Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Особенности двигателей Стирлинга

Особенностью двигателя Стирлинга являются перемещения рабочего тела из холодной полости в горячую и обратно через регенератор, который, осуществляя полную регенерацию, периодически то нагревается, воспринимая теплоту от рабочего тела, то охлаждается, отдавая теплоту рабочему телу.  [c.59]

Достоинства этих двигателей и основные характеристики, их определяющие, известны уже давно. Поэтому простое перечисление свойств, вновь вызвавших повышение интереса к двигателям Стирлинга, не даст полного ответа на поставленный вопрос, и весьма важно, чтобы свойства двигателей Стирлинга были сопоставлены с требованиями, которые будут предъявляться в будущем к устройствам для получения механической энергии. Следует отметить, что интерес к альтернативным двигателям существовал с момента появления тепловых двигателей. В противном случае не был бы возможен прогресс таких источников механической энергии, применяемых в настоящее время, как газовые и паровые турбины, двигатели внутреннего сгорания с искровым зажиганием и воспламенением от сжатия, роторные двигатели внутреннего сгорания и т. д. Поскольку в. XX в. социальные и технические требования с течением времени изменяются, это является постоянным стимулом поиска новых форм источников механической энергии. Двигатель Стирлинга не исключение. Поэтому, прежде чем детально анализировать положительные особенности двигателя Стирлинга с точки зрения существующих в настоящее время энергетических проблем, мы кратко коснемся тенденций, которые привели к повторному открытию этого двигателя.  [c.181]


ОСОБЕННОСТИ ДВИГАТЕЛЕЙ СТИРЛИНГА  [c.124]

Поскольку современные образцы двигателей Стирлинга имеют такие же удельные показатели по расходу топлива, мощности, массе и габаритным размерам, как и двигатели внутреннего сгорания, а в отдельных случаях и превосходят их, то большое значение приобретают особенности тепловых двигателей этого типа, которые следует учитывать при решении вопроса об их применении. К особенностям двигателей Стирлинга следует отнести высокий к, п, д,, возможность использования различных тепловых источников, в том числе и тепловых аккумуляторов, малую токсичность (или отсутствие ее), низкий уровень шума и вибрации, незначительный расход смазочного материала, высокий к. п. д. при работе на неноминальном режиме, нечувствительность к пыли в окружающей среде, возможность работы со значительными кратковременными перегрузками, большую теплоотдачу в охлаждающую среду, сложность регулирования и пока относительно высокую стоимость, изготовления.  [c.124]

Высокий к.п.д. Возможность получения высокого к.п.д., а следовательно, и большой экономичности является важной особенностью двигателя Стирлинга. Это связано с тем, что термический к. п. д. термодинамического цикла Стирлинга равен к. п. д. цикла Карно. По данным фирмы Филипс, двигатели в диапазоне мощностей 6—900 л. с. имеют к. п. д. 0,26—0,43, а в диапазоне мощностей 0,014—0,39 л, с. их к. п. д, составляет 0,079—0,14. В настоящее время созданы двигатели Стирлинга с к. п. д. 0,41—0,43, ведутся работы над двигателем с к. п. д.  [c.124]

Остальная часть баланса распределена следующим образом потери с охлаждающей водой —46 %, механические потери — 5 % примерно 32 % теплоты превращается в полезную работу двигателя. Необходимо отметить высокий уровень теплового потока в регенераторе (430 %), превышающего более чем в 4 раза подводимую теплоту и соответственно в 9 и 12 раз тепловой поток в холодильнике и полезную работу двигателя. Особенностью двигателя Стирлинга является и значительная степень рециркуляции отработавших газов.  [c.97]

В составе систем полного энергоснабжения двигатели Стирлинга могут быть использованы в качестве различных приводов механических устройств, тепловых насосов или рефрижераторов. Особенностями двигателей Стирлинга, представляющей интерес для использования в таких системах, являются в первую очередь их способность работать на различных видах топлива важными достоинствами считаются также бесшумная работа, минимальные выбросы вредных веществ, отличные характеристики в режимах частичной нагрузки, легкий пуск и хорошие характеристики регулирования и крутящего момента.  [c.372]


Следует признать удачной структуру книги. Глава 1 позволяет понять общие принципы работы двигателя Стирлинга и особенности его конструкции и представить возможные области его применения. В последующих главах эти вопросы освещены более подробно, чтобы дать возможность читателю глубже познакомиться с теоретическими основами двигателя (гл. 2), методами расчета и конструирования двигателей (гл. 3), конструкцией действующих двигателей (гл. 4), нестандартными источниками энергии (гл. 5), и другими проблемами. Книга отличается живым языком и четким изложением материала. Авторы, с одной стороны, достаточно подробно анализируют сложные процессы, с которыми приходится сталкиваться при создании двигателей Стирлинга, а с другой — возбуждают ин-  [c.6]

Двигатель Стирлинга был изобретен в 1816 г., приблизительно за 80 лет до дизеля, и пользовался значительной популярностью до начала XX в. Отсутствие подходящих конструкционных материалов в значительной степени затруднило его дальнейшее совершенствование, а с появлением двигателя внутреннего сгорания и электродвигателя интерес к двигателю Стирлинга утратился окончательно. В 50-е годы XX в. быстрое, развитие технологии производства различных материалов вновь открыло перед двигателем Стирлинга некоторые перспективы, однако настоящий интерес к нему возродился только во времена так называемого энергетического кризиса . Именно тогда особенно привлекательными показались потенциальные возможности этого двигателя в отношении экономичного потребления обычного жидкого топлива, что представлялось особенно важным в период роста цен на топливо в геометрической прогрессии.  [c.8]

Настоящая глава является существенной частью всей книги и содержит общее описание двигателей Стирлинга. При этом была предпринята попытка систематизировать основные принципы их работы и особенности конструкции.  [c.12]

ПРИНЦИПЫ РАБОТЫ И ОСОБЕННОСТИ КОНСТРУКЦИИ ДВИГАТЕЛЯ СТИРЛИНГА. ОСНОВНЫЕ ПОЛОЖЕНИЯ  [c.13]

Поскольку конструкция двигателя Стирлинга не испытывает резких циклических ударных нагрузок, можно предполагать, что расходы на текущий ремонт и техническое обслуживание таких двигателей будут существенно снижены. Однако для работы с удельными мощностями, как у дизельного двигателя и газовой турбины, двигатель Стирлинга должен иметь среднее давление цикла 10—20 МПа. При таких давлениях требуется весьма совершенная система уплотнений для предотвращения утечки рабочего тела в картер (проблема, особенно сложная при использовании гелия или водорода), а также попадания смазочного масла в рабочие полости, где оно будет загрязнять теплообменники, вызывая возрастающие потери давления и снижение выходной мощности.  [c.19]

Хотя двигатель Стирлинга и получает энергию извне, его нельзя с достаточной строгостью назвать двигателем внешнего сгорания, поскольку любой источник тепла с подходящей температурой, например сфокусированная солнечная энергия, аккумулированная тепловая энергия, тепловая энергия, выделяющаяся при горении металла, ядерная энергия и т. п., может быть использован для этой цели. В настоящее время в большинстве установок с двигателями Стирлинга применяется жидкое топливо из-за простоты его использования и из-за требований, обусловленных конкретным назначением установки. При использовании системы сгорания для нагрева рабочего тела применяют непрерывный процесс горения, что позволяет сжигать различные виды топлива, которые эффективно сгорают, не создавая опасности попадания твердых частиц из топлива, окислителя или окружающего пространства в рабочие цилиндры. При использовании для сжигания жидких топлив непрерывное горение можно легко регулировать, в результате чего снижается уровень выбросов, особенно несгоревших углеводородов и окиси углерода, однако, чтобы понизить содержание окислов азота, необходимы дополнительные меры.  [c.19]

Кроме того, при определении числовых значений основных параметров, характеризующих особенности работы двигателя Стирлинга, мы воспользуемся выведенными ранее эмпирическими зависимостями общего характера.  [c.80]


В устройствах, работающих по замкнутому циклу, в том числе и в двигателе Стирлинга, необходимо избегать потерь рабочего тела, поскольку такие потери снижают среднее давление цикла и, следовательно, выходную мощность. Имеется много путей для просачивания рабочего тела из внутренней полости двигателя например, водород под действием высоких давлений и температур будет диффундировать сквозь металлические перегородки, изготовленные из больщинства металлов и сплавов (особенно это относится к нержавеющей стали). Однако чаще всего основной причиной утечки является просачивание газа под давлением около поршней и их штоков. На первый взгляд такую утечку можно ликвидировать, установив обычные уплотнения, т. е. металлические кольца или кольца из шнура, поскольку, например, газовые компрессоры работают при давлениях, превышающих давление в двигателях Стирлинга. Однако рабочие температуры в двигателях Стирлинга выше, чем в компрессорах, и это усложняет решение проблемы уплотнений. В двигателях внутреннего сгорания рабочие температуры сопоставимы с температурами в двигателях Стирлинга, однако в двигателях Стирлинга уплотнения должны работать в атмосфе ре, не содержащей масла, поскольку при попадании масла из картера в рабочие полости происходит его пиролиз и образование углеродных отложений, засоряющих теплообменники и особенно высокопористые регенераторы. Кроме того, масло в картере может загрязняться просачивающимся рабочим телом. Усовершенствование уплотнений не должно производиться за счет увеличения трения, поскольку это может привести к недопустимому падению рабочих характеристик на валу двигателя. Из сказанного видно, что создание работоспособной конструкции уплотнения для двигателей Стирлинга с высоким внутренним давлением представляет достаточно серьезную проблему. Этот вопрос рассматривается в разд. 1.7. Необходимо уяснить, что использование газообразного рабочего тела, находящегося под высоким давлением, делает чрезвычайно вероятной утечку газа безотносительно к степени совершенства уплотняющих устройств. Следовательно, чтобы поддерживать выходную мощность двигателя на одном уровне в течение длительного периода эксплуатации, такая утечка должна компенсироваться. Практически это означает, что на двигателях Стирлинга с высоким давлением должен быть установлен компрессор, автоматически нагнетающий сжатый газ в двигатель при падении давления цикла ниже определенного уровня иными словами, должен быть обеспечен процесс подкачки . Компрессор может быть расположен как внутри двигателя, так и вне его. В двигателе с косой шайбой Форд — Филипс имеется внутренний поршневой компрессор, состоящий из небольших порш-  [c.81]

Если конструкция и конструктивные параметры двигателя Стирлинга оказывают влияние на уровни давления и температуры, а также на циклические изменения характеристик энергосиловой установки, то они влияют и на выходную мощность, и на КПД двигателя. В каждом двигателе Стирлинга имеются полости, из которых рабочее тело не вытесняется при движении поршня, в особенности в современных двигателях с трубчатыми теплообменниками и решетчатыми регенераторами. Эти не-вытесняемые объемы образуют, как уже было сказано выше, мертвый объем двигателя Стирлинга . Этот термин представляется весьма удачным, поскольку мертвый объем в буквальном смысле является таковым. При данном значении массы рабочего тела, заключенного в двигателе, возрастание мертвого-  [c.94]

Мы рассмотрели влияние фундаментальных термодинамических параметров на рабочие характеристики двигателей Стирлинга. Однако имеются параметры, определяющие режимы работы двигателя и связанные непосредственно с конструктивными особенностями двигателя, которые Также влияют на рабочие характеристики. Наибольшее влияние оказывают скорость двигателя и фазовый угол, характеризующий взаимосвязь между изменяемыми объемами горячей и холодной полостей фазовый угол объемов). Оба этих параметра, как правило, или устанавливаются заранее, или определяются конкретными условиями применения двигателя. Влияние каждого из них будет рассматриваться отдельно.  [c.97]

В выбросах основное беспокойство вызывают их составляющие, производящие загрязнение атмосферы. Это, как уже отмечалось ранее,— углеводороды, окись углерода и окислы азота. В литературе, опубликованной до начала 70-х годов, часто приводились данные, показывающие значительное преимущество двигателей Стирлинга в этой области по сравнению с обычными двигателями с принудительным зажиганием, газовыми турбинами особенно двигателями Дизеля без наддува. С тех пор была проведена большая работа по снижению токсичности выбросов, и сейчас уже недостаточно сравнивать только двигатели в чистом виде необходимо рассматривать энергосиловые установки в целом. Для сравнения характеристик непрерывного процесса сгорания двигателя Стирлинга и прерывистого процесса сгорания двигателей внутреннего сгорания мы использовали фактические данные, полученные для двух различных областей применения энергосиловых установок. Первая из них — это подземные работы [47] (табл. 1.2).  [c.113]

В заключение этого краткого обзора общих тенденций и обобщенных характеристик двигателя Стирлинга мы приводим типичное распределение потоков энергии в энергосиловой установке Стирлинга. Чтобы стали ясными особенности этого рас-  [c.118]

Во многих случаях программы разработки двигателей Стирлинга были почти сведены на нет необоснованными предсказаниями и преувеличенно оптимистичной рекламой. Первоначальная эйфория тех, кто финансировал такие программы, слишком часто сменялась внезапным осознанием реальной ситуации, когда вслед за предварительной обработкой результатов, полученных на опытном двигателе, наступало время реальной оценки всех действующих факторов. Эти неблагоприятные обстоятельства, которых можно было бы избежать, порождали у многих исследователей и целых коллективов скептицизм в отношении двигателей Стирлинга вообще и привели к тому, что многие инженеры с весьма широким кругозором заняли позицию глубокого недоверия к любым положительным высказываниям об этих двигателях. Такую предвзятость трудно преодолеть, особенно если учесть, что в настоящее время имеется множество других доступных двигателей, которые совсем не сто.ш уж плохи или устарели, как это иногда предполагают. Когда приняты во внимание и осмыслены все факторы, тогда появляются основания для более реалистичной оценки перспектив.  [c.122]


Изменения крутящего момента двигателя Стирлинга в зависимости от скорости и давления улге рассматривались ранее в сравнении с другими энергосиловыми установками. При использовании этого двигателя на автомобиле особенности его характеристик крутящий момент — скорость особенно благоприятны с точки зрения эффективного ускорения автомобиля и способствуют упрощению и удешевлению агрегатов трансмиссии. Однако для полноты картины необходимо сказать несколько слов о циклических колебаниях крутящего момента. В литературе сообщается, что двигатель Стирлинга отличается более плавными изменениями крутящего момента по сравнению с другими двигателями возвратно-поступательного действия. Плавный означает, по-видимому, что изменения крутящего момента с изменением угла поворота кривошипа этого двигателя сравнительно малы. Мы намеренно употребили слово по-видимому , посколь-  [c.134]

Сборка основных механических компонентов двигателя Стирлинга должна производиться с большой тщательностью, особенно сборка уплотняющих устройств. Любая неточность сборки поведет к поломке двигателя. Уплотнение типа скатывающийся чулок особенно чувствительно к небрежностям сборки, и при установке такого тонкого и хрупкого уплотнения требуется особая чистота места сборки.  [c.143]

Таким образом, единственный вариант, который остается,— это производство синтетических жидких углеводородов, т. е. углеводородов, получаемых не из ископаемой нефти, а, например, из угля, горючих сланцев, смолистых песков. К недостаткам этого варианта следует отнести большие затраты энергии на процесс получения синтетических топлив. Например, жидкое топливо, получаемое из угля, особенно предназначенное для двигателя с принудительным зажиганием, теряет в процессе своего производства до 40 % энергии, содержащейся в источнике, из которого оно получено. Однако производство топлива из угля, предназначенное для двигателя Стирлинга, не требует сложной технологии, и на получение такого топлива затрачивалось бы существенно меньше энергии. Из сказанного следует, что для подсчета общего термического КПД установки, работающей на синтетическом топливе, необходимо учитывать также КПД преобразования первоначального вида энергии в ее вид, пригодный для использования в данной установке. Результаты таких расчетов представлены в табл. 1.17 [63].  [c.147]

Скользящее уплотнение — это устройство типа поршневого кольца. Его главное преимущество с точки зрения массового производства и стоимости — отсутствие дорогостоящей системы регулирования давления масла, столь необходимой в случае диафрагменных уплотнений. При установке кольцевых уплотнений некоторая утечка неизбежна даже при полированных штоках поршней, а из-за необходимости обеспечения плотного контакта между уплотнением и штоком потери на трение будут большими, чем при установке диафрагм. Потери мощности на трение таких уплотнений при работе двигателя Стирлинга в нормальном режиме составляют 0,7—1,0 кВт на одно уплотнение [73]. Эти уплотнения имеют дополнительные преимущества, не связанные с простотой изготовления и установки. Это — значительно меньшая подверженность катастрофическим разрушениям. Узел скользящего уплотнения (рис. 1.53) обычно заключен в металлический корпус, что значительно упрощает замену и делает ее доступной для большинства работников сферы технического обслуживания и ремонта, что особенно важно при использовании таких уплотнений на автомобилях и морских судах.  [c.160]

Накоплен большой опыт расчета, конструирования и изготовления поршневых колец, особенно устанавливаемых в двигателях с принудительным зажиганием и дизелях, однако уплотнение поршня двигателя Стирлинга связано с рядом специфических проблем, поскольку кольца должны работать без смазки. Эти уплотнения изолируют рабочую полость от буферной, и их назначение заключается в ограничении утечки рабочего тела, а не в полном ее устранении. Некоторая утечка допускается, поскольку ее устранение связано с чрезвычайно интенсивным трением.  [c.165]

Цель книги — дать общее представление о двигателях Стирлинга. Она предназначена для специалистов — инженеров и работников промышленности, заинтересованных в приобретении более глубоких знаний по этому вопросу и в то же время не имеющих возможности тратить усилия и время на выискивание нужных сведений в многочисленных публикациях и на изучение пространных докладов и отчетов. В соответствии с нашими намерениями, изложенными в предисловии, настоящая глава включает краткое предварительное изложение основных вопросов в последующих главах эти вопросы рассматриваются более подробно, описывается практическое применение двигателей Стирлинга и дается характеристика современного состояния конструкторских и исследовательских работ. Там, где это необходимо, выделяются основные тезисы, которые располагаются, как правило, в начале каждой главы или раздела. В разд. 1.2 дается перечень основных принципов работы и отличительных особенностей двигателя Стирлинга. Этот переч"ёнь связан ссылками с остальной частью книги, что дает возможность читателю изучать ее в выбранной им последовательности.  [c.12]

Увеличение скорости существенно влияет на механизмы двигателя из-за возрастания сил инерции, неуравновешенности двигателя и т. п. По достижении определенных скоростей маховик двигателя может разрушиться, а неуравновешенные силы могут вызвать недопустимо высокие уровни вибрации. Все эти явления наблюдаются и в других поршневых двигателях и не составляют отличительных особенностей двигателя Стирлинга, хотя о них, пожалуй, слишком часто забывают при обсуждении вопросов, связанных с двигателями Стирлинга. Однако имеется эффект воздействия скорости, специфичный для двигателя Стирлинга и связанный с возрастанием скоростей частиц рабочего тела. Скорость двигателя может достичь такого уровня, что рабочее тело не будет успевать полностью перемещаться из горячей полости в холодную и обратно. Мало что известно об этом эффекте, за исключением того, что приня-  [c.98]

За исключением мокрого Флюидайна , в двигателях Стирлинга используются однокомпонентные рабочие тела, если воздух считать чистым газом. Эти рабочие тела не только однокомпонентны, но и однофазны. Нет никаких причин, препятствующих использованию многокомпонентных многофазных рабочих тел, тем более что такие тела могут дать некоторые термодинамические преимущества, поскольку могут воспринимать более высокие степени сжатия. Тем не менее в настоящее время используются исключительно газообразные рабочие тела, причем практически без исключений только воздух (азот), гелий и водород. Как уже было показано выше, влияние рассмотренных нами параметров не зависит от того, какой из трех газов использовался в качестве рабочего тела. Однако, хотя тенденции и совпадают, конкретные цифры различны. Большая часть имеющейся литературы, если обратиться к публикациям достаточно общего характера, создает впечатление, что водород является наиболее подходящим рабочим телом, и в процессе первоначального изучения нами основных принципов и конструктивных особенностей двигателей Стирлинга это впечатление усилилось. Однако если водород обладает столь очевидными преимуществами, то почему все еще используют и остальные два газа, особенно гелий, хотя он и более дорогой Мы уже рассмотрели некоторые проблемы, связанные с использованием водорода, например необходимость /компенсировать просачивание водорода через материалы, с которыми он контактирует, и повышение хрупкости этих материалов, но если водород имеет такие неоспоримые преимущества, то с этими проблемами надо смириться. В первых аналитических работах (например, [44]) высказываются предположения, что водород является лучшим рабочим телом с точки зрения обеспечения высоких рабочих характеристик только в некоторых режимах работы, в других режимах наиболее подходящими могут оказаться другие два обычно используемых газа. Однако необходимо помнить, что большая часть усилий по совершенствованию двигателей Стирлинга предпринимается с целью установ-  [c.102]


Одной из особенностей двигателя Стирлинга, отличающей его от других тепловых машин с возвратно-поступательным движением, является его способность работать на любом источнике энергии, обеспечивающем подвод тепла при соответствующей температуре. К сожалению, лишь немногие из существующих и экономически оправданных источников тепловой энергии сравнимы по величине производимого ими теплового потока с природными ископаемыми топливами, и поэтому основное внимание уделялось использованию именно этих топлив. Однако в тех случаях, когда нужно использовать двигатели, работающие не в воздушной окружающей среде (например, на морских глубинах или в космосе) и когда выгодно иметь тепловой механический двигатель, становится целесообразно использовать двигатель Стирлинга с нетрадиционным источником энергии. Фирмы Джемерал моторе [1] и Филипс [2] проводили исследования работы таких установок в 60-е годы и начале 70-х годов. Необходимость снижения загрязняющих выбросов в атмосферу наземными транспортными средствами является еще одной причиной рассмотрения нетрадиционных топлив. Однако основной причиной проведения таких исследований в настоящее время являются насущные проблемы транспортировки углеводородных топлив, цены на них и ограниченные запасы таких топлив.  [c.380]

Насколько известно, отделение Аллисон активно участвовало только в одной разработке по двигателям Стирлинга — солнечной космической энергоустановке мощностью 3 кВт. Этот заказ исходил от ВВС США, и вся выполненная работа была отлично документирована десятью техническими отчетами, среди которых том 1, относящийся к конструкции двигателя, и том 10, относящийся к экспериментальной оценке двигателя, наиболее интересны с точки зрения особенностей двигателя Стирлинга. Остальные отчеты относятся к другим аспектам системы. Об этом двигателе имеются сведения в работах Паркера и Смита, Уэлша, Уэлша и Монсона [378]. Двигатель, обозначенный PD46, представлял собой одноцилиндровую машину вытеснительного типа с ромбическим приводом, с диаметром цилиндра  [c.265]

Представители руководящих кругов исследовательских организаций и промыщленности, профессора и преподаватели технических дисциплин благодаря занимаемому ими положению могли бы оказать больщое влияние на завтращних инженеров и техников, и поэтому им также следовало бы больше знать о двигателях Стирлинга. Настоящая книга рассчитана и на эти группы читателей. Она построена так, чтобы облегчить понимание основных особенностей работы и конструкции двигателя Стирлинга. Книга дает ответы на вопросы как устроен двигатель Стирлинга, как он работает, где он может использоваться и т. д.—-уже в начале изложения материала (гл. 1). Мы надеемся, что, прочитав эту главу, инженерно-технические работники будут более отчетливо представлять потенциальные возможности двигателя Стирлинга в области преобразования энергии и более внимательно отнесутся к перспективам его использования.  [c.9]

Этот тип двигателя Стирлинга был первоначально предложен английским инженером Сименсом [7] и независимо от него голландскими инженерами Рини и Ван-Вееном в период их работы в фирме Филипс , где он был усовершенствован. Двигатель двойного действия особенно эффективен среди устройств, вырабатывающих механическую энергию, из-за своей высокой удельной мощности, получаемой благодаря тому, что при каждом обороте коленчатого вала в каждом цилиндре поршень совершает полный рабочий ход.  [c.33]

Двигатели Стирлинга двойного действия неизбежно должны быть многоцилиндровыми, поскольку для получения сдвинутых по фаве процессов расширения и сжатия (необходимость такого сдвига отмечалась ранее) требуется не менее трех поршней. На практике же применяются обычно не менее четырех поршней, соединенных с одним коленчатым валом, причем соседние поршни действуют совместно в паре, чем и достигается двойное действие. Механизмы привода двигателей двойного действия должны выполнять упомянутые выше две функции. Наиболее подходящим для этого представляется обычный многоопорный коленчатый вал рядного двигателя (рис. 1.25). Этот тип механизма особенно подходит для крупногабаритных силовых агрегатов.  [c.34]

В процессе работы над устройствами, действующими по циклу Стирлинга, группа ученых из Харуэлла помимо ТМГ разработала новый тепловой двигатель Флюидайн , относящийся к классу двигателей Стирлинга с двумя поршнями (двигателям Райдера). Отличительной особенностью нового двигателя является изменение рабочего объема вследствие перемещения столбов жидкости, а не поршней, изготовленных из твердых материалов (рис. 1.37).  [c.43]

Рабочие циклы различных форм двигателя Стирлинга, преобразующих тепловую энергию в механическую, уже нами описаны. Все эти двигатели имеют одни и те же основные принципы работы, однако есгь и некоторые различия в конструктивном воплощении, особенно там, где дело касается способов использования вырабатываемой энергии. Схематические диаграммы и детальные описания, хотя и весьма полезные для облегчения понимания основных принципов, на которых основаны эти двигатели, не всегда облегчают дело, когда надо определить, относится ли рассматриваемое устройство к двигателям Стирлинга. В следующем разделе приводятся фотографии и описания уже построенных двигателей Стирлинга различных видов, что позволит устранить эти трудности.  [c.50]

На первый взгляд двигатели Стирлинга могут показаться не заслуживающими особого внимания, поскольку они в большой степени напоминают другие тепловые двигатели возвратнопоступательного действия, хотя модификации Била и в особенности двигатели Флюидайн сильно отличаются от привычных конструкций. Едва ли поверхностный взгляд на двигатели имеет существенные преимущества перед разбором принципиальных схем. Поэтому для данного раздела были отобраны такие примеры двигателей Стирлинга из числа реально существующих образцов, в которых можно было бы наглядно выделить важнейшие элементы конструкции и там, где это возможно, показать общность элементов, имеющих различные конструктивные воплощения. Эти примеры даются как в виде фотографий, так и в форме принципиальных конструктивных схем. Практическая реализация основных принципов, изложенных в предыдущих разделах, осуществляется различными путями и видоизменяется в зависимости от методов реализации заданно-  [c.50]

Хотя имеется много других двигателей Стирлинга простого действия, ни один из разработанных до настоящего времени не отличается сколько-нибудь значительно от рассмотренных в настоящем разделе. Для ознакомления со всеми видами этого двигателя, появлявшимися когда-либо в прошлом, рекомендуем обратиться к прекрасным обзорам [5, 23]. Время от времени предлагаются новые формы двигателя Стирлинга. Особенности их устройства обычно описываются в Новостях двигателей Стирлинга (SENL) [24].  [c.66]

Результаты, представленные объединением MAN — MWM, характеризуют относительное влияние мертвого объема. Возникает вопрос имеется ли оптимальная величина мертвого объема Простой термодинамический анализ цикла Стирлинга показывает, что такой оптимальный объем должен быть равен нулю. В современных двигателях Стирлинга, как уже говори-.лось, мертвый объем неизбежен. Казалось бы, объем теплооб-.менника (нагреватель — регенератор — холодильник) необходи-, Мо свести к минимуму. Однако имеются взаимоисключающие требования, влияющие на практическую величину мертвого объема. С чисто конструкторской точки зрения количество материала теплообменника определяется необходимостью противостоять возникающим напряжениям, особенно в нагревателе. Необходимо также обеспечить достаточную площадь теплопередачи нагревателя и холодильника (как наружную, так и внутреннюю) для подвода и отвода соответствующего количества тепловой энергии в процессе работы двигателя. Следовательно, если при данной длине теплообменника необходимо увеличить площадь теплопередачи, единственное, что можно сделать, это увеличить внутренний или внещний диаметр трубок или оба диаметра. При этом мертвый объем будет увеличиваться про-шорционально квадрату внутреннего диаметра. В реальных  [c.95]

В последних разделах этой главы двигатель Стирлинга сравнивается с другими существующими или имеющими шансы на практическое применение типами двигателей, а также проводится анализ особенностей двигателя Флюидайн . Дается обзор типичных характеристик, которые достижимы уже в настоящее время. Этот обзор может помочь тем, кто интересуется практическим использованием двигателей Стирлинга, оценить их потенциальные возможности в различных областях применения. Преподавателям инженерных учебных заведений мы уже предо-  [c.121]

До сих иор мы рассматривали особенности работы двигателей Стирлинга и предъявляемые к ним требования без сравнения с другими типами тепловых двигате.лей. Поэтому, чтобы завершить оценку, проведем детальное сравнение с другими двигателями. Помимо таких параметров, характеризующих работу двигателей, как КПД, удельная выходная мощность и т. п., при сравнении будут учтены и такие факторы, как стоимость, технологичность и возможность применения альтернативных топлив. Сравнение с учетом всех этих факторов необходимо для достижения его полноты и объективности. Слишком часто приходится сталкиваться в публикациях с произвольными сравнениями, которые делаются или с излишним энтузиазмом по отношению к двигателям Стирлинга, или со столь же необъективным отрицательным к ним отношением. Авторам первых меньше везло, в то время как предвзятость авторов последних можно легко понять. Сейчас во всяком случае ясно, что нужны не необоснованные II сверхоптимистичные предсказания блестящего будущего двигателей Стирлинга, а конкретные экспериментальные значения рабочих характеристик и результаты расчетов, подтвержденных экспериментальными данными.  [c.122]


Авторы стоят на позиции тщательного анализа возможностей практического использования двигателя Стирлинга в различных областях. Если провести широкое сравнение этого двигателя с его конкурентами, то во многих случаях двигатель Стирлинга будет иметь больше преимуществ. Такой подход необходим, чтобы убедить высокие инстанции влонсить необходимые капиталы в разработку коммерчески выгодных и привлекающих потребителей конструкций двигателей Стирлинга. Нет сомнений, что когда приняты во внимание все действующие факторы, то ожидания тех, кто будет финансировать такие программы, будут более обоснованны. Слишком восторженные заявления только вредят любому возможному в будущем прогрессу двигателей Стирлинга и лишь способствуют возникновению недоверия к серьезным и обоснованным доводам относительно практического использования этих двигателей. Исходя из изложенного, мы попытались продемонстрировать в этом разделе на ограниченном количестве экспериментальных результатов все особенности работы двигателя. Представленные результаты характеризуют общий уровень разработки двигателей Стирлинга, достигнутый к настоящему времени, и не являются специально подобранными данными. Эти результаты необходимо сравнить с данными, полученными на двигателях других типов, которые-применяются в настоящее время или находятся в стадии разработки.  [c.123]

Эти параметры типичны для Флюидайна и содержат ряд интересных особенностей, например такую, что увеличение разности температур горячей и холодной полостей необязательно влечет за собой увеличение теплового потока и КПД. Эта особенность, вероятно, отличает мокрый Флюидайн не только от других двигателей Стирлинга, но и вообще от других устройств, вырабатывающих механическую энергию. В основе этого необычного свойства лежит, по-видимому, тот факт, что в этом двигателе рабочее тело двухфазное и двухкомпонентное [21, 65], поэтому для мокрого Флюидайна наиболее благоприятными являются рабочие режимы, в которых последовательно преобладают рабочие циклы либо с сухим воздухом, либо с влажным паром.  [c.151]


Смотреть страницы где упоминается термин Особенности двигателей Стирлинга : [c.6]    [c.9]    [c.21]    [c.78]    [c.104]    [c.113]    [c.149]    [c.178]   
Смотреть главы в:

Двигатели Стирлинга  -> Особенности двигателей Стирлинга



ПОИСК



ОСОБЕННОСТИ И ПЕРСПЕКТИВЫ РАЗВИТИЯ ДВИГАТЕЛЕЙ СТИРЛИНГА



© 2025 Mash-xxl.info Реклама на сайте