Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Водород, использование

Снижение токсичности ОГ реализуется путем совершенствования рабочего процесса двигателей снижения концентрации вредных компонентов в ОГ (использование каталитических нейтрализаторов или дожигателей) разработки новых двигателей, работающих на альтернативных топливах (природный газ, автомобильный бензин в смеси с водородом, синтетические спирты, водород, использование электроэнергии аккумуляторных батарей и др.) поддержания рациональных режимов работы обеспечения исправного технического состояния.  [c.369]


Отказ от водорода в значительной степени снимает проблему герметизации рабочего тела, в особенности проблему диффузии сквозь стенки трубок нагревателя, и, следовательно, уменьшает опасность взрыва в машинном отделении из-за утечки водорода. Использование морской воды для охлаждения предоставляет практически неограниченную возможность отвода тепла при низкой температуре среды, а это, как показано на  [c.200]

Разумеется, перспективы, которые открывает успешная установка двигателя Стирлинга на легковом автомобиле, огромны, но столь же велик и риск, поскольку может оказаться, что двигатель Стирлинга не сможет противостоять двигателю с принудительным зажиганием в условиях преобладающего использования жидкого углеводородного топлива. Для дальних грузовых перевозок двигатель Стирлинга может стать более приемлемым, поскольку здесь его конкурентом является дизель. При дальнейших успешных разработках в областях аккумулирования тепловой энергии, сжигания металлов и водорода использование двигателем Стирлинга этих источников энергии может дать ему решающие преимущества, особенно в сфере общественного транспорта. Не следует забывать, однако, что двигатель Стирлинга достиг современного уровня, на котором он становится сопоставимым с двигателями внутреннего сгорания, всего за несколько лет интенсивных работ, в то время как работы по двигателям внутреннего сгорания, причем более интенсивные, ведутся уже многие десятилетия, и, хотя  [c.202]

Высокое качество поверхности реза обеспечивается при использовании аргоно-водородной смеси, содержащей 35—50% водорода. Использование аргоно-водород-ных смесей целесообразнее при резке алюминиевых сплавов толщиной свыше 100 мм.  [c.212]

При больших давлениях в камере сгорания (р 30 МПа) может оказаться целесообразным применение многоступенчатых насосов. Для ЖРД, работающих на жидком водороде, использование многоступенчатого насоса горючего оказывается целесообразным уже при Рк = 4,5. .. 5,0 МПа, так как из-за малой плотности водорода напор насоса горючего значителен и при одной ступени насоса значение и, следовательно, значения КПД получаются низкими. Выполнение водородных насосов многоступенчатыми позволяет уменьшить окружную скорость на наружном диаметре колеса до значения, допустимого из соображений прочности [щ < 500 м/с).  [c.334]


Титан при нагреве поглощает из атмосферы газы (кислород, азот, водород) и чем выше температура, тем поглощение интенсивнее (см. рис. 382). Поэтому при технических (и эксплуатационных) нагревах титан следует защищать от насыщения его газами, кислородом в первую очередь, что достигается использованием контролируемых нагревательных атмосфер или применением больших технологических припусков.  [c.521]

При газопламенной пайке заготовки нагревают и припой расплавляют газосварочными, плазменными горелками и паяльными лампами. При пайке газосварочными горелками в качестве горючих газов используют ацетилен, природные газы, водород, пары керосина и т. п. При использовании газового пламени припой можно заранее помещать у места пайки или вводить в процессе пайки вручную. На место пайки предварительно наносят флюс в виде жидкой пасты, разведенной водой или спиртом конец прутка припоя также покрывают флюсом.  [c.241]

Воспроизводимость тройных точек аргона, азота и метана, реализованных таким образом, составляла 0,1 мК. Для неона и криптона, однако, воспроизводимость несколько хуже, 0,2 мК. Причина, вероятно, состоит во влиянии изотопов этих двух газов. Для таких газов, как аргон, азот, кислород и водород, плато плавления проходит в очень малом температурном интервале, меньшем 0,5 мК, и поэтому легко заметить и воспроизвести плоскую часть плато. Это труднее сделать для таких газов, как неон и криптон, имеющих интервал плавления соответственно 0,8 и 1,5 мК и по этой причине обладающих несколько худшей воспроизводимостью в качестве температур реперных точек. Тройную точку ксенона следует отнести к другой категории, поскольку в этом случае интервал плавления больше 4 мК, что делает ее непригодной для использования в качестве реперной точки температурной шкалы. Это обусловлено большим количеством естественных изотопов, ни один из которых не является доминирующим, а также большим различием их атомных весов 29 % изотопов имеют атомный вес не более 129 г и 19 % — атомный вес свыше 134 г.  [c.164]

В условиях входа космических аппаратов в атмосферу при гиперзвуковых скоростях абляция материалов является одним из способов уменьшения высоких тепловых потоков. При использовании таких материалов, как тефлон, твердое вещество сублимирует в окружающую среду с очень высокой энтальпией, и пограничный слой в этом случае подобен слою, образующемуся при охлаждении испарением с одновременно протекающей химической реакцией. Армированные пластики, например фенольная смола, армированная найлоном или вспененным полиуретаном, в этих условиях обугливаются. Обуглившийся слой образуется в процессе деполимеризации с выделением таких газов, как метан и водород.  [c.370]

Водородный электрод для измерения потенциала можно получить, погружая пластинку платинированной платины в раствор, насыщенный водородом при давлении 1 ат (рис. 3.2), или, что более удобно, измеряют потенциал с помощью стеклянного электрода, который также обратим по отношению к водородным ионам. Заметим, что потенциал электрода равен нулю, если и активность водородных ионов, и давление газообразного водорода (в атмосферах) равны единице. Это и есть стандартный водородный потенциал. Таким образом, потенциал полуэлемента для любого электрода равен э. д. с. элемента, где в качестве второго электрода использован стандартный водородный электрод. Потенциал полу-элемента для любого электрода, определенный таким образом, называется потенциалом по нормальному стандартному) водородному электроду или по водородной шкале и обозначается или н. в. а-  [c.34]

Sn " , которые, как известно, увеличивают водородное перенапряжение, замедляют таким образом коррозию железа в кислотах и способствуют восстановлению органических веществ на железном катоде. Ионы Sn постоянно образуются на поверхности железа при коррозии оловянного покрытия, однако после растворения слоя олова их концентрация падает. Возможно также, что разность потенциалов пары железо—олово благоприятствует адсорбции и восстановлению на катоде органических деполяризаторов, в то время как при меньшей разности потенциалов эти процессы не протекают. Существенным недостатком консервной тары является так называемое водородное вспучивание, которое связано со значительным возрастанием давления водорода в банке. При этом допустимость использования консервов становится сомнительной, так как накопление газов в банке происходит и при разложении продуктов под действием бактерий.  [c.240]


Количество водорода, накапливаемое во время хранения консервов, определяется не только толщиной оловянного покрытия, температурой, химической природой контактирующих пищевых продуктов, но чаще всего составом и структурой стальной основы. Скорость выделения водорода увеличивается при использовании сталей, подвергнутых холодной обработке (см. разд. 7.1), которая является стандартной процедурой для упрочнения стенок тары. Последующая, случайная или умышленная, низкотемпературная термообработка может приводить к увеличению или уменьшению скорости выделения водорода (см. рис. 7.1). Высокое содержание фосфора и серы делает сталь особенно чувствительной к воздействию кислот, в то время как несколько десятых процента меди в присутствии этих элементов могут способствовать уменьшению коррозии. Однако влияние меди не всегда предсказуемо, так как в любых пищевых продуктах присутствуют органические деполяризаторы и ингибиторы, часть которых может выполнять свои функции только при отсутствии в стали примесей меди.  [c.240]

Скорость цепных реакций во времени может сильно возрастать благодаря непрерывной подаче энергии для образования активных частиц или использованию энергетического эффекта реакции на образование новых частиц. При возрастании числа активных частиц так называемый коэффициент размножения будет больше единицы (1,1...1,5) и создаются условия для перехода реакции во взрыв. В качестве примера последнего случая цепной реакции можно привести реакцию кислорода с водородом по следующей схеме (звездочкой обозначены активные частицы)  [c.310]

Запасы водорода на Земле практически неисчерпаемы, поэтому использование энергии термоядерного синтеза в мирных целях является одной из важнейших задач современной нау-  [c.333]

Сложная задача взаимодействия электромагнитного поля с веществом может решаться методами как классической, так и квантовой физики. Следует учитывать, что при использовании гармонического осциллятора в качестве модели излучающего атома результаты квантовой и классической теории дисперсии совпадают При применении другой модели (например, атома водорода, где нужно учитывать кулоновское взаимодействие, а не квазиупругую силу) результаты квантового и классического описания будут существенно различны. В последующем изложении, проводимом в приближении классической физики, фак-  [c.138]

В настоящей главе излагаются основные физические законы, на которых базируется техника получения низких температур, вплоть до температур, достигаемых при помощи жидкого водорода, и описываются пути, приведшие к использованию новых методов и идей. В на ши цели не входило подробное изложение технологических и механических решений, относящихся к осуществлению различных холодильных процессов, ибо их можно найти в соответствующей технической литературе. Иными словами, каждый из ироцессов получения холода рассматривается в той мере, в какой он являлся или является проблемой, решаемой в физических лабораториях те же стороны вопроса, которые относятся к инженерной или экономической областям, при изложении опущены.  [c.7]

Глава делится на 9 разделов, охватывающих следующие темы раздел J — газовые холодильные машины раздел 2— паровые компрессионные холодильные машины разделы 3—5—охлаждение с использованием эффекта Джоуля — Томсона (дросселирование) и ожижение воздуха и водорода методом Линде разделы 6 и 7—охлаждение с использованием адиабатического расширения и ожижение воздуха (а также других газов) методом Клода раздел 8— применение однократного адиабатического расширения для он н-жения водорода. Раздел 9 посвящен теплообменникам и регенераторам.  [c.7]

Для более эффективного использования жидкого водорода в качество хладоагента в теплообменнике В имеется канал для холодного водородного пара, который помогает охлаждению входящего потока сжатого гелия.  [c.129]

ЦИКЛ ожижения может быть осуществлен через 1,5 часа. Последняя модель ожижителя дает л гелия при использовании 4 л жидкого водорода.  [c.150]

Травитель 11 [32 г Fe lg 100 мл 3%-ной HjOj 100 мл воды]. По данным Пикуса [10], 25%-ный раствор хлорного железа пригоден для 14-кратного сплава золото—медь—серебро. В реактив добавляют равное количество 3%-ной перекиси водорода. Использование этого раствора приводит к потемнению выделений (ве-244  [c.244]

Для потенциалов взаимодействия атомов водорода использован расчет функции LJW методом RKRV [19] и для потенциала № уравнение, приведенное в работе [20].  [c.343]

Резка алюминия и его сплавов. Алюминий и его сплавы склонны к образованию тугопл авких оксидов, кроме того, алюминий в расплавленном состоянии активно поглощает водород. Алюминий и его сплавы толщиной от 5 до 20 мм режут в азоте, толщиной от 20 до 150 мм — в азотно-водородных смесях (65—68% азота, 32—35% водорода). При содержании водорода свыше 35% металл поверхности реза насыщается водородом. При ручной резке содержание водорода понижается до 20%, так как в этом случае дуга горит стабильнее и ее легче поддерживать при изменении расстояния между мундштуком и поверхностью разрезаемого металла. Высокое качество поверхности реза обеспечивается при использовании аргонно-водородной смеси, содержащей 35— 50% водорода. Использование аргонно-водородных смесей целесообразнее при резке алюминиевых сплавов толщиной свыше 100 мм. Ориентировочные режимы плазменно-дуговой резки алюминиевых сплавов приведены в табл. 40.  [c.204]

Травитель 11 [32 г Fe U ЮО мл 3%-ной Н2О2 100 мл воды]. По данным Пикуса [10], 25%-ный раствор хлорного железа пригоден для 14-кратногО Сплава золото — медь — серебро. В реактив добавляют равное количество 3%-ной перекиси водорода. Использование этого раствора приводит к потемнению выделений (вероятно, сегрегаций неблагородной фазы), в то время как основа не растворяется.  [c.294]

В связи с этим следует предположить, что фтористые окисли-гели могут оказаться мало целесообразными для обычных углеводородных горючих и их следует использовать при сжигании металлических горючих. При сжигании горючих, очень богатых водородом, использование фтористых окислителей может оказаться целесообразным, так как продукт сгорания водорода и фтора ИР является двухато мной молекулой, весьма устойчивой против диссоциации. Это может увеличить степень превращения химической энергии в тепловую.  [c.165]


В зависимости от металла в качестве плазмообразующих газов можно использовать азот, водород, аргоно-водородные, аргоноазотные, азото-водородные смеси. Использование для резки  [c.66]

Этот расчет подтверждает преимущества использования в качестве охладителя газообразного водорода, однако из-за хими ческой агрессивности его применение в атомной энергетике пока не предполагается. Поскольку углекислый газ не обладает химической стабильностью и взаимодействует с графитом, вопрос о его применении в высокотемпературном уран-графитовом реакторе также отпадает.  [c.93]

Водород является перспективным топливом на автомобильном транспорте, практически идеальным топливом тепловых двигателей. Основные положительные свойства — широкий диапазон воспламеняемости по составу смеси (а = 0,15. .. 10,0), высокая скорость горения, низкая энергия воспламенения смеси. При сгорании водорода единственным токсичным компонентом могут быть окислы азота (не считая продуктов сгорания моторных масел). Широкие пределы воспламенения водородовоздушных смесей в двигателях с искровым зажиганием позволяют перейти на качественное регулирование, исключить дроссельные потери, присущие бензиновым двигателям, тем самым повысить индикаторный КПД на малых нагрузках. Снижение выбросов окислов азота в водородном двигателе возможно за счет существенного обеднения смеси (а> 2). Водород как самостоятельное топливо пока не может получить широкого распространения из-за отсутствия технологии производства в широких масштабах и трудностей хранения на борту автомобиля (необходимы криогенные или металлогидридные емкости). В перспективе водород, полученный из воды с помощью ядерной энергии, может быть использован для полной замены бензина и синтетических топлив.  [c.55]

Очень эффективным катализатором конверсии является мелкий порошок гидрата окиси железа, хотя также эффективны юкислы других магнитных элементов, такие, как окись хрома, окиси железоникелевых сплавов. На практике значительные трудности вызывает требование полного отсутствия катализатора в опытах, где требуется совершенно неконвертированный нормальный водород. Наиболее эффективно в качестве катализатора использование гидрата окиси железа при его непосредственном контакте с жидким водородом. Скорость диффузии  [c.154]

При использовании водорода в любой лаборатории следует уделять необходимое внимание технике безопасности. Боз-дущно-водородные смеси взрывоопасны в щироком интервале концентраций, поэтому газообразный водород из сосудов для хранения и эспериментальных установок выводился из помещения оборудованием во взрывобезопасном исполнении [8, 70].  [c.159]

Исследование разницы в сопротивлении капсульного термометра по постоянному и переменному току показывает, что это различие может заметно сказываться только при очень низких температурах [18]. При использовании моста переменного тока модели А7 фирмы Automati Systems, работающего на частоте 375 Гц (см. разд. 5.11), различие между результатами измерений по постоянному и переменному току составило, 3 мК в тройной точке водорода. За этот эффект ответственны, по-видимому, вихревые токи, наводимые в платиновом кожухе термометра ).  [c.209]

В зависимости от металла в качестве плазмообразующих газов можно использовать азот, водород, аргоно-водородные, аргоноазотные, азотно-водородные смеси. Использование для резки двухатомных газов (Нг, N2) энергетически более выгодно. Двухатомный газ поглощает при диссоциации в плазмотроне тепло, которое переносится и выделяется на поверхности реза, где происходит объединение свободных атомов в молекулы. При использовании электродов из циркониевых и гафниевых сплавов в качестве плазмообразующего газа при резке можно использовать воздух.  [c.93]

Таким образом, наиболее склонен к порообразованию алюминий и его сплавы. В сварочной технологии на возникновение пор влияет время пребывания сварочной ванны в жидком состоянии, что зависит от скорости сварки. При малой скорости сварки алюминия водород успевает покинуть ванну и наплавленный металл будет плотным, при больших скоростях сварки (Исв>50м/ч) водород не успевает выделиться из кристаллизующегося металла и образовать поры, а при скорости сварки 20 м/ч обычно возникают поры. При сварке алюминия и его сплавов типа АМгб требуются особые меры для очистки кромок свариваемых изделий и тщательная подготовка электродной проволоки, а также использование аргона, имеющего минимальную влажность (Г. Д. Никифоров).  [c.346]

К основным путям снижения содержания водорода в зоне сварки относятся частичное окисление атмосферы в сварочной зоне (сварка в СО2, использование электродов с руднокислыми покрытиями), снижение парциального давления водорода и создание условий для уменьшения растворимости водорода в жидком металле сварочной ванны (введение во флюсы и покрытия СаРг, фторидов и хлоридов) в целях связывания водорода в прочные соединения, не растворяющиеся в жидком металле  [c.404]

Нейтрон не имеет электрического заряда, поэтому для определения его массы не может быть использован метод масс-опект-рометрии. Пер1вая грубая оценка массы нейтрона была сделана одновременно с его открытием в 1932 г. Чедвиком, который проанализировал с помощью законов со хранения импульса и энергии результаты опытов по облучению нейтронами водорода и азота.  [c.32]

Поскольку рассеяние тепловых нейтронов вообще не зависит явно от атомного номера исследуемого вещества, то с помощью дифракции нейтронов легко выявляется различие атомов с близкими. Z (например, при исследовании упорядочения атомов Fe и Со в системе Fe — Со), что трудно сделать рентгенографически и электронографически. При использовании дифракции нейтронов возможно изучение изотопических (часто рассеивающие способности изотопов одного и того же элемента значительно различаются) и спиновых различий атомов, входящих в решетку, причем такие различия не замечают ни рентгеновские лучи, ни электроны. В то же время при дифракции нейтронов могут оказаться неразличимыми (имеющими приблизительно равную амплитуду рассеяния) совершенно разные атомы. Так как легкие вещества рассеивают нейтроны также эффективно, как и тяжелые, то с помощью нейтронографии успешно проводят изучение кристаллической структуры веществ, в состав которых входят одновременно атомы легких и тяжелых элементов (атомы водорода в гидриде циркония, углерода в аустените), а также структур из легких элементов (льда, гидрида натрия, дейтерита натрия, графита). Такие структуры нельзя исследовать с помощью рентгеновских лучей и затруднительно с помощью электронов нз-за незначительного рассеяния их легкими элементами.  [c.37]

Большие водородные ожижители. Впервые водород был сжижен Дьюаром в 1898 г. в Лондоне [132—134]. Дьюар применил для ожижения водорода простой цикл Линде с использованием эффекта Джоуля—Томсона. Сжатый до высокого давления водород предварительно охлаждался ниже инверспонной температуры в змеевике, погруженном в жидкий воздух, кипя-дций под пониженным давлением. Подробного описания аппаратуры не существует, хотя подобные установки были построены фирмой Бритиш Оксид-жен К° и одна из них была в 1904 г. приобретена Бюро стандартов США [135].  [c.68]

Экспансионный ожижитель Симона. Существуют три различных типа гелиевых ожижителей, а именно непрерывного действия с предварительным водородным охлаждением, непрерывного действия с охлаждением детандером и хорошо известный процесс ожижения без использования непрерывного потока. Первые два способа ожижения кратко описаны выше. Третий способ используется в так называемом экспансионном ожижителе Симона [2], который показан схематически на фиг. 7. В этом ожижителе газообразный гелий, охлажденный и змеевике S, нагнетается в металлическую камеру В, охлаждаемую жидким или твердым водородом G. Чтобы обеспечить теплопроводность пространства Z, последнее заполняется гелием при низком давлении. Теило, поглощенное водородной ванной, определяется уменьшением внутренней энергии гелия после входа в камеру и работой сжатия. Работа сжатия равна 2 mpv, где т—масса очень малого количества входящего "аза, а v—его удельный объем. Если весь газ входит при одинаковой температуре Т,, то общая работа потока равна NRT , где lY—число молей газа, который входит в камеру, а В—газовая постоянная. Охлаждение с помощью водорода, требующееся для поглощения тепла, производимого работой сжатия, может оказаться больше того, которое необходимо для изменения внутренней энергии гелия. Это видно из сравнения величины двух произведений В1 и С ,ср,(2 ,—Tj), где Гд—конечная температура.  [c.132]



Смотреть страницы где упоминается термин Водород, использование : [c.393]    [c.336]    [c.227]    [c.9]    [c.51]    [c.159]    [c.38]    [c.54]    [c.86]    [c.360]    [c.95]    [c.96]    [c.136]    [c.146]   
Диаграммы равновесия металлических систем (1956) -- [ c.87 , c.167 , c.181 , c.206 ]



ПОИСК



Водород

Использование энергии ТЯЭС для опреснения воды и получения водорода

Плазменная резка с использованием аргона, азота и их смесей с водородом

Предпосылки и возможности использования солнечной энергии для получения водорода

ЭНЕРГЕТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ ВОДОРОДА

Эффективные методы энергетического использования водорода



© 2025 Mash-xxl.info Реклама на сайте