Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лапласа принцип

В сороковые — пятидесятые годы, когда наследственная теория упругости получила новое развитие в работах американских авторов, для решения задач получил широкое распространение метод, основанный на применении преобразования Лапласа. Для этого метода был сформулирован принцип соответствия, который по существу представляет собою простую перефразировку принципа Вольтерра. Применяя к основным соотношениям закона наследственной теории упругости (17.7.2) преобразование Лапласа, мы получим на основании теоремы о свертке следующие  [c.598]


Здесь черточки над буквами обозначают преобразования Лапласа соответствующих функций. Уравнения (17.9.1) имеют форму обычных уравнений закона Гука. Выполняя преобразования Лапласа над уравнениями равновесия, соотношениями связи между деформациями и перемещениями и граничными условиями, мы получим для изображений систему уравнений, совпадающую с системой уравнений теории упругости. Ее решение ничем не отличается от решения задачи обычной теории упругости изображения напряжений и перемещений оказываются выраженными явно через изображения заданных на границе усилий и перемещений и функций наследственности. Теперь последний этап будет заключаться в том, чтобы перейти от изображений к оригиналам. Эта процедура буквально повторяет ту, которая предписывается принципом Вольтерра, но в других терминах.  [c.599]

Нам известно, что для описания движения жидкости необходимо знать значения их, иу, и давления р во всех точках пространства, где происходит описываемое движение. Для этого необходимо иметь четыре уравнения три (28.4) и уравнение неразрывности. Уравнение Лапласа (28.7) включает в себя все указанные четыре уравнения. Поэтому, решив уравнение Лапласа для данного движения при заданных условиях на границах данной односвязной области, полностью опишем соответствующее этим условиям потенциальное движение. Поскольку уравнение Лапласа линейное, сумма двух его частных решений будет решением этого уравнения. В связи с этим при потенциальном движении справедливо применение принципа суперпозиции (наложения). Зная потенциалы скорости для некоторых видов потенциального движения и применяя принцип суперпозиции, можно находить решения для более сложных случаев.движения.  [c.282]

Преобразование Лапласа 166 Прецессии угол 85 Привод машин и механизмов 260 Принцип затвердевания 302  [c.572]

Многие задачи вязкоупругости при помощи преобразования Лапласа (или Фурье) определяющих уравнений и граничных условий по истинному или приведенному времени становятся математически эквивалентными аналогичным задачам для упругих тел. Такая аналогия называется принципом соответствия и дает возможность использовать методы теории упругости для получения решений (в изображениях) задач вязкоупругости. Впервые этот принцип был установлен Био [11] для анизотропной среды.  [c.140]


Принцип соответствия неприменим в тех случаях, когда части граничных поверхностей Su и/или 5т меняются со временем, так как для граничных условий нельзя получить изображений интегрирование при преобразовании Лапласа возможно только тогда, когда координаты Xi постоянны. Примером задачи, в которой одни и т же точки граничной поверхности в одни моменты времени относятся к части 5т, а в другие — к части Su, мол<ет служить задача о сферическом штампе (см., например, 117]). Для решения таких задач используются специальные методы.  [c.142]

Принципы соответствия дают возможность получить вязко-упругое решение, если известно упругое. Существенным этапом здесь является обратное преобразование Лапласа, но, как было указано выше, точное аналитическое обращение не всегда возможно. Во многих случаях упругое решение или известно только численно, или так сложно аналитически, что стандартные методы обращения неприменимы. Использование реальных функций ползучести и релаксации еще более усложняет применение аналитических методов обращения на практике.  [c.144]

Зависящее от времени осевое напряжение в волокне, требующееся для определения зависящей от времени неэффективной длины б t), можно получить из упругого решения (уравнение (4)) при помощи принципа соответствия. Вязкоупругое решение в пространстве изображений, соответствующем преобразованию Лапласа, получается, если вместо упругого модуля сдвига матрицы подставить умноженное на р преобразование Лапласа от релаксационного модуля сдвига матрицы и если применить преобразование Лапласа к начальному условию в уравнении (4), представляю-  [c.289]

В механике считается справедливым принцип детерминированности Ньютона-Лапласа. Согласно этому принципу движение системы материальных точек является вполне детерминированным задание начальных положений г уо и скоростей Vj q точек единственным образом определяет их дальнейшее движение, т. е. функции г у( ) (i/ = 1, 2,. .., N).  [c.89]

Достаточность условий принципа виртуальных перемещений следует теперь из принципа детерминированности движения Ньютона — Лапласа (см. п. 45), так как, согласно этому принципу, принимаемому в классической механике, движение системы однозначно определяется положениями и скоростями ее точек в начальный момент времени.  [c.309]

Механика точки как наука была основана Галилеем в начале семнадцатого столетия и после его смерти развивалась Гюйгенсом. Основные принципы были установлены и сформулированы Ньютоном, чье великое сочинение Математические начала натуральной философии [1] появилось в 1687 г. В 1743 г. Даламбер [2] распространил законы Ньютона на задачи механики твердого тела. Основания аналитической механики были заложены Эйлером уже в 1736 г. [3], но выдающимся событием в ранней истории этой науки стал выход в свет Аналитической механики Лагранжа в 1788 г. [4]. Развитие аналитической механики со времен Лагранжа связано с именами многих прославленных математиков. Среди тех, кому принадлежат наиболее фундаментальные открытия в этой области, в первую очередь следует назвать Лапласа, Гамильтона, Якоби, Гаусса и Пуанкаре.  [c.11]

Почти во всех учебниках, даже и в лучших, как Пуассона, Лагранжа и Лапласа, этот принцип представлен так, что, по моему мнению, его нельзя понять. Именно, говорится, что интеграл  [c.297]

Развитая Лагранжей точка зрения на принцип наименьшего действия разделялась рядом ученых того времени. Например, Лаплас, который расширил сферу приложения принципа в оптике, применив его к преломлению света в кристаллах, говорит о механическом содержании этого принципа Интеграл живой силы системы, умноженный на элемент времени, есть минимум, так что, следовательно, истинная экономия природы есть экономия живой силы ). Ограниченность этого толкования в настоящее время, после работ Гамильтона, Гельмгольца и др., после теории относительности и квантовой механики совершенно очевидна.  [c.800]


Работы Лапласа, Л. Карно и Пуассона, связанные с принципом наименьшего действия  [c.803]

Лишь в одном пункте Пуассон рассматривает вопрос о принципе наименьшего действия с иной точки зрения. Как мы уже отмечали, оптический аспект принципа у Лагранжа отсутствовал. Напротив, именно Лаплас — непосредственный учитель Пуассона —применил рассматриваемый принцип для вывода закона двойного преломления света в исландском шпате. По этому поводу Пуассон замечает, что наиболее замечательным применением принципа является вывод из него законов отражения и преломления света.  [c.804]

В XIX в. идеал Лапласа еще казался осуществимым. Согласно Гельмгольцу, сведение всех физических явлений к действию механических сил является основой полного понимания природы. В 80-х годах XIX в. Гельмгольц ) пришел к выводу, что для решения этой основной задачи нужно использовать принцип наименьшего действия, обобщив его на тот случай, когда лагранжиан есть функция qnq любой формы, т. е. отказаться от характерного для механики допущения, что кинетическая энергия есть однородная квадратичная форма скоростей, а потенциальная энергия — функция только координат (и времени). Принцип наименьшего действия, по мнению Гельмгольца, представляет собой эвристический принцип для формулирования законов новых классов явлений. Для такого расширения сферы применения принципа необходимо ввести в рассмотрение скрытые движения некоторых недоступных нашему наблюдению масс. Клаузиус пытался решить ту же проблему, введя гипотезу об изменении законов природы, происходящем по определенным законам. Однако установление  [c.852]

В монографии рассмотрены вопросы моделирования тепловых и напряженных состояний элементов конструкций. Изложены методы изучения этих состояний на моделях, в частности методы сеток, муара, фотоупругости и др. Приводятся основные принципы моделирования явлений, описываемых уравнениями Пуассона, Лапласа, Фурье. Даны основы теории подобия и теории размерностей в приложении к задачам прочности элементов конструкций, работающих в экстремальных условиях теплового и механического нагружения. В работе использованы материалы наиболее известных фундаментальных исследований, в том числе и результаты исследований автора.  [c.2]

J При рассмотрении такой модели нетрудно сделать вывод о том, что, используя принципы электрических цепей, можно отказаться от необходимости геометрического подобия. На рис. 46 показана схема установки для решения уравнения Лапласа.  [c.97]

ТО результат его действия ss на измерительную систему по принципу суперпозиции в отображении Лапласа можно представить в виде  [c.179]

При решении стационарных задач можно использовать принцип суперпозиции температурных полей, например при решении уравнения Лапласа при граничных условиях третьего рода  [c.162]

Принятие решений в условиях неопределенности. При неизвестных вероятностях состояния /7, возможно несколько способов, сводящихся к той или иной оценке неизвестных вероятностей, т. е. сведения неизвестных вероятностей к известным. Наиболее простой способ -- это принцип недостаточного основания Лапласа, в соответствии с которым ни одному из состояний природы не отдается предпочтения и назначается равная вероятность, т. е q =q — qn— q = /п для всех состояний.  [c.256]

Самым сложным в вариационном принципе является выбор системы координатных функций Фл(л , у, z) Нужен определенный опыт. От удачного или неудачного выбора зависит точность результата при учете ограниченного числа тонов колебаний. Например, в качестве функции Ф можно брать известные решения уравнения Лапласа для простого объема, охватывающего объем жидкости исследуемого бака. В частности, такой областью может быть прямой круговой цилиндр.  [c.348]

Принцип устойчивости требовался в основных космогонических задачах Лагранжем, Лапласом, Пуассоном, Пуанкаре, Ляпуновым. Наиболее широкое употребление он получил через применение теоремы Лагранжа об устойчивости равновесия при существованни силовой функции для описания развития равновесий медленно изменяющихся механических систем. Основные законы физики, как-то законы Гука, энтропии, закон всемирного тяготения Ньютона, сила Лоренца — удовлетворяют необходимым условиям принципа устойчивости ).  [c.247]

Другая вариационная постановка задачи кручения бруса базируется на принципе минимума потенциальной энергия системы (см. гл. V, 5). В этом случае приходим к функционалу /7, уравнением Эйлера—Остроградского которого является уравнение Лапласа (7.54) для функции кручения ф (оно получено из уравнений равновесия Ламе), естественными граничными условиями — граничные условия (7.55) для функции ф. Читателю, желаю1Цему ознакомиться с такой постановкой вариационной задачи кручения, можно рекомендовать книгу [35].  [c.179]

Необходимое ограничение применения принципа Вольтерра, равно как и метода, основанного на преобразовании Лапласа, состоит в следующем. В каждой точке поверхности тела должно быть задано либо усилие, либо перемещение, либо какая-нибудь комбинация этих величин, но тип граничных условий не должен меняться. Так, например, принцип Вольтерра неприменим к задаче о движущемся штампе. Пусть штамп длиной L движется со скоростью V по границе полуплоскости. Если штамп гладкий, то касательное усилие Ti равно нулю всюду на поверхности, следовательно, Г, = 0. Но со вторым граничным условием дело обстоит сложнее. Перемещение U2 t) в фиксированной точке границы М известно только в течение конечного промежутка времени t [Q, 6 + L/y], если 0 —тот момент, когда конец штампа приходит в точку М. Для других значений времени U2(t) неизвестно, поэтому вычислить изображение по Лапласу Uiip) не представляется возможным. Такое же положение возникает и при прямом применении принципа Вольтерра. Действительно, при окончательной расшифровке полученных операторных соотношений неизбежным образом придется вычислять интеграл  [c.599]


В конце XVIII в. главное внимание и усилия учёных-теоретиков были направлены на псследование и преодоление указанных математических трудностей (задачи небесной механики, развитие общей теории дифференциальных уравнений, вариационные принципы и т. д.). Исходные уравнения движения рассматривались в общем виде в связи с этим была распространена точка зрения о сводимости физических явлений к механическим движениям и о законченности механики как науки. Основная трудность усматривалась в интегрировании дифференциальных уравнений механики. Известное положение Лапласа гласило дайте начальные условия, и этого достаточно, чтобы предсказать всё будущее и восстановить всё прошедшее. Однако нужно заметить, что даже в рамках классической механики теоретическую проблему о составлении дифференциальных уравнений движения нельзя считать простой и уже принципиально разрешённой. Как раз задача о составлении уравнений движения, задача о действующих силах, т. е. о правых частях дифференциальных уравнений движения, является основной задачей физических исследований, причём даже в условиях возможных применений классической механики эта задача не разрешена в очень многих случаях. В тех же случаях, когда для простейших приложений существует необходимое приближённое решение, оно нуждается в постоянных уточнениях.  [c.27]

Аналогичный результат получается и для уравнений (10). (Поскольку температура не зависит от времени, в случае необходимости в уравнения (106) можно, не нарушая принципа соответствия, включить изображения Лапласа йцАТ членов, характеризующих тепловое расширение.)  [c.141]

Рассмотрим сначала принцип соответствия для термореологически простых материалов. В качестве четырех независимых переменных вместо t н Xi возьмем и Xi. Применяя преобразование Лапласа по приведенному времени (формула (42)) к уравнениям равновесия, граничным условиям и соотношениям между деформациями и перемещениями, получаем систему идентичную уравнениям (102) — (105), но теперь над всеми членами вместо черты (например, дц) будет стоять крышечка (например, t,j). Преобразование Лапласа определяющих уравнений (64) дает  [c.143]

Хотя предложенный метод является приближенным для N < оо, в принципе погрешность можно сделать сколь угоднО малой при достаточно большом числе N и достаточно близких друг к другу значениях Хг. Это следует из свойства полноты системы интегрируемых с квадратом функций, в рядах Дирихле [87]. На практике, однако, точность обращения ограничивается гладкостью изображений по Лапласу. Ошибки за счет округления, неизбежные при любых численных представлениях, и погрешности при интерполяции, например при 1юлучении ассоциированного упругого решения методами конечных разностей или конечных элементов, определяют нижнюю границу погрешности для квадратичного отклонения [19, 84, 87]. Оказывается, что для принятых численных значений изображений Лапласа при сближении Хг квадратичная ошибка сначала уменьшается, а затем увеличивается. Этот рост отражает перемену знака возрастающих членов в функции Д/с(0-  [c.146]

Для тел, подчиняющихся требованиям одного из вариантов принципа соответствия, приведенных в разд. III, вязкоупругий анализ выполняется сразу, если имеется упругое решение. Для таких случаев обычно удобно сначала получить квазиупругое решение для переходной проводимости, а затем — если нагружение переменно во времени — использовать интеграл суперпозиции. При этом наибольшая точность получается в том случае, когда при заданных поверхностных и/или массовых силах в упругом решении используются функции ползучести, а при заданных перемещениях — функции релаксации. Однако даже если последние условия не выполняются (т. е. если при заданных силах берутся функции релаксации и применяется приближенное соотношение (95), то ошибка все равно остается малой, особенно в случае, когда вязкоупругими фазами являются жесткие полимеры (Мак-Каммонд [66], Симс [106]). Для других видов фаз с резко выраженными вязкоупругими свойствами, когда необходимо выразить фувкцию ползучести через функцию реллксации, желательно использовать точное соотношение (93) и обратное преобразование Лапласа.  [c.162]

В заключение коснемся работы Хегемира [52], в которой детально изучались стационарные и нестационарные колебания в слоистых и волокнистых композитах. В этой работе основное внимание уделяется анализу явлений рассеяния в упругих материалах, однако приводится и решение для нестационарных волн в вязкоупругих слоистых композитах, распространяющихся перпендикулярно слоям. Это решение было получено при помощи принципа соответствия и обращения преобразования Лапласа.  [c.182]

В это же время Лаплас ) приложил метод, примененный Мопертюи для получения с корпускулярной точки зрения закона преломления обычного луча, к задаче двойного лучепреломления. Лаплас использовал принцип наименьшего действия, математическая сторона которого настолько усовершенствовалась со времен Мопертюи, что стало возможно применять его К более сложным проблемам, чем иростое преломление света. Лаплас предположил, что кристаллическая среда действует на световые корпускулы необыкновенного луча так, что изменяет их скорость в отношении, которое зависит от наклона необыкновенного луча к оси кристалла. В самом деле, разность квадратов скоростей обыкновенного и необыкновенного луча пропорциональна квадрату синуса угла, который образует необыкновенный луч с осью кристалла. Принцип наименьшего действия тогда приводит к закону преломления, тождественному с тем, который был найден Гюйгенсом. Закон преломления необыкновенного луча может быть также выведен из принципа Ферма при допущении, что скорость обратно пропорциональна той, которая предполагается при рассмотрении вопроса с помощью принципа наименьшего действия скорость, соответствующая принципу Ферма, согласуется со скоростью, найденной Гюйгенсом.  [c.803]

Теория Лапласа была подвергнута критике Юнгом ), который указал на невероятность существования такой системы сил, которая требуется для изменения скоростей световых корпускул. Однако самое сильное возражение, разрушающее все рассуждения Лапласа, сделал Гаусс в примечании к своей работе Об одном новом общем принципе механики ). Он говорит Я позволю себе сделать одно замечание. Я считаю неудовлетворительным метод, примененный другим великим геометром (Lapla e, Memoires de l Institut, 1809) для вывода закона преломлений Гюйгенса из принципа наименьшего действия. Действительно, этот принцип, по существу, предполагает наличие принципа живых сил, на основании которого скорость точек в движении полностью определяется их положением, а направление, по которому они движутся, не оказывает на нее никакого влияния. Тем не менее, это влияние является исходной точкой рассуждений упомянутого нами автора. Мне думается, что все усилия геометров объяснить двойное преломление в рамках эмиссионной гипотезы останутся бесплодными до тех пор, пока световые молекулы будут рассматриваться как простые точки .  [c.803]

Описанный выше подход о восстановлении поля температуры по данным Коши для уравнения Лапласа (или Фурье), заданным на части границы области, в принципе решает задачу. Но дело в том, что получить данные о распределении температуры на доступной для измерений части поверхности сравнительно просто, а вот определение на этом же участке поверхности градиента температуры по направлению нормали к поверхности во многих спучаях встречается с весьма большими трудностями. Градиент температуры известен (равен нулю), когда теплообмен между элементом и окру-жащей средой отсутствует. В противном случае градиент температуры подлежит определению. Вычислить его из условий тегшообмена с внешней средой не удается, так как значение относительного коэффициента теплообмена в большинстве случаев неизвестно. При этом применяют метод рассверловки ступенчатых отверстий с установкой на уступах термопар. Тогда определение температуры на некоторой глубине под поверхностью и вычисление по этим данным градиента температуры вносит трудно поддающуюся оценке погрешность из-за изменения граничных условий в местах рассверловки. Кроме того, при большом количестве точек измерений рассверловка — крайне нежелательная операция, а в некоторых случаях и недопустимая. Таким образом, использование информации о температуре и ее нормальной производной для определения поля температуры в области элемента представляется нецелесообразным.  [c.83]


Имеется ряд других методов обращения преобразований Лапласа. Это метод Алфрея, основанный на принципе наименьших квадратов, метод обращения с помощью полиномов Лагранжа, метод наименьших квадратов Шепери и т. д.  [c.25]

В физ. приложениях чаще встречается именно такое одностороннее Л. п. переменная х имеет обычно смысл времени, а функция / (л ) описывает реакцию системы на внеш. воздействие, начинающееся с момента x=Q (в двустороннем Л. п. интегрирование проводится по всей оси). Согласно физ. причинности принципу, реакция не может опережать воздействие, и /(а )=0 для л <0. Поскольку Л. п. даёт в этом случае ф-цию F k), аналитическую при д>0, можно использовать аппарат теории аналитич. ций для матсм. анализа разл. явлений в оптике, электродинамике сплошных сред, теории электрич. цепей, гидродинамике, сейсмологии и др. (см. Дисперсионные соотношения). Л. П. введено П. Лапласом (1812), впоследствии использовано для обоснования операционного исчисления, введённого О. Хевисайдом (О. Heaviside).  [c.577]

Количественный расчет эффекта контактной коррозии, в принципе, не вызывает трудностей, если для кажд010 конкретного случая получено решение дифференциального уравнения Лапласа. Однако решение последней задачи обычно оказывается затруднительным, гак как появляются нелинейные граничные условия для поляризационных зависимостей.  [c.76]

I iiii Согласно принципу соответствия Вольтерра сделаем в (I). замену 1/ - П (р) и v- p). Тогда. выражение (1) МП,КИО записать в изображениях. по Лапласу — Карсону  [c.45]


Смотреть страницы где упоминается термин Лапласа принцип : [c.501]    [c.553]    [c.74]    [c.460]    [c.118]    [c.181]    [c.291]    [c.238]    [c.84]    [c.72]    [c.617]    [c.10]   
Теория звука Т.1 (1955) -- [ c.171 ]



ПОИСК



Лаплас

Принцип детерминированности Ньютона — Лапласа

Теорема сложения вероятностей, или принцип Лапласа



© 2025 Mash-xxl.info Реклама на сайте