Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Главный вектор и главный момент сил инерции твердого тела

Чему равны главный вектор и главный момент сил инерции твердого тела  [c.290]

Главный вектор и главный момент сил инерции, условно приложенных к ускоряемому твердому телу, следует определять по приведенным выше формулам, в соответствии с видом движения твердого тела (поступательное движение, вращение вокруг неподвижной оси, плоское движение). Если с помощью готовых формул главный вектор и главный момент вычислить нельзя, то в случае непрерывного распределения масс надо вычислить силы инерции для выделенного элемента и затем распространить суммирование по всему твердому телу, вычислив определенный интеграл в соответствующих пределах.  [c.342]


Главный вектор и главный момент сил инерции. Пусть твердое тело вращается под действием заданной системы сил Fj,. .., вокруг неподвижной оси АВ. Примем ее за  [c.399]

Можно упростить интегрирование дифференциальных уравнений движения, используя теорему об изменении кинетической энергии системы материальных точек в задачах, где главный вектор и главный момент сил, приложенных к твердому телу, постоянны либо зависят от положений точек (угла поворота) твердого тела, а в число данных и неизвестных величин входят масса и момент инерции твердого тела относительно оси, проходящей через его центр инерции перпендикулярно к неподвижной плоскости, силы, приложенные к твердому телу, перемещения точек твердого тела (угловые перемещения), скорости точек твердого тела (угловые скорости) в начале и в конце этих перемещений.  [c.542]

Решение задачи методом кинетостатики оказалось более громоздким, так как пришлось определять главный вектор и главный момент фиктивных сил инерции колеса. Применение же дифференциальных уравнений плоского движения твердого тела короче и естественнее, чем использование метода кинетостатики.  [c.361]

Как известно из статики, систему сил можно привести к силе, векторно равной главному вектору, и к паре сил с моментом, век-торно равным главному моменту. Приведение сил инерции дает следующие результаты (ниже в / 2° при изложении метода кинетостатики поясняется, что силы инерции условно прилагаются к ускоряемому твердому телу)  [c.340]

Приведение системы сил инерции твердого тела, совершающего любое движение, к главному вектору / <")и к главному моменту Л1о осуществляется теми же приемами, которые изучались в статике, т. е. выбирают в этом теле произвольный центр приведения и мысленно переносят в этот центр все силы инерции параллельно самим себе, добавляя при этом каждый раз присоединенную пару.  [c.727]

Эту задачу можно решить методом кинетостатики. В результате приведения сил инерции твердого тела к центру О получается сила, равная главному вектору, и пара сил, момент которой равен главному моменту сил инерции.  [c.413]

В быстроходных машинах существенные значения имеют силы и моменты сил инерции. При плоском движении звена как твердого тела главный вектор Fj, и главный момент Л/j, сил инерции определяются по формулам  [c.488]


Из условия равновесия сил в каждой точке твердого тела вытекают условия равновесия сил для тела в целом (т. е. равенство нулю их главного вектора R и главного векторного момента Мо относительно некоторого центра О). Наоборот, из условий равновесия сил для тела в целом не вытекает условия их равновесия в каждой точке тела если = Мо — О, т. е. твердое тело движется по инерции, то его центр тяжести С — либо в покое, либо движется прямолинейно и равномерно, а движение тела относительно точки С представляет эйлеров случай движения твердого тела вокруг неподвижной точки (гл. X, 2), при котором точки тела могут двигаться с ускорением, откуда вытекает Р + N Ф 0. В общем случае материальной системы из условий = Мо = О нельзя сделать никаких заключений ни о равновесии сил в каждой точке системы, ни о равновесии самой системы например, если рассмотреть всю Солнечную систему и пренебречь притяжением звезд, то для нее выполняются условия == Мо = О, а вместе с тем отдельные небесные тела Солнечной системы или тела у поверхности планеты могут двигаться по тем или иным законам.  [c.347]

При решении этих задач по принципу Даламбера нужно разбить вращающееся твердое тело на элементарные материальные частицы и к каждой такой частице приложить касательную и нормальную силы инерции этой частицы. Так как, согласно принципу Даламбера, все эти силы инерции уравновешиваются заданными силами, приложенными к телу, и реакциями закрепленных точек, то в общем случае имеем шесть известных из статики уравнений равновесия (три уравнения проекций и три уравнения моментов). В эти уравнения войдут, во-первых, сумма проекций всех сил инерции на каждую из трех выбранных координатных осей, или, что то же, проекции главного вектора сил инерции на каждую из этих осей, и, во-вторых, суммы моментов всех сил инерции относительно каждой координатной оси, или, что то же, главные моменты сил инерции относительно каждой из этих осей. Если ось вращения тела примем за координатную ось г, то проекции главного вектора сил инерции на координатные оси будут равны (см., например, Курс теоретической механики И. М. Воронкова, 139)  [c.378]

Если при этом система представляет собой совокупность каких-нибудь твердых тел, то для составления уравнений нужно к действующим на каждое тело активным силам прибавить приложенную в любом центре силу, равную главному вектору сил инерции, и пару с моментом, равным главному моменту сил инерции относительно этого центра (или одну из этих величин, см. 134), а затем применить принцип возможных перемещений,  [c.367]

Если за центр приведения выбрать центр тяжести С твердого тела, то силы инерции приводятся к силе, векторно равной главному вектору и к паре сил с моментом, равным главному моменту отс (рис. 149).  [c.341]

Приведение сил инерции к силе, равной главному вектору, и паре сил, момент которой равен главному моменту, является одним из важных этапов решения задач динамики несвободной систе.мы материальных точек в случае применения метода кинетостатики, либо общего уравнения динамики (см. ниже 5), а также при определении динамических давлений на ось вращающегося твердого тела (см. ниже 3). Отметим, что с силами инерции связаны формальные методы решения задач. Все упомянутые далее задачи могут быть решены несколько проще без применения сил инерции. В этой книге излагаются методы решения задач с использованием сил инерции лишь потому, что эти методы, в силу сложившихся исторических традиций, еще довольно распространены в инженерной практике. В динамике нет таких задач, которые не могли бы быть решены без применения сил инерции. В дальнейшем неоднократно дается сравнение методов решения задач с использованием и без использования сил инерции.  [c.342]

Решение обратных задач упрощается в случаях, когда главный вектор внешних сил и главный момент внешних сил относительно оси, проходящей через центр инерции твердого тела перпендикулярно к неподвижной плоскости, являются постоянными либо зависят только 1) от времени, 2) от положения точек, 3) от скоростей точек. Труднее решать задачи, в которых главный вектор и главный момент внешних сил одновременно зависят от времени, положения и скоростей точек.  [c.542]


Известно, что для составления уравнений движения абсолютно твердого тела необходимо и достаточно приравнять нулю главный вектор и главный момент действующих на него внешних сил и сил инерции.  [c.36]

Все перечисленные силы распределены (как правило, неравномерно) по объему или по поверхности звена. Так как перемещение всякого элемента звена механизма вследствие упругой деформации этого звена на много порядков меньше его перемещения, обусловленного кинематикой механизма, то при исследовании динамики механизма можно считать его звенья абсолютно твердыми телами. Поэтому движение не изменится, если заменить распределенные массовые и поверхностные силы их равнодействующими. После такой замены сила тяжести звена будет приложена в центре его масс, а сила поверхностного давления — в центре давления, лежащем внутри контура, ограничивающего поверхность, подверженную давлению. Так как в отличие от поля тяготения поле сил инерции неоднородно, то положение точки приложения равнодействующей распределенных по массе тела элементарных сил инерции все время изменяется в процессе движения. Поэтому распределенные силы инерции удобнее представить главным вектором сил инерции, приложенным в центре масс, и главным моментом сил инерции.  [c.37]

Твердое тело вращается вокруг оси Ог с переменной угловой скоростью ш. Вычислить для момента t главный вектор сил инерции и главный момент этих сил относительно точки О.  [c.275]

Резюме. Уравнения Эйлера, описывающие величину изменения вектора угловой скорости вращения твердого тела относительно осей координат, жестко связанных с телом и направленных вдоль его главных осей инерции, могут быть интерпретированы как условия обращения в нуль результирующего момента сил следующих трех категорий сил Эйлера, центробежных сил и внешних сил.  [c.130]

Но, как мы знаем (гл. IV, п. 18), это будет иметь место только в том случае, когда угловая скорость о (и, следовательно, вектор К) постоянно направлена по главной оси инерции а так как это условие не налагает никаких ограничений ни на величину, ни на сторону, в которую направлена угловая скорость w, то заключаем, что, когда результирующий момент внешних сил равен нулю, твердое тело может вращаться (с произвольной угловой скоростью, как в ту, так и в другую сторону) только вокруг каждой аз его главных осей инерции относительно неподвижной точки.  [c.89]

Из всего сказанного следует, что применение метода кинетостатики для твердого тела требует прежде всего умения вычислить главный вектор и главный момент его сил инерции. Зная их проекции на выбранные оси координат, следует составить уравнения кинетостатики (они отличаются от уравнений равновесия твердого тела только тем, что к активным силам и реакциям связей присоединены силы инерции) и затем определить неизвестные величины.  [c.368]

Далее доказывается теорема об изменении кинетической энергии системы, изучаются свойства кинетической энергии системы, указываются способы вычисления ее для твердого тела при различных случаях движения. В связи с последним рассматриваются осевые моменты инерции и их свойства. Затем доказывается теорема об элементарной работе сил, действующих на абсолютно твердое тело на основании определения работы сил, действующих на точки материальной системы, и теоремы о распределении линейных скоростей в свободном твердом теле. Здесь естественно вводятся понятия о К/ оменте силы относительно центра и оси, о главном векторе и главном моменте сил относительно произвольного центра.  [c.69]

Для применения метода кинетостатики надо уметь находить силы инерции материальной точки, а также главный вектор и главный векторный момент этих же сил в случае материальной системы и, в частности, твердого тела. Сила  [c.89]

Заметим, что из уравнений движения свободного твердого тела (10.5), (10.11) можно сделать такой вывод пусть равны массы двух тел и пусть совпадают их центральные эллипсоиды инерции тогда оба тела будут двигаться одинаково, если геометрически равны главные векторы и главные векторные моменты действующих на них сил и если для обоих тел одинаковы начальные условия.  [c.257]

Если в состав материальной системы входит твердое тело, то незачем разбивать его на элементарные частицы, находить работу СИЛЫ инерции каждой такой частицы и затем суммировать все эти работы — гораздо проще в случае, например, плоской фигуры найти главный вектор и главный момент сил инерции относительно центра тяжести по формулам (4.16), (4.17),  [c.392]

Рассмотрим вопрос об уравновешивании динамических нагрузок на стойку и фундамент механизма. Как известно, любая система сил, приложенных к твердому телу, приводится к одной силе, приложенной в произвольно выбранной точке, и к одной паре, причем вектор этой результирующей силы равен главному вектору данной системы сил, а момент пары равен главному моменту данной системы сил относительно выбранного центра приведения. Пусть дан механизм АВС (рис. 489), установленный на фундаменте Ф. Пользуясь принципом отвердевания, мы можем силы инерции всех звеньев механизма также привести к силе и паре. Выбираем какую-либо точку О механизма за центр приведения и за начало координат. Такой точкой удобно выбрать точку, лежащую где-либо на оси вращения ведущего звена /, вращающегося с угловой скоростью ш. Из точки О проводим взаимно перпендикулярные оси Ох, Оу и Ог. Проекции на оси координат главного вектора всех сил инерции механизма  [c.385]


Главный вектор и главный момент сил инерции твердого тела. Из равенств (99) следует (см. 47), что систему сил инерции твердого тела можно заменить одной силой, равной Л" и приложенной в центре О, и парой с моментом, равным Мо- Главный вектор системы сил, как известно, не зависит от центра приведения и может быть вычислен заранее. Так как —m Wu, то, прини-  [c.428]

Рассмотрим твердое тело, вращающееся равномерно с угловой скоростью со вокруг оси, закрепленной в подшипниках А и В (рис. 350). Свяжем с телом вращающиеся вместе с ним оси Ахуг преимущество таких осей в том, что по отношению к ним координаты центра масс и моменты инерции тела будут величинами постоянными. Пусть на тело действуют заданные силы Ff, F%,. , F%. Обозначим проекции главного вектора всех этих сил на оси Axyz через RI, R2 (Rx= Fkx и т. д.), а их главные моменты относительно тех  [c.352]

К системе сил инерции точек твердого тела можно применить метод Пуансо —метод приведения сил к некоторому центру, рассмотренный в статике (ем. ч. I Статика , 27). В динамике за центр приведения сил инерции выбпрагот обычно центр масс тела С. Тогда в результате приведения получится сила Ф, равная главному вектору сил инерции точек тела, и пара сил с моментом М равным главному моменту сил инерции относительно центра масс  [c.284]

Таким образом, если твердое тело, имеющее плоскость материальной симметрии, движется параллельно этой плоскости, то силы инерции точек тела приводятся к силе, приложенной в центре масс и равной главному вектору сил инерции, и к паре сил, лежащей в плоскости симметрии, величина момента которой определяется срормулой (109.7).  [c.289]

Общее уравнение динамики (117.6) позволяет составить дифференциальные уравнения движения любой механической системы. Если механическая система состоит из отдельных твердых тел, то силы и[]ерции точек каждого тела можно привести к силе, приложенной в некоторой точке тела, и паре сил. Сила равна главному вектору сил инерции точек этого тела, а момент пары равен главному моменту этих сил относительно центра приведения (см. 109).  [c.320]

Из физических соображений ясно, что в этом случае добавление и отбрасывагте векторного нуля правомерно. В самом деле, две силы, ириложенные к твердому телу и образующие векторный нуль, лишь растягивают либо сжимают тело. Они могли бы вызвать деформацию тела (если бы не предполагалось, что оно абсолютно твердо), но заведомо не влияют на его движение. Действительно, с одной стороны, движение центра инерции тела зависит лишь от главного вектора внешних сил, а с другой стороны, в уравнения Эйлера, описывающие движение тела относительно центра инерции, входят главные моменты всех внешних сил. Добавление или отбрасывание двух сил, образующих векторный нуль, не меняет ни главного вектора, ни главного момента системы сил и, следовательно, не отражается на движении тела. Поэтому множество векторов, изображающих любую совокупность сил, приложенных к твердому телу, является системой скользящих векторов, и теоремы, установленные в предыдущем параграфе, могут быть применены к системе сил, приложенных к твердому телу.  [c.360]

Так как силы инерции при плоском движении твердого тела можно привести к главному вектору Ф и главному моменту (если за центр приведения выбрать центр масс), то сумма элементарных работ сил инерции на плоском возможном перемещении свелется к элементарной работе главного вектора сил инерции Ф = —Мае на возможном перемещении центра масс и элементарной работе главного момента сил инерции на элементарном поворотном перемещении вокруг оси Сг, проходящей через центр масс. При этом не равную нулю элементарную работу может совершить только проекция главного момента сил инерции на ось Сг, т. е. = —J x Таким г)бразом, в рассматриваемом случае имеем  [c.389]

Предположим, что гироскоп, закрепленный в точке О своей оси Ог, находится под действием силы Р, постоянной по величине и направлению и приложенной в точке оси на расстоянии а от О. Возьмем в качестве неподвижной системы три взаимно перпендикулярные оси Ол , У12 5, проходящие через неподвижную точку, причем ось Ос, параллельна силе Р, но направлена в обратную сторону. С другой стороны, выберем в качестве триэдра, связанного с гироскопом, три главные оси инерции относительно центра О, направив ось Ог по оси симметрии, а две другие оси Ох и Оу перпендикулярно к оси симметрии. Пусть С есть момент инерции относительно оси Ог и Л — момент инерции относительно Ох момент инерции относительно Оу, очевидно, равен А. Пусть, далее, есть начальная угловая скорость гироскопа вокруг оси Ог. Уравнения движения гироскопа будут те же, что и уравнения в п° 362, которые определяли углы Эйлера О, ф и (р при движении тяжелого твердого тела. Но в том случае вектор Р обозначал вес тела, приложенный к центру тяжести, между тем как теперь Р есть произвольная сила, предполагаемая лишь неизменной по величине и направлению. Очевидно, мы встретимся с  [c.158]

ПРАВИЛО (Стокса длина волны фотолюминесценции обычно больше, чем длина волны возбуждающего света фаз Гиббса в гетерогенной системе, находящейся в термодинамическом равновесии, число фаз не может превышать число компонентов больше чем на два ) ПРЕОБРАЗОВАНИЯ [Галилея — уравнения классической механики, связывающие координаты и время движущейся материальной точки в движущихся друг относительно друга инерциальных системах отсчета с малой скоростью калибровочные — зависящие от координат в пространстве — времени преобразования, переводящие одну суперпозицию волновых функций частиц в другую каноническое в уравнениях Гамильтона состоит в их инвариантности по отношению к выбору обобщенных координат Лоренца описывают переход от одной инерци-альной системы отсчета к другой при любых возможных скоростях их относительного движения] ПРЕЦЕССИЯ — движение оси собственного вращения твердого тела, вращающегося около неподвижной точки, при котором эта ось описывает круговую коническую поверхность ПРИВЕДЕНИЕ системы <к двум силам всякая система действующих на абсолютно твердое тело сил, для которой произведение главного вектора на главный момент не равно нулю, приводится к динаме к дниаме (винту) — совокупность силы и пары, лежащей в плоскости, перпендикулярной к силе скользящих векторов (лемма) всякий скользящий вектор, приложенный в точке А, можно, не изменяя его действия, перенести в любую точку В, прибавив при этом пару с моментом, равным моменту вектора, приложенного в точку А скользящего вектора относительно точки В ) ПРИНЦИП (есть утверждение, оправданное практикой и применяемое без доказательства Бабине при фраунгоферовой дифракции на каком-либо экране интенсивность диафрагмированного света в любом направлении должна быть такой, как и на дополнительном экране )  [c.263]


Если движется твердое тело, состоящее из п материальных то-, чек, то система даламберовых сил инерции его частиц подчиняется всем законам геометрической статики, относящимся к силам, приложенным к телу, т. е. приводится к главному вектору F и главному моменту Мо-.  [c.30]

Из классических работ по небесной механике известно, что при движении твердого тела по круговой орбите существуют устойчивые положения относительного равновесия. Эти положения устойчивого равновесия соответствуют некоторым относительным ориентациям твердого тела (например, искусственного спутника), когда его главные центральные оси инерции совпадают с осями орбитальной системы координат (радиус-вектор центра масс, трансверсаль и бинормаль к орбите). Если искусственньш спутник Земли сориентировать около положения устойчивого (относительного) равновесия, то это положение может сохраняться сколь угодно долго. Моменты от центрального поля гравитационных сил будут в этом случае стабилизирующими моментами, и мы приходим к идее ориентации спутника без расходования энергии и рабочего тела. Для эллиптических орбит с малыми эксцентриситетами относительное устойчийое равновесие тела почти всегда переходит в устойчивое колебательное движение с малой амплитудой и периодом, равным периоду обращения по орбите. Эти колебания можно рассматривать как погрешности ориентации, которые могут быть рассчитаны и учтены. Это представляет весьма важную задачу современной механики (18.  [c.12]


Смотреть страницы где упоминается термин Главный вектор и главный момент сил инерции твердого тела : [c.394]    [c.26]    [c.494]    [c.70]    [c.496]   
Смотреть главы в:

Краткий курс теоретической механики 1970  -> Главный вектор и главный момент сил инерции твердого тела

Курс теоретической механики Том2 Изд2  -> Главный вектор и главный момент сил инерции твердого тела



ПОИСК



Вектор главный

Вектор главный (см. Главный вектор)

Вектор главный сил инерции

Вектор сил инерции

Главные оси и главные моменты инерции

Главные оси инерции и главные моменты инерции

Главный вектор и главный момент

Главный вектор и главный момент сил инерции

Главный вектор и главный момент сил инерции твердого тела Определение добавочных динамических реакций опор движущегося тела

Главный вектор сил инерции твердого тела

Главный момент сил инерции твердого

Инерция тела

Момент вектора

Момент вектора твердого тела

Момент главный

Момент главный (см. Главный момент)

Момент главный инерции сил инерции

Момент главный инерции твердого тела

Момент главный сил инерции

Момент инерции

Момент инерции твердого тела

Момент инерции тела

Момент твердого тела

Моменты главные

Моменты инерции главные

Моменты инерции твердых тел

Оси инерции главные

Оси инерции тела главные

Оси тела главные

Ось инерции главная

Ось инерции твердого тела главна



© 2025 Mash-xxl.info Реклама на сайте