Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эйлера — Лагранжа — Пуассона

При изучении случаев Эйлера-Пуансо, Лагранжа-Пуассона, Ковалевской мы имели исчерпывающий набор так называемых алгебраических первых интегралов, справедливых при любых начальных  [c.491]

Лагранж и Пуассон показали, что зависимость углов Эйлера f, ф и б от времени в этом случае получается с помощью так называемых эллиптических функций и оказывается довольно сложной.  [c.709]

Математики и физики-теоретики Эйлер, Лагранж, Лаплас, Пуассон, Грин, Гамильтон в своих обобщающих трудах по статике, динамике, теории потенциала тоже продвигаются к точному определению понятий работа и энергия . Так, в 1828 г. бывший пекарь Джордж Грин в сочинении Опыт приложения математического анали-  [c.116]


После исследований, проведенных Эйлером, Лагранжем и Пуассоном, проблема движения тела вокруг неподвижной точки длительное время не получала дальнейшего развития. Ввиду ее важности Парижская академия наук назначила премию за существенное продвижение в исследовании задачи. Два проведенных конкурса не дали результатов. В 1888 г. конкурс был объявлен в третий раз. Из пятнадцати представленных работ премию получила работа С. В. Ковалевской.  [c.246]

В 1788 г. Лагранж и независимо от него в 1815 г. Пуассон рассмотрели случай тяжелого симметричного гироскопа тело имеет ось материальной симметрии и поэтому 1х = 1у, а единственная заданная сила —это сила тяжести гироскопа, причем центр тяжести лежит, очевидно, на оси симметрии, но не совпадает с неподвижной точкой (иначе снова имели бы случай Эйлера) Лагранж и Пуассон получили общее решение снова в эллиптических функциях.  [c.252]

Лагранж, Жозеф Луи (25.1.1736-10.4.1813) — великий французский математик, механик, астроном. В своем знаменитом трактате Аналитическая механика (в 2-х томах), наряду с общим формализмом динамики, привел уравнения движения твердого тела в произвольном потенциальном силовом поле, используя связанную с телом систему координат, проекции кинетического момента и направляющие косинусы (том II). Там же указан случай интегрируемости, характеризующийся осевой симметрией, который был доведен им до квадратур. Следуя своему принципу избегать чертежей, Лагранж не приводит геометрического изучения движения, а рисунки поведения апекса, вошедшие ранее почти во все учебники по механике, впервые появились в работе Пуассона (1815 г), который рассмотрел эту задачу как совершенно новую. Пуассон, тем не менее, систематизировал обозначения, усложняющие понимание трактатов Даламбера, Эйлера и Лагранжа и рассмотрел различные частные случаи движения (случай Лагранжа в некоторых учебниках называют случаем Лагранжа-Пуассона). В свою очередь Лагранж упростил решение для случая Эйлера и дал прямое доказательство существования вещественных корней уравнения третьей степени, определяющих положение главных осей. Отметим также вклад Лагранжа в теорию возмущений, позволивший Якоби рассмотреть задачу о возмущении волчка Эйлера и получить систему соответствующих оскулирующих переменных.  [c.21]

Существенные результаты получил Леонид Николаевич по теории волн конечной амплитуды путем разработанного им метода совместного применения переменных Эйлера и Лагранжа (1953, 1954, 1955 гг.). Он впервые указал алгоритм, позволяющий решать в любом приближении задачу о динамике трехмерных установившихся волн конечной амплитуды, и внес важное усовершенствование в известный второй метод Стокса, показав, что определение волн возможно путем решения бесконечной системы кубических уравнений ( Об одном методе определения волн конечной амплитуды , 1952 г.). Им рассмотрены задачи Коши — Пуассона для волн конечной амплитуды (1960, 1961 гг.) и образование волн конечной амплитуды источником жидкости (1965 г.).  [c.12]


Глава VI содержит главные вопросы механики абсолютно твердого тела. Излагается наиболее трудная часть механики абсолютно твердого тела — пространственное вращательное движение тела, одна из точек которого неподвижна в некоторой системе отсчета. Выводятся кинематические и динамические уравнения Эйлера и кинематические уравнения Пуассона. Рассматриваются случаи Эйлера и Лагранжа. Кроме того, кратко изложена магнито-кинематическая аналогия, позволяющая кинематические уравнения представить в виде уравнений Гамильтона.  [c.7]

Показать, что в задаче исследования движения тяжелого твердого тела вокруг неподвижной точки достаточно найти 4 независимых первых интеграла, чтобы определить траектории движения. Перечислить эти интегралы в случаях Эйлера, Лагранжа-Пуассона, Ковалевской. Какие первые интегралы являются общими для всех этих случаев  [c.702]

Уравнение движения ( динамики, упругой кривой, математической физики, параболического типа, эллиптического типа, гиперболического типа, смешанного типа, линии действия, теплопроводности Эйлера, Пуассона...). Уравнения движения в векторной форме ( с одним неизвестным...). Уравнения Гамильтона ( Лагранжа...).  [c.93]

Случай Эйлера и случай Лагранжа — Пуассона можно демонстрировать на гироскопе колоколообразной формы, вдоль оси динамической симметрии которого передвигается винт, чем можно по произволу привести точку опоры О (острие винта) в совпадение с центром тяжести С или же поместить центр тяжести С выше точки опоры О на оси винта (рис. 392).  [c.711]

Замечательны эти задачи тем, что являются непосредственным обобщением задач, решаемых до конца простыми средствами классического анализа, и обе представляют столь большие трудности, что еще далеки от завершения, несмотря на глубокие результаты, полученные крупнейшими математиками и механиками двух последних столетий — Эйлером, Лагранжем, Пуассоном, Ковалевской, Пуанкаре, Ляпуновым и др. Задача трех тел представляет прямое обобщение задачи  [c.11]

Опираясь на этот результат, С. В. Ковалевская поставила следующую задачу найти все случаи, когда общее решение задачи о тяжелом твердом теле с неподвижной точкой представляет собой функции, мероморфные во всей плоскости комплексного времени. В результате исследований С. В. Ковалевской выяснилось, что эти случаи весьма немногочисленны к классическим случаям Эйлера-Пуансо и Лагранжа-Пуассона надо добавить еще один случай, когда А = В = = 2С, 2 = 0 случай Ковалевской).  [c.126]

Уравнения (9.26) и (9.27) являются нелинейными уравнениями Эйлера — Лагранжа — Пуассона вариационного исчисления. Отметим их сходство с уравнением Эйлера (5.4), которое было выведено из общих вариационных принципов Ферма и Гамильтона.  [c.516]

Для электростатических линз ситуация менее благоприятна. Уравнения Эйлера — Лагранжа — Пуассона являются нелинейными дифференциальными уравнениями четвертого порядка с чрезвычайно сложными граничными условиями. Сложность этих условий увеличивается с числом дополнительных требований. Такие системы уравнений практически не поддаются численному решению. Для синтеза электронных и ионных линз необходимо разрабатывать более простые методы.  [c.517]

Эйлера — Лагранжа — Пуассона уравнение 516 Эйлера — метод 358  [c.632]

Замечание 1. Уравнения движения в форме (1.1) были известны еще Эйлеру (1758 г.), он также установил простейший случай интегрируемости, при котором твердое тело движется по инерции (г = 0). Интегрируемость осесимметричного волчка с центром тяжести на оси симметрии была установлена Лагранжем и несколько позже Пуассоном, а имя последнего стало фигурировать в названии общих уравнений (1.1).  [c.86]

Данный случай интегрируемости аналогичен случаю Лагранжа в уравнениях Эйлера-Пуассона ( 3 гл. 2), а дополнительный интеграл F = Мз связан с наличием циклической координаты (угла собственного вращения). Редукция к одной степени свободы и явное интегрирование приведено нами в 1 гл. 4.  [c.171]


Замечание 4. Случаи интегрируемости уравнений на алгебре е(3), дополнительный интеграл которых зависит лишь от переменных М, типа случаев Лагранжа и Гесса для уравнений Эйлера-Пуассона или типа случаев Кирхгофа, Чаплыгина (II) для уравнений Кирхгофа, очевидным образом переносятся на системы на пучке скобок (2.4), включающих при х = 1 алгебру во(4). Это связано с тем, что уравнения для М для всех скобок пучка совпадают (см. ниже).  [c.186]

T. e. / i = 0 и /с2 = 0 являются инвариантными соотношениями. Отметим, что если линейные соотношения типа ki = М3 = О существуют, например, для случаев типа Лагранжа и Гесса (имеются в виду уравнения Эйлера-Пуассона), то кубичные инвариантные соотношения в динамике твердого тела, видимо, совсем не рассматривались.  [c.346]

Динамика твердого тела изучается на основе общих теорем об изменении кинетической энергии, кинетического момента и количества движения, а также с помощью основных понятий геометрии масс. Показывается, что аппарат динамики системы материальных точек применим для описания движения твердого тела и систем твердых тел. Проясняется вычислительная экономность использования уравнений Эйлера. Традиционно анализируются случаи Эйлера-Пуансо, Лагранжа-Пуассона, Ковгияевской [24]. В качест)зе примера методики по.чучения частных случаев интегрируемости приводятся случаи Гесса и Бобылева-Стеклова [6]. С целью демонстрации приложения развитых методов к практике даются основы элементарной теории гироскопов [14, 41], достаточные для качественного анализа действия гироскопических приборов.  [c.12]

В последующем задаче об изгибе балки уделяли много внимания крупные ученые, в числе которых были Мариотт, Лейбниц, Варньон, Яков Бернулли, Кулон и др.. Пишь в 1826 г. с выходом в свет лекций по строительной механике Навье был завершен сложный путь исканий решения задачи об изгибе балки, затянувшийся во времени почти на двести лет. Навье дал правильное решение этой задачи, им впервые введено понятие напряжения. Им же сделан существенный шаг в направлении упрощения составления уравнений равновесия, состоявший в том, что Навье отметил малость перемещений и возможность относить уравнения равновесия к начальному недеформированному состоянию. Это очень широко используемое положение иногда называют принципом неиз жнности начальных размеров. В истории развития механики деформируемого твердого тела важную роль сыграли такие крупные ученые, как Лагранж, Коши, Пуассон, Сен-Венан. Особо следует отметить заслуги Эйлера, впервые определившего критическое значение сжимающей продольной силы, приложенной к прямолинейному стержню (1744). Решение этой задачи во всей полноте тоже заняло по времени почти двести лет Дело в том, что решение Эйлера было ограничено предположением о линейно-упругом поведении материала, что накладывает ограничение на область применимости полученной Эйлером формулы. Применение эюй формулы за границами ее достоверности и естественное в этом случае несоответствие ее экспериментальным данным на долгое время отвлекло интерес инженеров от этой формулы и лишь в 1889 г. Энгессером была предпринята попытка получить теоретическое решение задачи об устойчивости за пределом пропорциональности. Он предложил 1аменить в формуле Эйлера модуль упругости касательным модулем i = da/di. Однако обоснования этому своему предложению не дал. В 1894 г. природу потери устойчивости при неизменной продольной силе правильно объяснил русский ученый Ясинский и лишь в 1910 г. к аналогичному выводу пришел Карман. Поэтому исторически более справедливо назвать его решением Ясинского —Кармана, предполагая, что Карман выполнил это исследование независимо от Ясинского.  [c.7]

Следует сказать, что и в дальнейшем задачами внешней баллистики в воздухе занимались выдающиеся ученые — математики и механики Ньютон, И. Бернулли, Эйлер, Даламбер, Лагранж, Пуассон, Якоби в России М. В. Остроградский создал мощную русскую школу внешней баллистики, дальнейшими блестящими представителями которой явились Н. В. Маиевский (создатель теории движения продолговатого снаряда), Н. Е. Забудский,  [c.51]

Итак, С. В. Ковалевская стала мировою знаменитостью. О замечательном научном достижении С. В. Ковалевской писали научные журналы Случай Ковалевской в задаче о движении тяжелого твердого тела вокруг неподвижной точки прочно вошел в науку как классический результат, наряду с работами Эйлера, Пуапсо, Лагранжа, Пуассона, Якоби. О замечательной русской жепщине-ученом математике писали журналисты, печатались ее портреты.  [c.37]

Уравнения движения в первых двух случаях подробно изучены с разных точек зрения в классических работах Эйлера, Пуансо, Лагранжа, Пуассона, Якоби. Случай Ковалевской нетривиален во многих отношениях. Он был найден Ковалевской из условия мероморфности решений уравнений Эйлера — Пуассона в комплексной плоскости времени. Случай Горячева — Чаплыгина намного проще его можно проинтегрировать с помощью разделения переменных. Покажем это.  [c.89]

За открытие, после Эйлера и Лагранжа, третьего случая интегрируемости уравнений Эйлера-Пуассона ей была присуждена премия Бордена  [c.23]

Система переменных Андуайе - Депри не разбивается на позиционную и чисто импульсную составляющие подобно углам Эйлера и сопряженным им каноническим импульсам. Однако они очень удобны для применения метода теории возмущений, так как связаны с компонентами кинетического момента. В двух наиболее известных интегрируемых (невозмущенных) задачах динамики твердого тела — случаях Эйлера и Лагранжа — переменные С и Ь соответственно являются интегралами движения. Сходные системы оскулирующих элементов , не обязательно являющихся каноническими, использовались еще Пуассоном, Шарлье, Андуайе и Тиссераном при построении теорий физической либрации Луны и вращательного движения планет в небесной механике. Их введение в этом веке А. Депри в работе [71] преследовало цель прояснить фазовую геометрию случая Эйлера (см. 2 гл. 2) и позволило осознать их универсальный характер в динамике твердого тела — они использовались для применения методов качественного анализа в [92], где называются специальными каноническими переменными, и для численных исследований [28].  [c.47]


После того как Эйлером и Пуансо, Лагранжем и Пуассоном были исследованы два случая вращения тяжелого твердого тела около неподвижной точки (случай, когда центр тяжести совпадает с точкой опоры, и случай симметричного эллипсоида инерции, когда центр тяжести лежит на неравной другим оси ирерции), наступило затишье в исследованиях, относящихся к этой задаче.  [c.157]

В итоге задача о движении твфдого тела вокруг неподвижной точки сводится к нахождению недостающего только одного интеграла четвертого п )вого интеграла системы ( ) . Этот четвертый интеграл для произвольных начальных условий был найден только в трех случаях (случай Эйлера-Пуансо, Лагранжа-Пуассона и С.Ковалевской). Прежде чем приводить краткое описание этих последних трех случаев, рассмотрим сначала те пфвые интегралы системы ( ), которые определяются непосредственно.  [c.196]

Для того чтобы полностью определить закон движения твердого тела, системы динамических уравнений Эйлера недостаточно. Эту систему следует допо.пнить кинематическими соотношениями ( 6.2). В целом получается система дифференциальных уравнений, исследование свойств решения которой часто сопряжено со значительными трудностями. Ниже будут рассмотрены три случая, когда для этой системы аналитически может быть построено общее решение. Это — случай Эйлера, когда момент внешних сил отсутствует, а также случаи Лагранжа-Пуассона и Ковалевской, когда движение вокруг неподвижной точки происходит под действием параллельного поля силы тяжести.  [c.466]

Основы динамики свободных систем были заложены И. Ньютоном. Динамика свободных и несвободных систем развилась в XVIII в. на основе исследований Л. Эйлера, Ж. Даламбера, Ж. Лагранжа. В XIX в. большое значение имели исследования. Отроградского, Гамильтона, Пуассона, Гаусса, Якоби, Ляпунова, Чаплыгина и других. С именами этих ученых мы будем встречаться на протяжении всего дальнейшего изложения курса механики. Член Петербургской Академии наук Л. Эйлер развил аналитические методы исследования, прежде всего, свободных систем.  [c.36]

Как известно, еще в 1758 г. Л. Эйлер рассмотрел случай движения твердого тела вокруг неподвижно точки (полюса), когда центр тяжести совпадает с полюсом, а вое силы сводятся к равнодействующей, проходящей через эту неподвижную точку. В 1834 г. Л. Пуансо дал геометрическую интерпретацию этого случая. В 1788 г. Лагранж (и независимо от него в 1815 г. С. Пуассон) рассмотрел случай, когда тело имеет ось сиАГметрии, проходящую через неподвижную точку, и движется под действием только силы тяжести, точка приложения которой лежит на оси симметрии и не совпадает с полюсом (симметрический тяжелый гироскоп — волчок). Обе задачи сводятся в общем случае к квадратурам, и их решения выражаются через эллиптические функции.  [c.246]

Устойчивость - термин, широко применяемый в математике, естествознании, технике и обыденной жизни. Толковый словарь Даля определяет слово устойчивый как стойкий, крепкий, твердый, не шаткий . Термин устойчивость встречается уже в работах Эйлера по продольному изгибу стержней, переведенных на русский язык. Лагранж, Пуассон и другие математики прошлого широко использовали термин устойчивость применительно к задачам о движении небесных тел. Теория регулятора Уатта, разработанная Максвеллом и Вышнеградским, была в сущности первым применением понятия устойчивости в машиноведении и отправной точкой для создания теории автоматического ретулирования (позднее - более общей теории автоматического управления). Р. Беллман характеризовал устойчивость как сильно перегруженный термин с неустановившимся определением . Однако большинство трактовок этого понятия связано с определением устойчивости по Ляпунову и его дальнейшими обобщениями. Это полностью относится и к устойчивости механических систем [6].  [c.455]

Наибольший интерес и наибольшие трудности в решении представляет задача о движении твердого тела около неподвижной точки. Задача эта, несмотря на замечательные результаты Л. Эйлера (1707—1783), Ж. Лагранжа (1736—1813), С. Пуассона (1781 — 1840), Л. Пуансо (1777—1859) и в более позднее время С. В. Ковалевской (1850—1891), А. Пуанкаре (1854—1912), С. А. Чаплыгина (1869—1942) и многих крупных современных ученых, еще далека от своего полного завершеиня.  [c.369]

Задача о движении тяжелого твердого тела около неподвижной точки издавна привлекала внимание всех крупных механиков и математиков. Эйлер в 1758 г. впервые рассмотрел решение этой задачи для случая, когда центр масс совпадает с неподвижной точкой. В 1788 г. Лагранжем был исследован другой случай движения тяжелого твердого тела, когда эллипсоид инерции, построенный для неподвижной точки, является эллипсоидом вращения, а центр масс твердого тела находится на оси симметрии этого эллипсоида. После открытия Лагранжа в течение целого столетия, несмотря на усилия многочисленных ученых, в том числе таких крупных математиков, как Пуассон, Якоби, Пуансо, не было получено новых существенных результатов. В 1886 г. Парижская академия наук объявила конкурс на соискание премии Бордена за лучшее сочинение на тему о движении твердого тела около неподвижной точки. Эту премию получила С. В. Ковалевская, пред-  [c.399]

Матрица К и условие целочисленности ее собственных значений впервые появились в работах Ковалевской по динамике тяжелого твердого тела [73]. Иошида предложил назвать числа р ,..., р показателями Ковалевской. Если решения (9.28) мероморфны и ряды (9.28) бесконечны, то р 0. Исследования Ковалевской были дополнены и усилены Ляпуновым [118], показавшим, что решения уравнений Эйлера—Пуассона ветвятся во всех случая, исключая интегрируемые задачи Эйлера, Лагранжа и Ковалевской.  [c.122]

В заключение отметим еще одно важное применение теоремы 1, С. Л, Зиглин доказал, что дополнительный мероморфный интеграл уравнений Эйлера — Пуассона задачи о вращении тяжелого твердого тела с неподвижной точкой существует только в трех классических случаях Эйлера, Лагранжа и Ковалевской. Если зафиксировать нулевое значение постоянной площадей, то к этим случаям надо добавить еще случай Горячева—Чаплыгина. Этот результат также основан на анализе уравнений в вариациях для некоторых частных решений уравнений Эйлера — Пуассона [64].  [c.371]

Основные результаты по неинтегрируемости уравнений Эйлера-Пуассона принадлежат В. В. Козлову, С. Л. Зиглину, С. В. Болотину. Они обсуждаются в книгах [92, 97] и связаны с расщеплением асимптотических поверхностей, ветвлением решений на комплексной плоскости времени, рождением большого числа невырожденных периодических решений. Вершиной этого направления являлась бы теорема, что общие случаи существования дополнительного вещественно-аналитического интеграла исчерпываются случаями Эйлера, Лагранжа и Ковалевской, а для частных интегралов к ним надо добавить случай Горячева-Чаплыгина. К сожалению, в полном объеме эта гипотеза до сих пор не доказана, несмотря на отдельные и довольно существенные продвижения [97].  [c.90]

Алгебраическая интегрируемость уравнений Эйлера-Пуассона исследовалась еще Гюссоном (1906 г.) [230] (см. также [9]), который показал, что у задачи не может быть других алгебраических интегралов, исключая случаи Эйлера, Лагранжа и Ковалевской.  [c.90]


Более общее определение регулярных прецессий предполагает, что при таких движениях существуют две выделенные оси, одна неподвижная в пространстве, а другая — в теле, угол между которыми остается неизменным. Например, для волчка Лагранжа возможны прецессии апекса оси динамической симметрии вокруг вертикали (см. 3). Оказывается, как показал итальянский механик Д. Гриоли в 1947 г. [221], для уравнений Эйлера-Пуассона возможны невертикальные прецессии, которые, однако, имеются при дополнительных ограничениях на моменты инерции и положение центра масс.  [c.146]


Смотреть страницы где упоминается термин Эйлера — Лагранжа — Пуассона : [c.188]    [c.154]    [c.24]    [c.498]    [c.460]    [c.139]    [c.14]    [c.231]    [c.240]    [c.305]   
Электронная и ионная оптика (1990) -- [ c.0 ]



ПОИСК



Кинематические и динамические уравнения Эйлера для тела с одной неподвижной точкой. Кинематические уравнения Пуассона. Уравнения Лагранжа 2-го рода

Лагранжа Эйлера

Пуассон

Эйлер

Эйлера лагранжев

Эйлера эйлеров

Эйлера — Лагранжа — Пуассона уравнение

Эйлера—Пуассона



© 2025 Mash-xxl.info Реклама на сайте