Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ПЛОСКАЯ ЗАДАЧА ТЕОРИИ УПРУГОСТИ Плоская деформация

Условия неустойчивого распространения небольших расслоений (L < 0,5 , где i — толщина стенки конструкции, а высота раскрытия расслоения 5 = 0,5-2,0 мм) в [25] анализировали на основе решения плоской задачи теории упругости (плоская деформация) для пластин с внешними границами, свободными от нагрузок. Расчеты проводили методом конечных элементов для пластин, имеющих изолированное расслоение в виде прямоугольной щели, а также несколько водородных расслоений, расположенных на разных уровнях по высоте п.та-стины. Изолированными считали не взаимодействующие друг с другом водородные расслоения, расстояние между которыми в плане составляло более 2-12 мм в зависимости от длины расслоения L (табл. 12) при высоте сечения более (0,8-1,0)1..  [c.127]


Исследования ведутся в рамках плоской задачи теории упругости (плоская деформация, обобщенное плоское напряженное состояние). Как известно [84], переход от уравнений плоской деформации к уравнениям обобщенного плоского напряженного состояния осуществляется посредством замены постоянных Ляме Я, и л на величины  [c.74]

Сравнивая это уравнение с уравнением (П.8), видим, что различные по существу задачи теории упругости (плоская деформация и обобщенное плоское напряженное состояние) математически идентичны.  [c.31]

Для того чтобы выражения (28.2) давали действительные решения задач теории упругости, они должны удовлетворять не только уравнениям равновесия, но и уравнениям совместности для напряжений. Это условие выражается в двух формах в зависимости от того, рассматривается ли плоская деформация или плоское напряженное состояние. Для плоской деформации условие сводится к следующему  [c.79]

При решении задачи введены упрощающие предположения. При определении контактных давлений считается а) вязкостью полимерной втулки можно пренебречь, б) вал и обойма абсолютно жесткие, в) между поверхностами втулки и обоймы при г = г осуществлено полное сцепление, г) силами трения в области контакта можно пренебречь, д) можно использовать формулы плоской линейной теории упругости (плоская деформация), е) относительная толщина втулки в=1п(г2/г1) мала. Введен также ряд допущений, относящихся к определению поля температур. В частности, вводится постоянный коэффициент разделения теп-  [c.348]

Плоскими задачами теории упругости называют такие, в которых все неизвестные являются функциями только двух координат, например Xi, х . Различают два типа плоских задач плоскую деформацию и плоское напряженное состояние.  [c.130]

Функции ф, удовлетворяющие уравнению (7.18), носят название бигармонических функций. Пользуясь бигармоническими функциями с однозначными вторыми производными, можно строить многочисленные решения плоских задач теории упругости, которые автоматически удовлетворяют уравнениям равновесия и условиям совместности деформаций. Эти решения следует лишь удовлетворить заданным граничным условиям. Такой метод решения задач, когда решение задается, а граничные условия определяют характер внешнего воздействия, носит название обратного.  [c.134]


Изложенный выше метод решения задач теории упругости обобщается на случай плоских и пространственных задач. Рассмотрим, для определенности, случай плоской деформации при = Ur = Urx xi, Х2), a.= l, 2. Область в плоскости (дгх, Х2), в которой происходит процесс деформации упругого тела, обозначим через Q, ее границу — через 5. Рассмотрим некоторую триангуляцию области Q —ее разбиение на треугольные подобласти подчиняющееся следующим предположениям  [c.135]

Отыскание деформаций и перемещений связано с рассмотрением физических и геометрических уравнений плоской задачи теории упругости, что в свою очередь приводит к необходимости интегрирования дифференциальных уравнений в частных производных, а это лишает решение того однообразия и четкости, которые свойственны определению напряженного состояния в первой основной задаче.  [c.107]

Плоская задача теории упругости включает в себя задачи плоской деформации, плоского напряженного и обобщенного плоского напряженного состояния. Эти задачи, отличающиеся по своей сущности, объединяются идентичной математической формулировкой, что позволяет решать их одинаковыми методами.  [c.224]

Рассмотрим еще плоскую задачу теории упругости для анизотропного тела. Пусть в каждой точке пластинки имеется плоскость симметрии упругих свойств, параллельная срединной плоскости. Как и в изотропном случае (см. 4 гл. III), будем полагать, что усилия, приложенные к краям пластинки, действуют в срединной плоскости. Тогда, переходя к усредненным по толщине пластинки величинам, получаем соотношения между деформациями и напряжениями  [c.664]

Указанное важное свойство решений плоской задачи теории упругости составляет содержание теоремы М. Леви. Пользуясь этим, можно заменять изучение напряжений, например, в металлических деталях изучением напряжений в моделях, изготовленных из прозрачных изотропных материалов, оптически чувствительных к возникающим в них деформациям. На этом основаны экспериментальные оптические методы исследования упругих тел. Очевидно, что соответствующие перемещения существенным образом зависят от характеристик упругих свойств материала.  [c.494]

Сопоставление уравнений двух случаев плоской задачи теории упругости. Сопоставление уравнений, полученных выше для двух случаев плоской задачи теории упругости, показывает, что все группы соответствуюш,их уравнений в сравниваемых задачах идентичны, за исключением уравнений закона Гука, в которых различие состоит лишь в величинах упругих постоянных — в случае плоского обобщенного напряженного состояния имеют место обычные модуль упругости Е и коэффициент Пуассона [i, в случае же плоской деформации вместо этих величин в уравнениях фигурируют ) i = /(l —ц ) и Hi = [i/(1—ц). Полная идентичность уравнений, за исключением только что отмеченной  [c.661]

Решение плоской задачи теории упругости в напряжениях. Для того чтобы иметь возможность решать задачу теории упругости в напряжениях, необходимо через них выразить условие совместности деформаций, после этого, присоединяя его к двум дифференциальным уравнениям равновесия (9.88), получим раз-решаюш,ую систему уравнений.  [c.662]

Рис. 9.25. Перемещения в элементе и деформация его в плоской задаче теории упругости в полярных координатах. Рис. 9.25. Перемещения в элементе и деформация его в <a href="/info/20342">плоской задаче теории упругости</a> в полярных координатах.
Второй этап решения задачи. Проверяем, удовлетворяют ли функции (12.50) уравнениям однородной плоской задачи теории упругости уравнениям равновесия (9.87) и уравнению совместности деформаций (9.94).  [c.149]

Второй этап решения задачи. Проверяем, удовлетворяют ли функции (12.65) уравнениям однородной плоской задачи теории упругости уравнениям равновесия (9.87) и уравнению совместности деформаций (9.94). При подстановке (12.65) в (9.87), получаем  [c.158]


Соотношения между деформациями и перемещениями в случае плоской задачи теории упругости запишутся в следующем виде  [c.348]

В настоящей главе рассматриваются элементы балочного типа-в условиях плоской задачи теории упругости. Практически это означает, что полученные решения применимы либо для тонких пластинок, когда напряжения считаются равными нулю и Од., у, не зависят от координаты z (плоское напряженное состояние), либо для тел, размеры которых вдоль оси 2 очень велики, и нагрузка в этом направлении не изменяется (плоская деформация). В отличие от плоского напряженного состояния, когда (T =0 и при плоской деформации  [c.48]

Таким образом, решение плоской задачи теории упругости в напряжениях сводится к интегрированию системы трех дифференциальных уравнений двух уравнений равновесия (17.10) и уравнения неразрывности деформаций (17.19) при выполнении статических граничных условий (17.12) на поверхности тела.  [c.350]

Используя решение плоской задачи теории упругости о распределении напряжений у основания главной оси эллиптического отверстия, Гриффитс вычислил энергию деформации, высвобождающуюся в результате увеличения длины существующей трещины. Далее он считал, что в процессе разрушения образуются две новые поверхности, для образования единицы площади каждой из которых требуется энергия Wa. Он заметил также, что энергия, которая может быть затрачена на распространение трещины, должна равняться разности между энергией, требуемой для образования новой поверхности разрушения, и энергией деформации, высвобождающейся в результате увеличения длины трещины. Выражение для энергии W, требуемой для распространения трещины единичной ширины длиной 2с, было получено Гриффитсом в виде  [c.45]

В простейшем случае плоской задачи теории упругости радиальное и тангенциальное напряжения выражаются через деформации Ё, = dw/dr и Ёф = wir по известным формулам [56] и дифференциальное уравнение радиальных колебаний принимает вид  [c.169]

В бесконечной области, заключенной внутри двугранного угла, образованного касательными плоскостями к поверхности тела в точке О. Уравнения (3.8) представляют собой уравнения Ляме в случае плоской задачи теории упругости (первые два уравнения соответствуют обычной плоской деформации, последнее — сложному сдвигу). При предельном переходе (3.7) в однородных граничных условиях указанного выше типа в новых переменных получаются те же условия, если в них формально положить д дх з = 0.  [c.57]

В пятой главе описаны слоистые упругие трансверсально изотропные пластинки, имеющие симметричное относительно срединной плоскости строение пакета слоев. Выбор срединной плоскости в качестве плоскости приведения позволил отделить уравнения плоской задачи теории упругости от уравнений изгиба пластинки, которые и явились предметом исследования. Найден широкий класс решений этих уравнений, что позволило, в частности, решить задачу изгиба круговой пластинки, несущей поперечную нагрузку. В качестве примера рассмотрена задача осесимметричного деформирования круговой пластинки. Выполненное исследование, включающее в себя вычисление разрушающей, интенсивности нагрузки, определение механизма возникновения разрушения и определение зоны его инициирования, выявило принципиальную необходимость учета влияния поперечных сдвиговых деформаций на расчетные характеристики напряженно-деформированного состояния для пластин с существенно различными жесткостями слоев. Решена задача устойчивости пластинки, нагруженной силами, действующими в ее плоскости. Составлены общие уравнения устойчивости и подробно исследован тот случай, когда тензор докритических усилий круговой. Для этого случая найден широкий класс решений уравнений устойчивости. В качестве примера дано решение задачи устойчивости круговой пластинки, нагруженной равномерно распределенным по контуру сжимающим радиальным усилием. Эта же задача решена еще и на основе других неклассических уравнений, приведенных в третьей главе, а также на основе уравнений трехмерной теории устойчивости. Выполнен параметрический анализ полученных решений, что позволило указать границы применимости рассматриваемых уточненных теорий, оценить характер и степень влияния поперечных сдвиговых деформаций и обжатия нормали на критические интенсивности сжимающего усилия. Полученные результаты приводят к выводу о пригодности разработанных в настоящей моно-  [c.13]

Рассмотрим теперь применение метода Шварца к решению плоских задач теории упругости. Для краткости изложения ограничимся случаем плоской деформации сжимаемого материала. Пусть задача решается для бесконечной области, ограниченной простыми замкнутыми непересекающимися контурами Fi, Г2,..., на границах которых заданы поверхностные силы Qi, Q2, , Qm являющиеся непрерывными функциями точек контура. Заданные напряжения на бесконечности обозначим через сг . Будем считать, что массовые силы отсутствуют. Обозначим через U вектор перемещений, а через Nj (j = 1,..., m) — векторы нормали к соответствующим контурам. Тогда уравнения и граничные условия краевой задачи могут быть записаны следующим образом  [c.234]


Уравнения плоской задачи теории упругости описывают упругое равновесие цилиндрических тел в случае плоской деформации, когда на тело действуют внешние силы, нормальные к его  [c.5]

Распределение напряжений в плоской задаче теории упругости в случае односвязной области вполне определяется дифференциальными уравнениями равновесия, условиями на контуре и условиями совместности деформации. В случае многосвязной области должны также удовлетворяться условия однозначности перемещений миг  [c.342]

Условия неустойчивого распространения небольших расслоений Ь 5 0,Ы и 5 = 0,5-20 мм) анализировали на основе решений плоской задачи теории упругости (плоская деформация) для пластин с внешними границами, свободными от нагрузок. Результаты расчетов на ЭВМ методом конечных элементов получены для пластин, имеющих изолированное расслоение в виде прямозггольной щели, а также два-три таких ВР, расположенных на разных уровнях по высоте пластины, при нанесении на контур расслоения в результате последовательного сгущения от 14 до 50 узлов. Предполагали, что ВР растет по нормали к направлению наибольшего растягивающего напряжения. Учитывая ступенчатый характер ВР, место и направление развития (параллельно или перпендикулярно) взаимодействующих расслоений на разных уровнях определяли, сравнивая напряжения и Оу, действующие на контуре. В результате расчетов для случая расслоения с притупленной вершиной, длина которого изменялась от 0,1< до 0,5t (t - толщина стенки конструкции), получили зависимость Ь = /(Ь), характеризующую возможный мгновенный рост изолированного ВР в центральной  [c.166]

Упругое равновесие твердых тел описывается уравнениями плоской задачи теории упругости в случае плоской деформации цилии-дрических тел постоянного поперечного сечения, когда на тело действуют внешние силы, нормальные к его оси и одинаковые для всех поперечных сечений указанного тела, либо в случае обобщенного плоского напряженного состояния, т. е. при деформации тонкой пластины силами, действующими в ее плоскости. При этом для определения напряженно-деформированного состояния в произвольной точке деформируемого упругого изотропного тела необходимо найти три компоненты тензора напряжений —Оу, х у (рис. 1) и две составляющие вектора перемещений — и, v. Если система декартовых координат выбрана так, что плоскость xOi/ совпадает или с поперечным сечением стержня, или со срединной плоскостью пластины, указанные компоненты в условиях плоской задачи теории упругости являются функциями двух переменных (х и i/).  [c.7]

В плоской задаче теории упругости рассматриваются три случая упругого равновесия тела, имеющих больщое значение для практики плоская деформация, плоское напряженное состояние и обобщенное плоское напряженное состояние.  [c.25]

Остановимся еще на одном, казалось бы парадоксальном, примере. Из решения плоской задачи теории упругости для бесконечной области (безразлично — бесконечной или полубеско-нечной) будет следовать, что при неравенстве нулю главного вектора внешних сил перемещения оказываются бесконечными. В этом нет ничего удивительного, поскольку при рассмотрении плоской задачи (допустим, в случае плоской деформации) с позиций пространственной задачи оказывается, что суммарное усилие обращается в бесконечность. Следует заметить, что переходы к бесконечному телу при решении задачи в напряжениях и перемещениях не эквивалентны друг другу. Если в напряжениях переход и возможен, то в смещениях он может и быть ошибочен, что и подтверждается приведенным примером. Для устранения же бесконечных смещений можно предложить, например, такой спосЪб. После того как решение в деформациях определено достаточно точно из решения для бесконечного тела, находят по ним смещения в истинном теле, исходя из его фактических размеров и краевых условий. Разумеется, строгое обоснование предлагаемого подхода затруднительно для общего случая, но в частных задачах, по-видимому, оно может быть достигнуто.  [c.304]

Рассмотрим плоскую задачу теории упругости для кусочнооднородной среды. Пусть имеется многосвязная область D, ограниченная гладкими контурами L, (/ = 0, 1, 2,. ... т), из которых все контуры Lj (/ 0) расположены вне друг друга, а контур 0 охватывает все остальные. Область D заполнена упругой средой с постоянными Яо и цо, а области )/ (ограниченные контурами Lj) средами с постоянными X/ и ц/ (индекс буквы соответствует индексу области). Далее, для удобства будем использовать постоянные х/, различные для плоской деформации и плоского напряженного состояния (см. 4 гл. III). На границах раздела сред следует, как обычно, задавать. те или иные условия сопряжения. Например, такой известной технологической операции, как посадка с натягом, соответствует задание скачка вектора смещений 6/(0- В случае же плоско-напряженной деформации имеет смысл постановка таких условий, при которых внешние напряжения пропорциональны (в случае, когда толщины пластинки и включений различны )).  [c.413]

Если на всей поверхности тела заданы усилия, граничные условия задают на поверхности линейные комбинации искомых функций, т. е. напряжения. Но если заданы перемещения точек поверхности, то сформулировать граничные условия в напряжениях в общем виде невозможно эти условия будут содержать некоторые интегралы от напряжений и их производных, которые получатся, если в формулы Чезаро внести выражения деформаций через напряжения по закону Гука. Иногда, например, в плоской задаче теории упругости соответствующие преобразования удается довести до конца.  [c.251]

Большинство решений о распределении напряжений в местах концентрации относится к плоским задачам теории упругости и пластичности или получено на основе упрощающих гипотез теории пластин и оболочек. Поэтому К. н. изучается в основном эксперимеитально (методом фотоупругости, тензометрирования и др.). В последние годы исследован ряд нрострапственных задач К. н. методом замораживаиия деформаций (см. Поляризационно-оптический метод). Для уменьшения или устранения К. н. применяются разгружающие надрезы, усиления края отверстий и вырезов рёбрами жёсткости, накладками и др., а также упрочнение материала в зоне К. н. разл. способами технол. обработки.  [c.456]

Следовательно, решение плоской задачи теории упругости при постоянстве объемных сил сведено к интегрированию трех уравнений двух уравнений равновесия (б.2) и уравнения неразрывности деформаций (6.9) при обязательном удовлетворении слови11 на поверхности  [c.61]

При решении многих инженерных задач представляется возможным рассматривать явление деформаггии тела, происходящей как бы в одной плоскости. В этом случае компоненты тензоров напряжения и деформации будут являться функциями координат, определяющих положение точки в этой плоскости. Задачи этой категории относятся к плоской задаче теории упругости.  [c.67]

Аналогично преобразуются и все другие зависимости, свызываю-щие компоненты деформаций с компонентами напряжений в плоской Задаче теории упругости.  [c.48]

Для решения этой задачи восполь зуемся результатами решения плоской задачи теории упругости в полярных координатах (см. 2.3). Особенности крепления торцов заряда твердого топлива учитывать не будем и заменим реальный двигатель упрощенной схемой (рис. 14.10). Обычно модуль упругости материала корпуса двигателя на несколько порядков больше, чем модуль упругости твердого топлива поэтому на первом этапе решения при определении напряженно-деформированного состояния заряда деформациями корпуса можно полностью пренебречь и принять его абсолютно жестким [22]. В этом случае при осесимметричном нагружении заряд твердого топлива, изображенный на рис. 14.10, находится в условиях плоского деформированного состояния (е — 0). Воспользовавшись уравнениями (2.30) и (2.31), запишем  [c.378]


В дайной главе рассмотрена по существу та же задача, что и в гл. 1. Это задача включения, состоящая в исследовании взаимодействия между ребрами и пластинами без учета изгиба пластин. Но здесь принята более точная модель, согласно которой учитываются продольные (параллельные оси ребер) напряжения в пластине. Вследствие этого касательные напряжения по ширине пластины между соседними ребрами уже не будут постоянными. На характер h j распределения не накладывается никаких ограничений. Считается, однако, что поперечные деформации пластины, нормальные к осн ребер, отсутствуют. Это опраннче-нне и делает модель приближенной, а результаты отличающимися от полученных из уравнений плоской задачи теории упругости. Упрощая решение задачи (порядок разрешающего уравнения пластины понижается с четвертого до второго), эта модель -все же позволяет более аккуратно по сравнению с решениями гл. i определить. закон распределения напряжений в пластине, особенно в окрестности угловых Точек. В самой близкой окрестности угловых точек и эта модель не дает правильных результатов — касательные напряжения получаются завышенйй-мн из-за неучета поперечного обжатия пластины. Эта модель используется как для плоских, так и для цилиндрических панелей.  [c.67]

Формулы (7.2) —(7.5) можно взять за основу при выводе жесткостных характеристик конечных элементов, оеуществт ляя при этом независимую аппроксимацию функций Uz, Х и 9у по их узловым значениям. Как следует из (7.1), совместность перемещений обеспечивается, если каждая из этих функций непрерывна на границах между элементами. Так же как и в случае плоской задачи теории упругости, выполнить это условие можно, например, с помощью изопараметрической формулировки конечных элементов. Следовательно, здесь открываются широкие возможности для введения конечных элементов произвольной формы, в том числе криволинейных. Но применение подобных элементов к расчету тонких пластин до последнего времени было ограниченным из-за чрезмерной жесткости элементов, которая обусловлена ложными деформациями поперечного сдвига и появляющимися при чистом изгибе пластины. В работе [38] показано, что и в случае изгиба пластин эффективным средством борьбы с ложными деформациями поперечного сдвига является использование минимально допустимого порядка интегрирования соответствующих членов при вычислении матрицы жесткости элемента. Несколько конечных элементов, полученных таким способом, представлено в следующем параграфе. Они могут успешно использоваться при расчете как тонких, так и сравнительно толстых пластин.  [c.230]

В плоской задаче теории упругости различают плоское напряженное состояние и плоскую деформацию. Плоское напряженное состояние приблизительно реали-  [c.54]

Для плоской задачи теории упругости можно вьывить явную зависимость матрицы А от упругих постоянных. В самом деле, для плоской деформации  [c.313]

Отсюда следует, что в случае коллинеарных трещин интегральное уравнение (VI. 18) не зависит от функщ1и [л (х) и имеет такой же вид, как и в аналогичной плоской задаче теории упругости (1.93). Поэтому реп1ения задач о коллинеарных трещинах в упругом теле при плоской и антиплоской деформациях идентичны. В частности,  [c.186]

Охвачен широкий круг вопросов механики разрушения, начиная с микромеханизмов деформации и разрушения кристаллической решетки, инженерных подходов к задачам механики разрушения и заканчивая математическим анализом образования, слияния и развития дефектов материала. Рассмотрены физика и механика микроразрушения, включая образование и рост микротреш ин разных видов. Даны основные положения и методы линейной и нелинейной механики разрушения вместе с соответствуюш и-ми критериями разрушения. Уделено внимание избранным специальным проблемам механики разрушения, включая механизмы деформирования и разрушения полимеров. Подробно представлены математические методы решения плоских задач теории упругости при конечных деформациях в условиях физической и геометрической нелинейности. Даны многочисленные примеры расчета перераспределения полей напряжений и деформаций при разных вариантах поэтапного многоступенчатого нагружения многосвязных областей.  [c.2]

Локальные поля в окрестности клиновидного надреза/трещины. Решение Уильямса. Приведем классическое ре-гиение двумерной задачи теории упругости методом разложения в степенные ряды [64]. Рассмотрим задачу о пластине, ограниченной двумя пересекающимися плоскими гранями, так что исследуемая область представляет собой бесконечный двугранный угол 2а (рис. 2.3). Пластина находится в условиях плоского напряженного состояния или плоской деформации. При отсутствии объемных внегиних сил уравнения равновесия тождественно удовлетворяются с помощью со-отногиений  [c.85]

Концентрация напряжений около отверстий в толстой плите нри упругих деформациях изучена И. И. Воровичем и О. С. Малкиной [38 . Авторами построено асимптотически точное решение, показана применимость, при определенных условиях нагружениЯ методов плоской задачи теории упругости для описания концентрации иапря кеннй около отверстий, достаточно удаленных от наружного контура.  [c.8]


Смотреть страницы где упоминается термин ПЛОСКАЯ ЗАДАЧА ТЕОРИИ УПРУГОСТИ Плоская деформация : [c.109]    [c.267]    [c.261]   
Смотреть главы в:

Курс теории упругости  -> ПЛОСКАЯ ЗАДАЧА ТЕОРИИ УПРУГОСТИ Плоская деформация

Теория упругости  -> ПЛОСКАЯ ЗАДАЧА ТЕОРИИ УПРУГОСТИ Плоская деформация



ПОИСК



Деформация упругая

Задача упругости

Задачи теории упругости

Задачи теории упругости плоская

Методы и алгоритмы решения плоских задач теории многократного наложения больших упругих и вязкоупругих деформаций

Плоская деформация

Плоская задача

Плоская задача математической теории упругости Плоская задача теории упругости в прямоугольных координатах Плоская деформация

Плоская задача теории упругости в декартовых координатах Плоская деформация

Плоские задачи теории упругости. Плоское напряженное состояние и плоская деформация

Теории Задача плоская

Теория деформаций

Теория плоской деформации

Теория упругости

Упругость Теория — см Теория упругости



© 2025 Mash-xxl.info Реклама на сайте