Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения кинематики жидкости

УРАВНЕНИЯ КИНЕМАТИКИ ЖИДКОСТИ  [c.81]

Основное уравнение кинематики жидкости — уравнение неразрывности, которое вытекает из условий несжимаемости жидкости и сплошности движения, гласит, что в каждый момент времени расход через произвольное сечение потока равен расходу через любое другое живое сечение этого потока  [c.27]

Для лучшего понимания теоретических построений и расчетных методов читатель должен в первую очередь получить представление об истинном, наблюдаемом в опытах, характере реальных гидромеханических явлений. Тогда легче и правильнее усваивается сущность теоретических моделей этих явлений, создается более ясное и правильное представление о степени приближенности исходных предпосылок и границ применимости теории. Например, уже в гл. 2 Кинематика даются первые сведения о возможной кинематической структуре потоков реальных жидкостей, включая описание кинематической картины ламинарного и турбулентного течений. Этим же соображением обусловлено изложение законов движения идеальной жидкости только после того, как выведены уравнения вязкой жидкости. В пользу такого расположения материала говорит возможность рассматривать  [c.4]


При изучении кинематики жидкости очень важно уметь находить уравнения семейств линий тока и траектории жидких частиц, положение точек разветвления потока и т. п., что необходимо для установления особенностей обтекания тел различных конфигурации. Поэтому в настоящей главе большое внимание уделено рассмотрению таких вопросов и задач, которые позволят освоить методы исследования стационарных и нестационарных течений жидкости, представить их кинематический характер, найти уравнения линий тока и траектории жидких частиц для различных видов движения.  [c.40]

В случае замены границы тела и каверны особенностями типа источников и стоков используют известные из кинематики жидкости формулы для комплексного потенциала и комплексной скорости. Составляют выражение для суммарной скорости, обусловленной скоростью потока, присутствием тела в потоке, а также распределенными по поверхности каверны неизвестными источниками и стоками. С помощью граничных условий на каверне составляют интегральное уравнение для нахождения неизвестной интенсивности особенностей и их распределения по телу и каверне.  [c.68]

ОСНОВНЫЕ УРАВНЕНИЯ КИНЕМАТИКИ И ДИНАМИКИ НЕВЯЗКОЙ ЖИДКОСТИ  [c.51]

В кинематике жидкости возможны два различных метода описания движения. Один из них, называемый методом Лагранжа, состоит в том, что движение жидкости задается путем указания зависимости от времени положения всех ее частиц в пространстве 8. Основным методом гидроаэродинамики является метод Эйлера, который заключается в том, что движение жидкости определяется путем задания поля скоростей жидкости в пространстве 8 в каждый момент времени. Методы не противоречат друг другу. Так, если известно поле скоростей жидкости, то, следовательно, известны дифференциальные уравнения движения ее частиц, если только проведена арифметизация физического пространства 8. Решая эти уравнения можно получить зависимости от времени положения всех ее частиц в пространстве 8.  [c.13]

Дифференциальные уравнения движения вязкой жидкости. Как отмечалось в разделе 1 в кинематике жидкости возможны два различных метода описания движения. Один из  [c.21]

Эти три уравнения и составляют основную теоретическую базу технической гидродинамики. В дальнейшем в этой главе мы дадим соответствующий вывод этих уравнений (для случая так называемого установившегося движения жидкости) и подробно их разъясним. Предварительно же остановимся на пояснении некоторых исходных представлений в основном из области кинематики жидкости.  [c.56]


Решение уравнений движения представляется, вообще говоря, тривиальным, если пренебречь силами инерции в жидкости. При таком упрощении легко вычислить значение Ут на основании кинематики физических границ системы. Фактически существует другой метод определения т , базирующийся только на кинематических измерениях (в то время как использование уравнения (5-4.9) предполагает также измерение напряжений). Этот метод будет подробно обсужден только для некоторой геометрически простой ситуации, анализируемой ниже. Для случаев, относящихся к другой геометрии, будут приведены лишь окончательные результаты.  [c.196]

Аналогичную процедуру можно применить к неньютоновским жидкостям, поскольку рассуждения, приводящие к уравнению (7-1.25), не зависят от реологического поведения рассматриваемой жидкости (при условии что внутренние напряжения не зависят от кинематики движения таким образом, что соображение об увеличении отношения инерционных сил к внутренним напряжениям с ростом расстояния до тела не перестало бы быть верным). Все же получаемое уравнение, а именно  [c.263]

Очевидно, что для простой жидкости с исчезающей памятью напряжение, определяемое такой кинематикой, становится со временем (т. е. при оо) таким же, как в течении с предысторией постоянной деформации, рассмотренном в разд. 5-3, т. е. оно полностью определяется материальной функцией т е ( ) из уравнения (5-3.16). Однако здесь интересуемся переходной функцией отклика напряжения, которая реализуется перед тем, как предельное значение, если оно существует, будет достигнуто.  [c.292]

В учебном пособии рассмотрены основные вопросы совре менной гидромеханики статика, кинематика и динамика. Приведены выводы общих уравнений движения сплошных сред. Даны законы переноса импульса, тепла и вещества. Изложена теория потенциального днижения как для плоских, так и для пространственных потоков. Рассмотрена сжимаемость газа при дозвуковых и сверхзвуковых течениях. Освещены вопросы теории движения вязкой жидкости, подробно рассмотрены ламинарное и турбулентное движения в трубах и в пограничном слое. Дан метод расчета трубопроводов.  [c.2]

Вводные сведения. Основные физические свойства жидкостей и газов. Основы кинематики. Общие законы и уравнения статики и динамики жидкостей и газов. Силы, действующие в жидкостях. Абсолютный и относительный покой (равновесие) жидких сред. Модель идеальной (невязкой) жидкости. Общая интегральная форма уравнений количества движения и момента количества движения. Подобие гидромеханических процессов.  [c.187]

Пятое издание содержит изложение основных разделов механики жидкости и газа кинематики, статики и динамики. Общие дифференциальные уравнения динамики выведены как для однородной, так и для неоднородной, гомогенной и гетерогенной сред. Рассмотрены методы интегрирования уравнений динамики в задачах несжимаемых и сжимаемых, идеальных и вязких жидкостей п газов при ламинарных и турбулентных режимах движения. Приведено значительное число примеров приложений этих решений, иллюстрирующих большие возможности современных методов механики жидкости и газа в технической практике.  [c.2]

Первые три главы курса посвящены изложению общих положений кинематики, статики и динамики жидкостей и газов, установлению основных уравнений, формулировке главнейших законов и теорем. Стремление к максимальному приближению к процессам, происходящим при движениях с большими скоростями, заставляет тесно связывать динамические явления с термодинамическим балансом энергии в них.  [c.11]

Задавая определенные значения параметрам а, Ь, с, получим обычные, принятые в кинематике точки уравнения движения данной индивидуальной частицы жидкости, откуда уже нетрудно найти уравнения траектории частицы и выражения проекции вектора ее скорости V  [c.50]

Задача кинематики потенциального потока несжимаемой жидкости с математической точки зрения сводится, таким образом, к решению уравнения Лапласа, или уравнения (37) при определенных граничных условиях. Однако эта задача представляет значительные математические трудности. Основная трудность заключается здесь не в составлении общего интеграла, а в определении такого частного решения, которое удовлетворяло бы граничным условиям данной задачи.  [c.168]


Период развития механики после Ньютона в значительной мере связан с именем Л. Эйлера (1707— 1783), отдавшего большую часть своей исключительно плодотворной деятельности Петербургской Академии наук, членом которой он стал в 1727 г. Эйлер развил динамику точки (им была дана естественная форма дифференциальных уравнений движения материальной точки) и заложил основы динамики твердого тела, имеющего одну неподвижную точку ( динамические уравнения Эйлера ), нашел решения этих уравнений при движении тела по инерции. Он же является основателем гидродинамики (дифференциальные уравнения движения идеальной жидкости), теории корабля и теории упругой устойчивости стержней. Эйлер получил ряд важных результатов и в кинематике (достаточно вспомнить углы и кинематические уравнения Эйлера, теорему о распределении скоростей в твердом теле). Ему принадлежит заслуга создания первого курса механики в аналитическом изложении.  [c.11]

Так как р удовлетворяет уравнению Лапласа (9.4.10), то и функция ф, которая отличается от р только на постоянный множитель, будет удовлетворять уравнению Лапласа. Следовательно, средние скорости изучаемого течения обладают потенциалом и кинематика среднего движения рассматриваемой задачи аналогична кинематике потенциального течения идеальной несжимаемой жидкости.  [c.242]

В третьем издании введение и первые семь глав курса, содержащие по преимуществу основные, классические вопросы механики жидкости и газа (кинематика, общие уравнения и теоремы динамики, одномерный газовый поток, плоское и пространственное безвихревые движения несжимаемой жидкости и идеального газа), подверглись, главным образом, методической переработке и получили, сравнительно с другими главами, лишь незначительные дополнения (теория сверхзвукового диффузора, одномерные волны в газе, теория решеток произвольного профиля, законы подобия плоских пространственных тонких тел, теория конического скачка).  [c.2]

Задавая фиксированные значения параметрам а, Ь, с, получим обычные, принятые в кинематике точки уравнения движения данной индивидуальной частицы жидкости, откуда уже нетрудно найти уравнения траектории частицы и выражения проекции вектора ее скорости V и ускорения V (точка, поставленная над буквой, будет в дальнейшем всегда обозначать производную по времени). Условимся в дальнейшем обозначать проекции скорости на оси прямоугольных декартовых координат через и, V, гю тогда будем иметь  [c.55]

В книге даны основы механики сплошной среды (МСС) физическая трактовка основных понятий и статистическое обоснование законов МСС аксиоматика МСС кинематика и теория внутренних напряжений в средах физические законы — сохранения массы, импульса, энергии и баланса энтропии методы получения замкнутых систем уравнений, основные типы граничных условий и постановки краевых задач МСС. Даны замкнутые системы уравнений для классических сред (газов, жидкостей, упругих тел) и для сред со сложными свойствами (вязко-упругих, нелинейно вязких, упруго- и вязко-пластических, плазмы и др.) при действии электромагнитного поля. Дана теория размерностей и подобия с ревизионным анализом уравнений МСС, критериями подобия и моделирования, с примерами автомодельных решений.  [c.3]

Кинематика занимается изучением движения жидкости, не интересуясь причинами, которые его вызвали. По образному выражению Н.Е.Жуковского, кинематика изучает геометрию движения . Принципиально можно пойти двумя путями. По первому из них изучается движение каждой отдельной жидкой частицы. Чтобы выделить ее, в начальный момент времени отмечаются ее координаты Хд, и 2 . Движение считается определенным, если в каждый момент времени для каждой частицы известны уравнения, описывающие ее путь во времени, т.е. известны параметрические уравнения траекторий всех частиц. Этот путь предложен Лагранжем. По методу Эйлера изучается изменение скорости и других параметров в точках пространства х, у, z.  [c.24]

Уравнения кинематики и динамики жидкости весьма значительно отличаются от аналогичных уравнений для твердого тела. Это вызвано прежде всего особенностями исследуемого объекта, т. е. жидкости, частицы которой не имеют жесткой связи между собой. Отсутствие жесткой связи существенно усложняет рассмотрение процессов, происходящих в жидкости. Для упрощения изучения течений в гидромеханике широко используется так назьшаемая идеальная жидкость. Под этим термином понимают не существующую в природе абсолютно невязкую жидкость. Тогда происходящие явления сначала исследуются применительно к идеальной жидкости, а затем полученные закономерности переносятся с введением корректирующих поправок на потоки реальных жидкостей.  [c.47]

Последние равенства позволяют значительно упростить вычисление у,,, V.. Вместо трех неизвестных величин, какими являются в кинематике жидкости и,,, и , оказывается возможным с помощью уравнений (27) свести задачу об определении поля скоростей к нахожденпю одной неизвестной функции.  [c.161]

Необходимо обсудить роль динамического уравнения по отношению как к а, так ъкр. Предположим, что поле скорости определено и известно реологическое уравнение состояния для данной жидкости. Если это реологическое уравнение принадлежит к тину уравнений с девиаторным тензором напряжений, то т вычисляется на основании известной кинематики и далее из динамического уравнения (уравнение (1-7.13)) определяется Vp. Следовательно, поле давлений вычисляется с точностью до произвольной аддитивной постоянной. Если же, как это бывает наиболее часто, реологическое уравнение состояния принадлежит к типу уравнений, содержащих недевиаторные избыточные напряжения, то тензор т определяется по вычисленному т из уравнения (1-8.4), а Vp — из уравнения (1-7.13), как и ранее.  [c.47]


При анализе некоторых полей течения в гл. 5 предполагалось вначале, что кинематика движения предопределяется известными граничными условиями и, вообще говоря, физической интуицией-Следующей стадией было вычисление поля напряжений на основании соответствующего уравнения состояния. В гл. 5 рассматривалось общее уравнение для простой жидкости с затухающей памятью, но эти стадии в методике остаются, по существу, теми же самыми, если даже предполагается, что имеет место более частное уравнение состояния. Действительно, тип уравнения состояния, которое могло бы быть использовано, часто подсказывается кинематическим типом течения, о котором известно, что он хорошо описывается определенным типом уравнения состояния. Третьей стадией расчета будет подстановка полей скоростей и напряжений в уравнения движения и определение полей давления и некоторых параметров кинематического описания, которые еще не были определены на первой стадии.  [c.271]

В этом разделе обсудим задачи обтекания погруженных тел непью-тоновскими жидкостями. Обсуждение подразделяется на две части вначале рассмотрим течения с низкими числами Рейнольдса, т. е. течения, в которых инерционные силы не доминируют над внутренними напряжениями затем проведем анализ пограничного слоя, который представляет интерес в задачах обтекания с высоким числом Рейнольдса и для которого кинематика вне пограничного слоя и области следа определяются уравнениями Эйлера (7-1.6).  [c.275]

Курс содержит четыре части, В первой из них, общей для всех частей, излагаются основные понятия кинематики и основные уравнения движения произвольной сплошной среды. Вторая часть посвящена из-ложению элементов некоторых разделов гидродинамики, уравнения движения идеальной и вязкой жидкости, аэродинамика, волновые движения у пограничный слой. Особое внимание в этом разделе уделено плоскопараллельным движениям и двумерным движениям вдоль криволинейных поверхностей. Теория фильтрации, которой посвящена третья часть у рассматривается с точки зрения применения методов гидродинамики к решению технических краевых задач. Последняя, четвертая, часть посвящена уравнениям теории упругости и применению их к некотх)рым конкретным задачам. Втюрая и третья части а также частично третья часть, независимы друг от друга и могут изучаться отдельно.  [c.2]

Метод К. А. Ушакова (1936, 1938) был разработан, исходя из того, что вентилятор предназначен для получения определенного перепада давлений. Величина расчетной циркуляции находилась из уравнения, справедливого для идеальной жидкости, но через величину расчетного давления, увеличенного против заданного за счет потерь трения, в зазоре и влияния решетки. Через расчетную циркуляцию по формуле вихревой теории опредялялась потребляемая вентилятором мощность. По величине мощности находилась скорость закручивания на внешнем радиусе, и далее кинематика потока определялась из условия радиального равновесия закрученного потока идеальной жидкости при постоянной осевой скорости. Коэффициент осевой скорости предлагалось выбирать в пределах 0,25—0,35 с тем, чтобы получить достаточно высокий статический кпд вентилятора, хотя и отмечалось, что при больших значениях коэффициента осевой скорости полный кпд увеличивается. Величина относительного диаметра втулки оценивалась по расчетному коэффициенту циркуляции. Спрямляющий аппарат рассчитывался на величину циркуляции скорости закручивания потока за рабочим колесом (взятой с обратным знаком).  [c.837]

Во второй части излагаются кинематика и теория деформаций сплошной среды в эйлеровом и лагранжевом описаниях, формулируются основные законы динамики и термодинамики, выводятся дифференциальные уравнения движения среды, обсуждаются возможные типы начальных и граничных условий. Рассмотрены вариационные принципы в механике жидкости и газа и в теории упругости, методы теории размерностей и подобия. Теоретический материал сопровождается под-боркой задач с решениями в конце каждого параграфа. Приведены также сведения об ученых, создававших механику сплошной среды.  [c.3]

Первые дискретные модели несжимаемой жидкости строились также на основе принципа Гамильтона с дискретными условиями несжимаемости в виде голономных связей. Дальнейшая забота над ними привела сначала к добавлению неголономных связей ( 3.1, 5.3), затем к дополнению уравнений Лагранжа энергетически нейтральными обменными членами ( 5.3), позволившими в известном смысле развязать динамику среды и кинематику сетки и, наконец, к идее использования другого подхода на основе вариационного нринцина Гаусса (гл. 6), который поз-  [c.8]

Выражение, стоящее в левой части равенства (1), имеет большое значение как в вопросах о кинематике векторных линий, не подчиняющихся теоремам Гельмгольца, так и в вопросах об условиях динамической возможности движений сжимаемой жидкости. Обозначив левую часть уравнения (1) особым символом helm А-  [c.14]

Что касается скорости т, то ее направление для данного колеса также известно и, согласно сделанному допущению, определяется направлением лоиатки в данной точке. Итак, в треугольнике векторов с, ни, и (из кинематики и геометрии лопатки) определяются одна сторона и угол. Для того чтобы определить скорость жидкости на выходе из насоса, остается найти еще один элемент треугольника скоростей. Недостающую связь и дает ос1ювное уравнение центробежного насоса, которое устанавливает соотношение между скоростями на входе и выходе с создаваемым напором Н.  [c.63]

Гидродинамика. Кинематика и динамика жидкостей вбирает в себя большой круг закономерностей физики, который в полном объеме может бьггь изучен в отдельном курсе. Ниже приведены только закономерности и формулы, которые достаточны для простого расчета трубопровода и гидравлического Щ1линдра. Такие расчеты вьшолняют по уравнению Бернулли при постоянном расходе жидкости и одинаковых гидравлических потерях.  [c.160]

В механике жидкости понятию гидродинамика придается весьма широкий смысл. В настоящем пособии этот термин будет использоваться в его классическом значении, как раздел курса, который, в отличие от кинематики, рассматриваюшей движение жидкости без учета причин, обусловивших его, изучает как само движение, так и причины, приводящие к его возникновению. Движение жидкости вызывается действием сил, а если иметь в виду, что давление есть частное от деления силы на площадь, то можно считать, что причиной возникновения движения частиц с какими-то скоростями является разность (перепад) давлений. Таким образом, для расчета течений необходимо иметь уравнение, связывающее давление в точке со скоростью движения частицы.  [c.64]


Смотреть страницы где упоминается термин Уравнения кинематики жидкости : [c.126]    [c.385]    [c.74]   
Смотреть главы в:

Гидравлика и аэродинамика  -> Уравнения кинематики жидкости



ПОИСК



283 — Уравнения жидкости

Кинематика

Кинематика жидкости

Основные уравнения кинематики и динамики невязкой жидкости

Уравнения кинематики



© 2025 Mash-xxl.info Реклама на сайте