Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Принцип работы двигателей и их характеристики

Турбореактивные двигатели, используемые в высокоскоростной пилотируемой и беспилотной авиации, при работе на форсажных режимах обеспечивают существенное возрастание тяги, а значит, и тяговой мощности при увеличении скорости полета до больших сверхзвуковых значений. Однако турбореактивные двигатели в области дозвуковых скоростей полета уступают по тяговым характеристикам и, главное, в экономичности другим типам ТД. Указанное обстоятельство обусловлено самим принципом работы двигателя, связанным с относительно большими потерями скоростной энергии и тепла с выхлопной струей на малых числах М полета.  [c.236]


ПРИНЦИП РАБОТЫ ДВИГАТЕЛЕЙ И ИХ ХАРАКТЕРИСТИКИ  [c.76]

В книге приведены общие сведения о принципе действия и характеристиках ТРД. Показаны требования, предъявляемые к двигателю. Изложены основы работы двигателя и испытываемые им нагрузки. Описаны конструкция, работа и эксплуатация двигателя.  [c.196]

Широкий диапазон изменения высот и скоростей полета и изменяющийся характер требований к обеспечению летных характеристик затрудняют создание единой силовой установки, высокоэффективной во всем диапазоне режимов работы, для летательных аппаратов различных классов. Существуют как области возможного и рационального применения дозвуковых и сверхзвуковых самолетов, винтокрылых летательных аппаратов, определяемые законами аэродинамики и конструкцией этих аппаратов, так и области возможного и рационального использования газотурбинных двигателей различных типов, определяемые параметрами и характером протекания процессов в них, принципами обеспечения тяговых характеристик силовой установки.  [c.236]

Принцип работы подогревателя, заключается в нагреве воды, циркуляции ее в системе охлаждения двигателя, а также в подо, греве поддона картера двигателя выхлопными газами. Техническая характеристика предпусковых подогревателей дана в табл. в1.  [c.118]

Принцип работы механической трансмиссии рассмотрен на внешней скоростной характеристике двигателя (рис. 9, а) и тяговой характеристике скрепера (рис. 9, б, в).  [c.12]

Схема электропривода с тормозным генератором вихревого тока работает на принципе сложения механических характеристик асинхронного двигателя и тормозного генератора.  [c.107]

Принципы работы ЯРД не вызывали сомнений. Однако конструктивное выполнение (и характеристики) его во многом зависели от сердца двигателя — ядерного реактора и определялись прежде всего его начинкой — активной зоной.  [c.670]

Прежде чем дать некоторые характеристики топлив, принципы проектирования, представить проблемы силовых установок и будущее развитие твердотопливных двигателей, желательно ввести количественный критерий, чтобы иметь возможность оценить новые разработки или сравнить характеристики силовых систем. Нет параметра, который полностью бы характеризовал работу двигателя возможно, наиболее подходящим крите-  [c.474]

Р. Клаузиус обобщил эту закономерность на любые необратимые энергетические процессы, введя принцип возрастания энтропии во всех реальных процессах преобразования энергии в изолированных системах суммарная энтропия всех участвующих в них тел возрастает. Это возрастание энтропии при прочих равных условиях тем больше, чем сильнее процесс (или процессы) в рассматриваемой системе отличается от идеальных, обратимых. В тепловом двигателе, например, как мы видели, ухудшение его действия (т. е. уменьшение получаемой из того же количества теплоты Qi работы L при тех же граничных температурах Ti и Гг) обязательно сопровождается увеличением энтропии, В тепловом насосе увеличение необходимых затрат работы приводит к тому же результату—росту энтропии. Следовательно, энтропия может выполнять еще одну должность — быть характеристикой необратимости процессов, показывать отклонение их от идеальных. Чем больше рост энтропии, тем это отклонение больше.  [c.131]


Доказательство независимости индикаторного к. п. д. двигателя (нри постоянных значениях коэффициента избытка воздуха и степени сжатия) от плотности заряда и скорости вращения коленчатого вала позволило Б. С. Стечкину разработать принципы расчета и построения наземных и высотных характеристик авиадвигателей, которые он изложил в работе Характеристики авиационных двигателей (1929). Эта важная работа послужила отправной базой для большого числа исследований, разработки теории и методов построения характеристик авиационных двигателей, выполненных в 20-30-х годах.  [c.407]

Развитие современных силовых установок осуществляется в основном в направлении повышения их экономичности, надежности и приспособленности к условиям эксплуатации в тяжелых дорожно-климатических условиях. Если первые вопросы решаются на основе сложившихся и апробированных принципов, то в решении последних имеет место нетрадиционный подход, при котором стремятся отказаться от систем, не обеспечивающих стабильность работы силовых установок при изменении режимов и условий. Одним из примеров может служить использование двигателей с воздушным охлаждением. Основные характеристики перспективных двигателей отечественных полноприводных автомобилей приведены в табл. 19.  [c.82]

На фиг. 147 и 148 показаны сравнительные характеристики и при работе на разных топливах по принципу впрыскивания в цилиндр, а на фиг. 149 — сравнительные кривые мощности и расхода топлива при работе тракторного двигателя на лигроине. Огромный рост мощности обусловливается в основном ликвидацией подогрева.  [c.136]

Рассмотренные выше пульсирующие детонационные двигатели, по крайней мере, в принципе могут работать, начиная с нулевой скорости полета летательного аппарата (ЛА). В то же время теоретическое предсказание их тяговых характеристик, в частности, удельного импульса /др из-за сложности определяющих их газодинамических процессов опирается на различные упрощающие допущения. Так, в работе [13], посвященной численному моделированию нестационарного процесса в одиночной детонационной камере и в пристыкованном к ней сопле клапанного ПДД, принимается, что идеальное перемешивание воздуха и топлива происходит мгновенно, а инициирование детонации моделируется введением в части камеры высоких давления и  [c.104]

В книге даны классификация и технические характеристики современных автомобильных кранов, изготовляемых отечественной промышленностью. Описаны устройство базовых шасси типы, характеристики и устройство двигателей внутреннего сгорания, применяемых на автомобильных кранах устройство и принцип действия узлов и механизмов, а также систем управления и приборов обеспечения безопасной работы серийно выпускаемых автокранов с механическим и электрическим приводом.  [c.2]

Изложение начинается с краткого обзора принципов работы ракетного двигателя и более детального рассмотрения характеристических параметров двигателей при неравновесных химических реакциях (гл. 1). В гл. 2 описаны характеристики твердых ракетных топлив (ТРТ), технология их промышленного производства и методы экспериментального исследования затрагиваются также вопросы взрывоопасности ТРТ. В гл. 3, посвященной исследованиям механизма горения, приведены основные уравнения теоретической модели горения в ракетном двигателе на твердом топливе (РДТТ). Эта модель использована в гл. 4 для описания процесса воспламенения твердотопливного заряда. Кроме того, в гл. 4 приведен обзор исследований по воспламенению и гашению зарядов ТРТ. Далее, в гл. 5, рассмотрены проблемы расчета характеристик РДТТ. В эту главу включены разделы, посвященные модели внутренней баллистики двигате-  [c.13]

Цель книги — дать общее представление о двигателях Стирлинга. Она предназначена для специалистов — инженеров и работников промышленности, заинтересованных в приобретении более глубоких знаний по этому вопросу и в то же время не имеющих возможности тратить усилия и время на выискивание нужных сведений в многочисленных публикациях и на изучение пространных докладов и отчетов. В соответствии с нашими намерениями, изложенными в предисловии, настоящая глава включает краткое предварительное изложение основных вопросов в последующих главах эти вопросы рассматриваются более подробно, описывается практическое применение двигателей Стирлинга и дается характеристика современного состояния конструкторских и исследовательских работ. Там, где это необходимо, выделяются основные тезисы, которые располагаются, как правило, в начале каждой главы или раздела. В разд. 1.2 дается перечень основных принципов работы и отличительных особенностей двигателя Стирлинга. Этот переч"ёнь связан ссылками с остальной частью книги, что дает возможность читателю изучать ее в выбранной им последовательности.  [c.12]


Регенератор обычно изготавливается из пористого материала, образующего длинный извилистый канал для протекающего по нему рабочего тела, чтобы обеспечить наибольщую площадь поверхности контакта между материалом регенератора и газом. Высокие значения суммарного коэффициента теплоотдачи в регенераторе достигаются не только за счет развитых теплообменных поверхностей, но п за счет малых гидравлических диаметров. Эти факторы обеспечивают близкую к единице эффективность регенеративных теплообменников при условии, что теплоемкость материала существенно больше теплоемкости рабочего тела. Это условие в общем ограничивает использование регенераторов случаем систем с газообразным рабочим телом. Регенераторы используются на различных крупных предприятиях типа доменных и стеклоплавильных печей, а также на газотурбинных станциях. Эти регенераторы обычно представляют собой крупные теплообменники, размеры которых достигают 40 м и в которых направление потока не меняется в течение периодов, составляющих многие часы. Регенераторы, применяющиеся в современных двигателях Стирлинга, считаются большими, если их диаметр превышает 60 мм, а периоды движения потока в одном направлении составляют несколько миллисекунд. Поэтому большая часть подробных аналитических результатов, полученных для крупных инерционных регенераторов, вряд ли применима для регенераторов двигателя Стирлинга, хотя основные концепции и принципы работы являются, по существу, одинаковыми. В регенераторах малого размера гораздо больщее значение имеют такие факторы, как аэродинамическое сопротивление, влияние стенки кожуха регенератора и задержка рабочего тела. Последний эффект вызван тем, что некоторая часть рабочего тела не может пройти весь канал регенератора. и задерживается внутри него на несколько циклов вследствие сложности природы колеблющегося и возвратного течения, а это отрицательно влияет на характеристики теплообмена в регенераторе.  [c.251]

Особенности, принцип работы и краткая техническая характеристика двигателя-генератора 11ГД-100  [c.57]

В книге освещается принцип работы и устройства поршневых авиационных двигателей. Рассматриваются основы их работы рабочий цикл, уравновешивание сил инерции кривошипно-шатуниого механизма, мощность и эко-иомичиость, нагнетатели, характеристики, смазка, охлаждение и зажигавме, а также приводятся краткие сведения о топливах, маслах и охлаждающих идкостях.  [c.2]

Принцип работы гироскопического прибора основан на свойствах быстровращающегося маховика, укрепленного в подвижных рамках, называемых кардановым подвесом. Маховик вместе с двигателем, приводящим его во вращение, называют гиромотором (ГМ) или гидродвигателем. хМаховик называют также ротором, подразумевая под этим всю совокупность вращающихся детален, составляющих маховик. ГМ — важнейший элемент гироскопического прибора, во многом определяющий его характеристики точность, долговечность, время готовности, габариты и пр.  [c.191]

Применяемая же в настоящее время топливная аппаратура газовых двигателей предусматривает количественное регулирование мощности, т. е. обеспечивает в широком диапазоне нагрузок постоянное топливо-воздушное соотношение. Этот эффект создается за счет введения калиброванного сопла, на котором образуется перепад давлений топливного газа, управляемый раз-режениСхМ за дросселем, В аппаратуре, работающей по этому принципу, изменение состава газа приводит к заметному изменению регулировок. Увеличение плотности газа приведет к пе-реобогащению смеси, так как в этом случае увеличится значение /о, а объемное соотношение топливо — воздух сохранится неизменным. С другой стороны возрастет подаваемое в двигатель количество теплоты сгорания, что потребует прикрытия дросселя и приведет к ухудшению условий сгорания. В конечном итоге оба фактора отрицательно скажутся на экономичности двигателя. Следовательно при изменении состава топливного газа аппаратура, количественно регулирующая мощность двигателя, должна заново настраиваться. В практике газовой промышленности нашел широкое применение комбинированный качественно-количественный способ регулирования мощности газовых двигателей. Этот способ оказался особенно эффективным в сочетании с форкамерно-факельным зажиганием. Его сущность состоит в том, что для изменения мощности двигателя меняют количество топливного газа, сохраняя неизменной подачу воздуха. Природный газ допускает такое регулирование мощности в отношении 1 0,6 при обычном искровом зажигании и I 0,4 при форкамерно-факельном зажигании. Дальнейшее уменьшение мощности требует уже количественного регулирования. Регулятор подачи газа при качественно-количественном принципе регулирования должен обеспечивать минимальную для каждого положения дросселя подачу топливного газа, при которой имеет место устойчивая работа двигателя. При этом момент возникновения неустойчивости должен определяться каким-либо специальным датчиком. Такой алгоритм управления топливной аппаратурой независимо от состава газа будет обеспечивать на каждом режиме наиболее экономичную работу. Для достижения максимальной мощности при полностью открытом дросселе должен включаться экономайзер, имеющий плавную характеристику регулирования, т. е. подача газа должна увеличиваться пропорционально усилению на педали акселератора. В этом случае смесь будет обогащаться до уровня, достаточного для получения необходимой мощности. Если при этом плотность топливного газа оказалась настолько высокой, что возникло переобогащение смеси, то мощность, развиваемая двигателем, снизится, что послужит сигналом для водителя об уменьшении усилия нажатия на педаль акселератора. Эффекты подобного рода, когда для увеличения интенсивности разгона  [c.112]


Ряды производных машин. Принципы унификации и агрегатирования позволяют на основе базовой модели создавать производные машины одинакового назначения, но с различными эксплуатационными показателями (мощностью, производительностью и др.), или машины различного назначения, выполняющие качественно другие операции. Например, применяют метод секцпонирсвиния, который заключается в разделении машин на одинаковые унифицированные секции, из которых образуют путем простого набора производные маи1ины (ковшовые элеваторы, скребковые и цепные транспортеры, воздуходувки, насосы и т. п.). Применяют также метод базового агрегата, при котором производные машины разнообразного назначения получают путем присоединения к базовой модели машины специальных агрегатов. Показательным является создание на Могилевском автомобильном заводе конструктивно-унифицированного ряда тягаче ) и автомобилей. Здесь на базе конструкции одноосного тягача, двухосного тягача н автомобиля-самосвала, которые состоят из II —15 унифицированных агрегатов, создано около 100 различных по назначению машин, в том числе путем использования сменного оборудования (для мелиоративных, строительно-дорожных, погрузочных работ, для коммунального хозяйства и др.). Унифицированные двигатели, радиаторы, гидро-цилиндры и другие агрегаты изготовляют на специализированных заводах. Минский автомобильный завод разработал и внедрил оптимальные ряды унифицированных узлов и агрегатов (ведущие мосты, подвески, ступицы и др.) большегрузных автомобилей и автопоездов. Это позволило получить 2,5 млн. руб. экономии только при создании нового семейства автомобилей. Минский тракторный завод на базе трактора МТЗ-80 создал 18 модификаций машии. Трактор МТЗ-142 работает как при прямом, так и при заднем ходах. Кабины тракторов, имеют кондиционеры, хороший обзор и двигател ) с хорошими шумовыми характеристиками. На международных выставках эти тракторы, имеющие государственный Знак качества, иолу-чили пять золотых, одну серебрянную и одну бронзовую медали. На Минском автозаводе на базе автомобиля МАЗ-6422 с 1984 г. начали серийно производить унифицированные большегрузные автопоезда. предназначенные для дальних большегрузных перевозок. Внедрение указанных автопоездов позволит за год высвободить примерно 16 тыс. водителей и сэкономить 380 млн. руб.  [c.57]

Простое решение поставленной задачи для управления спускным тормозом дает использование принципа взаимосвязи между числом оборотов и крутящим моментом двигателя, определяемой механической характеристикой двигателя. В таком устройстве (фиг. 212, а и б), разработанном на машиностроительном предприятии Ангсбург-Нюрнберг (ФРГ) [127], корпус вспомогательного двигателя /, подвешенного на подшипниках, связан системой рычагов 7 с тормозными рычагами 6 спускного тормоза, нормально замкнутого усилием сжатой пружины 5. Ротор двигателя 1 соединен через тормозной шкив 2 с зубчатой передачей к барабану 3. При опускании груза вспомогательный двигатель / включается на спуск (главный двигатель 4 при этом работает вхолостую). Под влиянием реактивного момента статора, воздействующего на рычажную систему 7, пружина 5 сжимается дополнительно, а тормоз размыкается, освобождая шкив 2 (на фиг. 212, б сплошной стрелкой показано направление вращения шкива, а пунктирной стрелкой — направление действия крутящего реактивного момента статора при опускании груза). Груз начинает опускаться. По мере увеличения скорости его опускания увеличивается число оборотов ротора вспомогательного двигателя, а крутящий момент его в соответствии с механической характеристикой (фиг. 212, в) уменьшается, и тормоз под воздействием пружины 5 осуществляет притормаживание шкива, уменьшая скорость спуска груза. Величина тормозного момента, развиваемого тормозом, будет тем больше, чем больше скорость опускания и чем, следовательно, меньше реактивный момент статора вспомогательного двигателя. При холостом ходе ротора двигателя 1 (точка А на характеристике) крутящий момент равен нулю и тормоз полностью замкнут. При максимальном возникающем моменте нагрузки (точка В на характеристике) реактивный момент имеет также максимальное значение и тормоз полностью разомкнут. Таким образом, при дан-324  [c.324]

Одна из первых цифровых систем зажигания (ЦСЗ) была создана в конце 60-х годов д-ром Хартингом (ФРГ) (рис. 2.9). Эта ЦСЗ относится к системам с жесткой логикой, т.е. для изменения характеристик системы требуется изменение логических связей и номиналов компонентов в схеме. Несмотря на относительную простоту реализации их характеристик, эта система имеет ряд особенностей, характерных для современных ЦСЗ. Принцип ее работы основан на цифровом методе определения угла опережения зажигания с учетом трех параметров частоты вращения вала двигателя, те шературы и нагрузки двигателя.  [c.35]

За исключением мокрого Флюидайна , в двигателях Стирлинга используются однокомпонентные рабочие тела, если воздух считать чистым газом. Эти рабочие тела не только однокомпонентны, но и однофазны. Нет никаких причин, препятствующих использованию многокомпонентных многофазных рабочих тел, тем более что такие тела могут дать некоторые термодинамические преимущества, поскольку могут воспринимать более высокие степени сжатия. Тем не менее в настоящее время используются исключительно газообразные рабочие тела, причем практически без исключений только воздух (азот), гелий и водород. Как уже было показано выше, влияние рассмотренных нами параметров не зависит от того, какой из трех газов использовался в качестве рабочего тела. Однако, хотя тенденции и совпадают, конкретные цифры различны. Большая часть имеющейся литературы, если обратиться к публикациям достаточно общего характера, создает впечатление, что водород является наиболее подходящим рабочим телом, и в процессе первоначального изучения нами основных принципов и конструктивных особенностей двигателей Стирлинга это впечатление усилилось. Однако если водород обладает столь очевидными преимуществами, то почему все еще используют и остальные два газа, особенно гелий, хотя он и более дорогой Мы уже рассмотрели некоторые проблемы, связанные с использованием водорода, например необходимость /компенсировать просачивание водорода через материалы, с которыми он контактирует, и повышение хрупкости этих материалов, но если водород имеет такие неоспоримые преимущества, то с этими проблемами надо смириться. В первых аналитических работах (например, [44]) высказываются предположения, что водород является лучшим рабочим телом с точки зрения обеспечения высоких рабочих характеристик только в некоторых режимах работы, в других режимах наиболее подходящими могут оказаться другие два обычно используемых газа. Однако необходимо помнить, что большая часть усилий по совершенствованию двигателей Стирлинга предпринимается с целью установ-  [c.102]

Доказательство малой зависимости индикаторного к. п. д. двигателя (при постоянных составе смеси и степени сжатия) от плотности заряда и скорости вращения коленчатого вала позволило Б. С. Стечкину перейти к разработке принципов построения наземных и высотных характеристик авиадвигателей. Этим вопросам посвящена отдельная работа Характеристики авиационных двигателей , также изданная литографским способом Военно-воздушной академией им. Н. Е. Жуковского. Текст воспроизводится по второму изданию 1929 г. Время выпуска первого издания не установлено. Эта важная работа послужила отправной базой для большого числа исследований и разработки теории и методов построения характеристик авиационных двигателей, выполненных в нашей стране в конце 20-х и начале 30-х годов (см., например, Авиационные двигатели под ред. Заикина А. Е., Бугрова Е. П., Александрова В. В., книга 1, Госавиаавтоиздат, М.-Л., 1932).  [c.310]


Испытания на ударные изгиб и кручение при больших (до 300 м1с) скоростях движения бойков проводятся на ротационных копрах. Примером такой машины для испытаний на ударный изгиб является копер конструкции Ф. Ф. Витмана. Принцип действия этого копра состоит в том, что диск диаметром 320 мм, установленный в массивной стальной раме, электродвигателем разгоняется до 3000—6000 об1мин. Частота вращения контролируется стробоскопическим тахометром. При достижении необходимого числа оборотов двигатель отключается, и в этот момент к диску, имеющему на образующей один жонсольно закрепленный ломающий нож, автоматически подводится испытуемый образец, который мгновенно разрушается. Измерение работы, -затраченной на разрушение образца, не производится из-за потерь, возникающих при больших скоростях вращения диска (потери на сотрясение копра при ударе, на смятие образца в местах удара и т. д.), которые трудно учесть. Обычно определяют только деформационные характеристики непосредственно на образце.  [c.9]

Манипуляторы, как правило, работают на переменном токе, причем для привода механизмов используются крановые электродвигатели переменного тока и крановая пуско-регулирующая аппаратура. В тех случаях, когда манипулятор используется исключительно для перемещения заготовки в рабочем пространстве молота, наилучшие результаты по производительности достигаются при включении без промежуточных ступеней двигателя с фазным ротором, имеющего мягкую характеристику, полученную введением в роторную цепь невыключаемых сопротивлений (рис. 37). На участках свободной ковки молотового отделения электросталеплавильного цеха Челябинского металлургического завода (ЧМЗ) представленная на рис. 37 схема используется в сочетании с дистанционным управлением молота. Использование общего командоаппарата позволяет сосредоточить внимание оператора исключительно на выполнении требуемых перемещений заготовки, полностью обеспечивая мнемонический принцип управления. При этом подготовительное время на включение каждого отдельного механизма исключается.  [c.35]

Положение о двух границах области существования зависимости плотности от температуры как физической характеристики вещества применительно к деструкти-рующим материалам было сформулировано ранее в ряде работ Оно находится в соответствии с принципами термодинамики неравнозесных процессов, в которой рассматривают изменение теплофизических и других свойств вещества от мгновенных до равновесных значений -Например, в расчетах тепловых двигателей и химических аппаратов оказывается удобным рассматривать течение газов с мгновенным ( замороженным ) составом. Использование мгновенных и равновесных значений физико-ме-ханических свойств оказалось весьма плодотворным в механике полимеров при изучении и математическом моделировании релаксационных процессов . В задаче определения температурных полей использование этого положения позволяет значительно повысить точность расчета, а в некоторых случаях существенно его облегчить.  [c.67]

Следует упомянуть и о попытках применения в авиации паровых машин. Вспомним, что двигателями самолетов Можайского, Адера и Максима были паровые машины, которые при дальнейшем развитии авиации были вытеснены двигателями внутреннего сгорания. Однако в ЗО-х годах вновь возник интерес к паровым машинам и паровым турбинам. Дело в том, что паровые двигатели в принципе имеют лучшие высотные характеристики, чем двигатели внутреннего сгорания. Их высотность ограничивается лишь способностью котла поддерживать необходимое давление пара. Кроме того, паровая машина работает на топливе любого сорта. В эти годы были построены несколько авиационных паросиловых установок, в частности, поршневые машины бр. Беслер и X. Джонстона в США, и разрабатывались многочисленные проекты паротурбинных установок в Германии, США и Италии [34, с. 257—280]. Все эти работы показали, что реализовать преимущества паровых машин в приемлемом весе не удается даже на мощных установках. Основной проблемой оказалась проблема создания легкого конденсатора пара для высотных условий.  [c.110]

Решение этой задачи с помощью математической теории оптимального управления показывает, что минимального расхода топлива достигают при релейном переключении тяги двигателя с одного граничного значения на другое. Анализ оптимальных траекторий свидетельствует о том, что для широкого диапазона изменений начальных условий, массы КА и характеристик ДУ величина тяги имеет одно переключение (с минимального значения на максимальное), а угол между вектором скорости КА и направлением тяги ДУ монотонно убывает с некоторого малого значения 5 10...12° до 5 0. Найденный оптимальный закон управления вектором тяги позволяет оценить предельные возможности по управлению ДУ с точкн зрения минимизации расхода топлива на торможение КА. Кроме того, оказывается возможным, используя найденное оптимальное решение, определить требования, которым должна удовлетворять траектория в конце участка осиовиого аэродинамического торможения. Так, исследования показывают, что независимо от типа рассматриваемой СМП для уменьшения энергетических затрат на активное торможение КА прн работе СМП необходимо стремиться к получению в конце участка аэродинамического торможения (на заданной конечной высоте) минимальных значений скорости и угла наклона траектории к местному горизонту 0 , . При этом для 0 в принципе следует требовать минимума, равного нулю. Этот критерий оптимальности и может быть принят при авалн-эе траекторий основного аэродинамического торможения.  [c.439]

На рис. 11.1 показана структурная схема объемного гидропривода. Входным элементом в этой структуре является приводящий двигатель (ПД). Гидропривод сам по себе не вырабатывает энергии. Он работает только тогда, когда в него вводится энергия. В качестве приводящего двигателя чаще всего применяется электродвигатель. Однако это может быть и двигатель внутреннего сгорания или дизель и т.п. Механическая энергия приводящего двигателя (МЭ) вводится в следующий структурный элемент привода (Н), который называется насосом. Однако функция этого элемента заключается не в перекачке жидкости, а в преобразовании механической энергии в энергию потока жидкости. Насосом он называется по принципу действия, а ктически является птеобразователем энергии. После насоса преобразованная энергия (ЭЖ) передается следующему структурному элементу — гидродвигателю (ГД), который преобразует энергию жидкости снова в механическую и в таком виде она подается в машину. На этапе преобразования, когда энергия передается жидкостью, на нее воздействуют регулирующие устройства (РУ), с помо1цью которых эне и придаются характеристики, необходимые для рабочей машины. При этом воздействие может осуществляться двумя путями непосредственно на поток жидкости между насосом и гидродвигателем (Л (дроссельное регулирование) и через геометрию гидромашин (2) (объемное регулирование). Преобразование происходит с частичной потерей энергии. Механическая энергия после приводящего двигателя по величине больше, чем после гидродвигателя. Количественные потери энергии при применении гидропривода в горных машинах окупаются за счет эффективности использования основных его свойств.  [c.168]


Смотреть страницы где упоминается термин Принцип работы двигателей и их характеристики : [c.173]    [c.193]    [c.366]    [c.100]    [c.130]    [c.29]    [c.154]    [c.120]   
Смотреть главы в:

Устройство и работа электровозов постоянного тока  -> Принцип работы двигателей и их характеристики



ПОИСК



5.431 — Принцип работ

Принцип работы двигателя

Работа двигателя

Характеристика двигателя

Характеристика работ



© 2025 Mash-xxl.info Реклама на сайте