

Представленные результаты анализа кинетики усталостных трещин в лопатках компрессоров и турбин двигателей свидетельствуют в первую очередь о том, что в пределах существующих ресурсов двигателей происходят разрушения лопаток только из-за их повреждений. Само распространение трещин определяется вибронагруженно-стью лопаток на резонансных или близких к таковым частотах и с этой точки зрения разрушение лопаток является многоцикловым, а в некоторых случаях и сверхмногоцикловым — развитие трещин от единичных циклов нагружения. Однако количество полетных циклов может составлять всего от нескольких десятков до нескольких сотен циклов. Для каждой лопатки разброс периода роста трещины может быть получен из-за того, что возникающие повреждения располагаются на разном расстоянии от основания лопатки, т. е. сечение развития трещины оказывается различным образом нагружено. Этот факт должен быть учтен при установлении периодичности эксплуатационного контроля повреждений лопаток в эксплуатации из-за попадания посторонних предметов в проточную часть двигателя.  [c.615]

Развитие трещин во всех картерах являлось усталостным, с формированием усталостных линий, отражающих повторяющиеся от полета к полету вертолета однотипные режимы нагрз жения редукторов в районе перемычек (рис. 13.10). Очагом зарождения усталостной трещины в перемычке картера № 2 явилась острая кромка у отверстия под стыковочный болт. Запиловка, выявленная в ходе исследования на цилиндрической поверхности картера в зоне прохождения этой трещины, не оказывала влияния на ее зарождение. В очаге зарождения этой трещины отсутствовали дефекты материала. В направлении распространения трещины в изломе были сформированы мезолинии многоциклового усталосГного разрушения материала, свидетельствующие о регулярных сменах внешней нагрузки. Мезолинии сгруппированы в блоки, соответствующие нагружению картера за один полет, размером около 30 мкм. При глубине трещины 9 мм продолжительность роста трещины составила около 300 полетных циклов нагружения вертолета или 600 ч эксплуатации. Наработка картера № 2 после последнего ремонта составляла 960 ч, что указывает на отсутствие трещины в перемычке при проведении последнего ремонта.  [c.676]

Итак, зарождение трещин в перемычках фланцев картера ПР-2 происходит по двум причинам. Повторяющийся характер случаев образования трещин вдоль литейного радиуса 6 мм связан с высоким уровнем нагруженности фланца, а появление трещин в других зонах фланца в пределах существующего ресурса происходит в результате наличия в материале различного рода повреждений и дефектов. Все это указывает на необходимость внедрения периодического контроля картеров в процессе эксплуатации. Оценка длительности роста трещины показывает, что трещины могут быть эффективно выявлены, поскольку процесс распространения трещины реализуется в области многоцикловой и даже сверхмногоцикловой усталости в течение нескольких сотен полетов вертолета.  [c.679]

Все сказанное свидетельствует о том, что блоки усталостных линий характеризуют последовательность продвижения усталостной трещины от полета к полету ВС, а усталостные линии в блоке характеризуют маневрирование ВС в полете. В процессе маневрирования на переходном режиме нагружения происходит продвижение трещины не только за счет изменения максимального уровня напряжения, но и за счет наложения вибрационных, низкоамплитудных нагрузок. Поэтому формирование мезолиний следует связывать с продвижением трещины под действием блока высокочастотных нагрузок при высокой асимметрии цикла. В этом случае процесс повреждения отвечает области многоцикловой усталости, когда мезо-линии характеризуют прирост трещины за сотни и даже тысячи циклов нагружения.  [c.740]


Смотреть страницы где упоминается термин Нагружение многоцикловое : [c.17]    [c.361]    [c.362]    [c.20]    [c.20]    [c.146]    [c.155]    [c.164]    [c.21]    [c.132]    [c.250]    [c.423]    [c.555]    [c.561]    [c.564]    [c.611]    [c.674]    [c.680]    [c.375]   
Механика слоистых вязкоупругопластичных элементов конструкций (2005) -- [ c.91 ]



ПОИСК



Влияние газонасыщенного слоя на трещиностойкость титановых сплаУсталостная прочность при многоцикловом нагружении

Долговечность усталостная при нерегулярном многоцикловом нагружении и линейном

Долговечность усталостная при нерегулярном многоцикловом нагружении и сложном

Квантиль соответствующи й вероятности разрушения при случайном многоцикловом нагружении

ОБЩИЕ ВОПРОСЫ УСТАЛОСТИ Трощенко В. Т. Зарождение и развитие усталостных трещин в металлах при многоцикловом нагружении

Расчет характеристик сопротивления усталости при многоцикловом нагружении (В. П. Когаев)

Расчеты на выносливость при многоцикловом нагружении (В. П. Ко гаев)

Сопротивление деформациям и разрушению при многоцикловом нагружении

Условие прочности при нерегулярном многоцикловом нагружении для заданного



© 2025 Mash-xxl.info Реклама на сайте