Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Проводимость переходная

Проводимость переходная 531 Пространство абсолютное 10, 445 Процесс адиабатический 153  [c.639]

Проводимость переходная 105 Пропускания импульсов измерения 383 Простая волновая функция 389 Процессы необратимые 108, 130  [c.555]

Изменения ЭЛектрической проводимости, переходного сопротивле- я, тепловых и оптических свойств, и других физических характеристик определяют по методам, установленным в стандартах СЗВ на ме , таллы.у Изменения данных свойств выражают в процентах, при этом значение свойств металла до коррозионного испытания отвечает  [c.657]


Работа кремниевых выпрямителей (диодов) основана на свойстве односторонней дырочной проводимости переходного слоя, искусственно созданного внутри пластины монокристалла кремния.  [c.45]

Таким образом, высокотемпературная проводимость переходного металла мол<ет быть представлена в виде произведения двух сомножителей. Один из них, получаемый интегрированием по поверхности Ферми, фактически представляет собой проводимость, умноженную на плотность состояний -зоны на уровне Ферми. Обозначая проводимость Сто(7), имеем  [c.30]

Таким образом, высокотемпературная проводимость переходного металла имеет вид  [c.30]

Для практической термометрии интерес представляют переходные металлы, имеющие частично заполненные -уровни, а также з-уровни (символы з и соответствуют значениям орбитального квантового числа О и 2 см. [6]). Поскольку -электроны более локализованы, чем з-электроны, проводимость обусловлена главным образом последними. Однако вероятность рассеяния 3-электронов в -зону велика, поскольку плотность -состояний вблизи уровня Ферми высока (рис. 5.5), поэтому удельное сопротивление переходных металлов выще, чем у непереходных. Наличие -зоны влияет также на характер температурной зависимости. При высоких температурах величина кТ может быть уже не пренебрежимо мала по сравнению с расстоянием от уровня Ферми до верхней или нижней границы -зоны. Предположение, что поверхность Ферми четко разделяет занятые и незанятые состояния, перестает быть верным, и для параболической -зоны в формулу удельного сопротивления вводится поправочный коэффициент (1—5Р), где В — постоянная. Однако плотность состояний в -зоне вовсе не является гладкой функцией энергии (рис. 5.5), поэтому эффект будет осложнен изменением плотности состояний в пределах кТ от уровня Ферми. Отклонение температурной зависимости от линейной может быть как положительным, так и отрицательным.  [c.194]

Решение (29) с помощью этой функции переходной проводимости может быть записано в форме (21).  [c.534]

Основной особенностью ЭМУ по отношению к объектам машиностроения является большой объем задач анализа совместно протекающих и взаимно обусловленных внутренних физических процессов их работы. При этом основное электромеханическое преобразование энергии сопровождается рядом сопутствующих преобразований — электромагнитным, тепловым, механическим, вибрационным. Решение задач анализа с достаточной для практических целей точностью требует учета реально существующих взаимных связей между названными процессами. Эта особенность является чрезвычайно важной с позиций автоматизации проектирования. Вопросы анализа физических процессов занимают центральное место в принятии проектных решений практически на всех этапах проектирования ЭМУ, что обусловливает внимание к этим проблемам и необходимость их решения. Так, работы по уточнению математических моделей ЭМУ и учету с их помощью все новых эффектов (детальное распределение магнитного поля в воздушном зазоре и магнитопроводе, переходные электромагнитные и другие процессы, явления гистерезиса, вытеснения токов и и Т.Д.), проводимые в течение многих десятилетий, не только не теряют своей актуальности, но и получили новый импульс благодаря 16  [c.16]


В полупроводниковых лазерах наиболее распространенным методом создания инверсной населенности является инжекция неравновесных носителей заряда через р-/г-переход. Электронно-дырочный переход (р-п) — это переходная область, с одной стороны которой полупроводник имеет дырочную (р) проводимость, а с другой — электронную п). Необходимо отметить, что речь идет об одном образце, а не о контакте между двумя образцами р- и rt-типа.  [c.317]

Кй — сжимаемость в приближении свободных электронов). Очевидно, что полученное сходство расчета с экспериментом заметно лучше, чем в приближении свободного электронного газа Ферми. Расхождение теории и эксперимента для Mg, Na, К составило соответственно 0,03, 0,006 и 0,007 Ryd/эл вместо 0,3 0,16 0,14. Для ряда групп материалов (щелочные металлы, например) специальным выбором псевдопотенциала можно добиться еще лучшего согласия с экспериментом. Одно из главнейших направлений развития исследований в этой области сейчас — разработка способов расчета энергетических характеристик переходных металлов, для которых из-за близости Ы и 4s (4электроны проводимости не вполне правомерно.  [c.123]

С целью выяснения природы проводимости и механизма начальных стадий образования оксида в настоящей работе исследовали переходные явления, возникающие при вольт-статическом оксидировании алюминия в растворе кремнекислого натрия.  [c.75]

Функция Rh называется функцией ползучести (податливостью при ползучести) в том случае, когда величина I является напряжением, а в роли R выступает деформация, и переходной проводимостью в случае общих линейных систем (Карман и Био [121]).  [c.105]

Так же как и для рассмотренного выше случая обратимых тепловых эффектов, это влияние факторов окружающей среды и старения можно учесть при помощи переходных проводимостей в общем случае и функций ползучести и релаксации в частности, а также при помощи модификации выражения обусловленной напряжением деформации при тепловом расширении или сжатии. Например, осевая деформация при одноосном напряженном состоянии в общем случае дается уравнением (38), если функция определяется на образцах с учетом всех факторов.  [c.129]

Оба метода обращения наиболее точны и просты в приме- нении, если f представляет собой квазистатический отклик на входные данные U.i,Ti,F ), являющиеся ступенчатыми функциями времени, т. е. когда f — переходная проводимость Rh или / на 3 (см. формулы (8) И (9)). Такое представление практически не является ограничением, так как при помощи интегралов суперпозиции (формула (9)) решение можно построить и тогда, когда входные данные являются функциями координат и времени, причем не обязательно имеют вид (107).  [c.145]

Заметим, что уравнение (120) получено при наложении определенных условий на оригинал /(г"), а не на изображение sf. Так как точный вид функции f t) не известен, будем предполагать, что уравнение (120) справедливо в том случае, когда изображение sf удовлетворяет условию малости кривизны. Что значит малость , показано на рис. 6 для графика зависимости некоторой переходной проводимости от gt или lg .  [c.148]

В квазиупругом методе вязкоупругое решение (т. е. переходная проводимость) получается из упругого решения заменой всех упругих характеристик материала соответствующими функциями релаксаций и функциями ползучести [86]. Хотя этот метод основан на приближенном обращении (120) и, следовательно, применим только к квазистатическим задачам, его преимущество состоит в том, что для получения различных переходных проводимостей он не нуждается в теории обращений. В самом общем виде этот метод дает аппроксимации определяющих уравнений (10) и (11) соотношениями  [c.150]

Радиационные эффекты в электроизоляционных материалах и изоляторах определяют по выделению газов из органических материалов, изменению цвета, проводимости или изоляционных свойств, механических свойств, увеличению гигроскопичности, а также по образованию разъедаю-ш их и токсичных газов в случае облучения галогенных материалов. Некоторые из этих эффектов могут быть либо переходными, либо необратимыми. Переходные изменения нелинейно связаны с мош ностью дозы облучения [76] и обычно выражены более резко, чем необратимые явления [31]. Восстановление свойств после прекраш ения облучения может идти быстро и медленно, в зависимости от материала. Изоляторы часто обеспечивают удовлетворительную изоляцию электрического потока даже при сильном ухудшении механических свойств, так как их работа редко зависит от механической прочности.  [c.394]


Третья составляющая часть удельного сопротивления рм, связанная с рассеянием электронов проводимости атомами с некомпенсированными электронами, характерна для редкоземельных и некоторых переходных металлов. Эта составляющая удельного сопротивления рм увеличивается при изменении температуры вплоть до точки Кюри, а затем остается постоянной.  [c.36]

Коэффициентом при во второй из формул (VII. 130) служит переходная механическая проводимость (подвижность)  [c.304]

Примем допущение о линейности канала проводимости от системы соударяющихся тел при выборе зазора до i-й диагностической точки. Для определения виброускорений а. (t) воспользуемся импульсной переходной функцией h (t) [7]. Тогда величины (t), (t), а. t), (t) можно представить в виде уравнений (3). Синхронная регистрация угла поворота выходного звена (t) и виброускорений а. (t) в диагностических точках Дт1, Дт2,. . ., Дт1 позволяет рассматривать зависимости (3) как систему уравнений  [c.109]

Анализ электронного строения и характеристик электронов проводимости переходных металлов показывает, что по мере заполнения eg ( едг)-состояния четырьмя d-электронами эффективное число электронов проводимости, определяющих 7, 1/0 и Т , сначала растет, достигая максимума при 4,5 d-, 5-эл/атом, а затем падает вследствие локализации четырех d-электронов, перестающих участвовать в проводимости у металлов VI группы. При заполнении /г -состояния первые -электроны участвуют в проводимости, а при увеличении их числа становятся все более тяжелыми, менее подвижными и постепенно локализуются на атомах. Таким образом, двугорбые пики электронных характеристик (см. рис. 24—27), так же как двугорбые пики -оболочек (см. рис. 28, 29), четко связаны с расщеплением d-оболочки во внутреннем октаэдрическом поле нижележащей р -оболочки на eg (dxi/z)- и t2g dxy, dxz, dyг)- o xoя.mя, заполняемые соответственно четырьмя и шестью d-электронами. Это показано на рис. 8, где заполнению d-электронами eg- и g-состояний отвечают область устойчивости ОЦК структур у металлов V—VI групп и область ПГ структур у металлов VII—VIII групп с двумя максимумами Тс, соответствующими максимальной концентрации электронов проводимости.  [c.59]

При низких температурах в переходных металлах проявляется эффект элек-трон-электронного рассеяния, приводящий к появлению квадратичного члена в зависимости удельного сопротивления от температуры. Этот тип электронного рассеяния на большой угол (см. [3], с. 250) может возникать в случае, когда поверхность Ферми несферическая или имеются вклады более чем из одной энергетической зоны. Для большинства переходных металлов этот квадратичный член становится определяющим ниже 10 К. Для ферромагнитных металлов возникает еще одна причина появления еще одного квадратичного члена, обусловленного рассеянием электронов проводимости на магнитных спиновых волнах. Кроме того, для всех ферромагнитных металлов наблюдаются аномалии зависимости удельного сопротивления от температуры вблизи точки Кюри.  [c.195]

Существует класс полупроводниковых приборов, выполненных на основе смешанных окислов переходных металлов, которые известны под общим названием термисторов. Термин термистор происходит от слов термочувствительный резистор . Толчком к разработке термисторов послужила необходимость компенсировать изменение параметров электронных схем под влиянием колебаний температуры. Первые термисторы изготавливались на основе двуокиси урана ПОг, но затем в начале 30-х годов стали использовать шпинель MgTiOз. Оказалось, что удельное сопротивление MgTiOз и его температурный коэффициент сопротивления (ТКС) легко варьируются путем контролируемого восстановления в водороде и путем изменений концентрации MgO по сравнению со стехиометрической. Использовалась также окись меди СиО. Современные термисторы [60, 61] почти всегда представляют собой нестехиометрические смеси окислов и изготавливаются путем спекания микронных частиц компонентов в контролируемой атмосфере. В зависимости от того, в какой атмосфере происходит спекание (окислительной или восстановительной), может получиться, например, полупроводник п-типа на поверхности зерна, переходящий в полупроводник р-типа в глубине зерна, со всеми вытекающими отсюда последствиями для процессов проводимости. Помимо характера проводимости в отдельном зерне, на проводимость материала оказывают существенное влияние также процессы на границах между спеченными зернами. Высокочастотная дисперсия у термисторов, например, возникает вследствие того, что они представляют собой сложную структуру, образованную зонами плохой проводимости на границах зерен и зонами относительно высокой проводимости внутри зерен.  [c.243]

Функция г15о(0 называется реакцией системы на единичное возмущение или переходной проводимостью. Реакция на единичный импульс представляет собой производную от переходной проводимости. Интегрируя (19) по частям, получаем представление движения через переходную проводимость  [c.531]

Переходная проводимость г1зо(0 т. е. движение, вызываемое единичной силой, прикладываемой к покоящейся системе, как и выше, определяется по формуле (20)  [c.534]

Коррозия. Помимо эрозии контакты подвергаются коррозии, т. е. химическим процессам окисления, образования стекловидных, а иногда оргаиичсских изоляционных пленок между контактами. Оксидные пленки на благородных металлах имеют малую толщину и высокую проводимость они разлагаются при сравнительно невысокой температуре (например, окись серебра — при 200° С). Оксидные пленки на неблагородных металлах толще, чем на благородных и поэтому для их пробоя требуется значительное напряжение. Кроме того, они не разлагаются, даже при высокой температуре. По этим причинам стремятся исключить возможность образования таких пленок, либо обеспечить их удаление при работе контактов, применяя большие контактные давления. При ударе или сжатии контактов пленка иа их поверхности может быть разрушена. Минимальное требуемое давление составляет для контактов из благородных металлов и их сплавов 15—25 Г, для контактов из неблагородных металлов (например, вольфрама) величину порядка 1000 Г. Величина давления между контактами обусловлена также стремлением уменьшить переходное сопротивление контактов. Стекловидная пленка на поверхности контакта может появиться в результате плавления окислов металлов, образова шнхся при окислении контактов. Органические изоляционные иленки иногда появляются в результате выделения газообразных продуктов из нагретых пластмассовых деталей. Металл контакта может оказывать каталитическое действие, ускоряя полимеризацию органической, изоляционной иленки иа поверхности металла.  [c.293]


В уравнениях (10) и (И) функции релаксации и функции ползучести являются откликами на единичные воздействия, приложенные при t = 0 это следует из того, что они (с точностью до обозначений) совпадают с переходными проводимостями Янаб соотношении (9). Смысл этих характеристик материала можно установить и непосредственно из уравнений (10) и (11). Рассмотрим, например, опыт на релаксацию, в котором  [c.107]

Для тел, подчиняющихся требованиям одного из вариантов принципа соответствия, приведенных в разд. III, вязкоупругий анализ выполняется сразу, если имеется упругое решение. Для таких случаев обычно удобно сначала получить квазиупругое решение для переходной проводимости, а затем — если нагружение переменно во времени — использовать интеграл суперпозиции. При этом наибольшая точность получается в том случае, когда при заданных поверхностных и/или массовых силах в упругом решении используются функции ползучести, а при заданных перемещениях — функции релаксации. Однако даже если последние условия не выполняются (т. е. если при заданных силах берутся функции релаксации и применяется приближенное соотношение (95), то ошибка все равно остается малой, особенно в случае, когда вязкоупругими фазами являются жесткие полимеры (Мак-Каммонд [66], Симс [106]). Для других видов фаз с резко выраженными вязкоупругими свойствами, когда необходимо выразить фувкцию ползучести через функцию реллксации, желательно использовать точное соотношение (93) и обратное преобразование Лапласа.  [c.162]

На рис. 5.4.6 по данным термометрирования принятых в испытаниях корсетных образцов с минимальным диаметром 10 мм и радиусом корсета 50 мм показаны характерные зависимости изменения температуры образца от времени. Приведены режимы остывания при естественном охлаждении образца (кривые 1 и 2), а также при наличии системы теплосъема, проводимого с помощью водоохлаждаемых шин токоподвода. Кривая 3 соответствует использованию шин, крепящихся на переходных цилиндрических элементах образца (ширина шин = 12 мм), а кривая 4 — ши-  [c.253]

Для чистых металлов (за исключением переходных) температурный коэффициент электрической проводимости примерно равен 4 10 . У переходных металлов и ферромагнетиков он имеет порядок 10 . Совместно с С. Н. Садовниковым, 3. В. Черенковой и Б. Д. Поповичем автором исследованы изменения электрических ха-  [c.37]

Поток энергии, как видно из (3.13), приближенно может быть вычислен через матрицу переходных проводимостей фундамен-  [c.85]

Современные ЭЦВМ позволяют выполнить исследования колебаний механической системы практически любой сложности. Но изменение структуры модели требует разработки новых алгоритмов и программ расчета, поэтому в последние годы уделяется большое внимание исследованию общих закономерностей колебания сложных механических систем, не зависящих от их конкретной структуры. Наиболее полно эти вопросы освещаются в литературе по акустике, в особенности в работах Е. Скучика [1]. При этом вместо принятых в литературе по механике понятий динамической жесткости, податливости и гармонических коэффициентов влияния применяется терминология, установившаяся для описания переходных процессов в электрических цепях импеданс, сопротивление, проводимость и т. ц. Это связано с использованием получившего широкое распространение в последние годы математического аппарата теории автоматического регулирования и, в частности, с рассмотрением задач в комплексной области. Переход в комплексную область позволяет свести динамическую задачу для линейной системы при гармоническом возбуждении к квазистатической с комплексными коэффициентами, зависящими от частоты. После определения комплексных амплитуд сил и перемещений у, действующие силы и перемещения выражаются действительными частями произведений и  [c.7]

Силициды переходных металлов не относятся к фазам внедрения, поскольку крупные атомы кремния не могут внедряться в поры металлических решеток. Атомы кремния замещают металлические атомы и образуют сложные кристаллические структуры в виде графитоподобных сеток. Эти соединения в отличие от боридов, имеющих металлическую проводимость, являются либо полупроводниками ( rSij, FeSij, ReSij), либо имеют промежуточный характер проводимости между металлами и полупроводниками [6].  [c.409]

Большинство карбидов переходных металлов относится к фазам внедрения и обладает явно выраженными металлическими свойствами [15], т. е. имеет металлическую проводимость, высокие значения электропроводности и теплопроводности, характерное для металлов падение электросопротивления с понижением температуры и т, д. К указанным фазам относятся карбиды со структурой типа МеС — фаз внедрения углерода в поры кубических решеток металлов (титана, циркония, гафния, ванадия, ниобия и тантала). Такие карбиды, как Мо С, V , Та С, Wj являются также фазами внедрения, но они имеют гексагональные структуры. В карбидах хрома СГ3С2, Сг,Сз, СггзСв атомы углерода образуют обособленные структурные элементы — цепи, существенно затрудняющие деформирование кристаллической  [c.417]

Электронное строение, т. е. концентрация валентных электронов (электронов проводимости), и характер связи электронов с ионами металла являются основой третьей классификации металлических твердых растворов. Однако во многих случаях нельзя сделать четкого различия между электронами проводимости и электронами, принадлежащими только одному атому, в особенности у металлов-переходных групп. В связи с этим однозначная классификация металлов и сплавов по их электронному строению невозможна. Тем не менее понятие об электронах проводимости должно быть сохранено, так как существуют системы, которые не отклоняются сколько-нибудь значительно от идеализированных моделей, предполагающих наличие свободных электронов. Этот вопрос изложен в книгах Делингера [63], Мотта и Джонса [260] и Зейтца [338, 339]. Значение числа валентных электронов становится особенно очевидным из исследований [17, 18, 19, 132, 419], хотя стехиомет-рические составы промежуточных фаз часто имеют отклонения от обычных правил неорганической химии. Сложность вопроса можно иллюстрировать следующими примерами.  [c.9]


Смотреть страницы где упоминается термин Проводимость переходная : [c.13]    [c.228]    [c.429]    [c.159]    [c.353]    [c.36]    [c.174]    [c.38]    [c.295]    [c.76]    [c.55]    [c.376]    [c.438]    [c.130]    [c.86]   
Курс теоретической механики. Т.2 (1983) -- [ c.531 ]

Механика композиционных материалов Том 2 (1978) -- [ c.105 ]

Колебания и звук (1949) -- [ c.113 , c.449 ]



ПОИСК



1---переходные

Проводимость

Теплопроводность тонкодисперсных материалов. . — Силы термофореза, аэродинамического сопротивления сферических частиц и проводимость труб при переходном вакууме



© 2025 Mash-xxl.info Реклама на сайте