Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Перемещения и деформации. Тензор деформации

Перемещения и деформации. Тензор деформации  [c.27]

Перемещения и деформации. Тензор деформаций  [c.32]

Компоненты вектора перемещения щ (перемещения) и компоненты тензора деформации etj связаны между собой дифференциальными зависимостями Коши (1.44) или, что то же самое, формулой (1.40). Эти зависимости позволяют вычислить компоненты тензора деформации stj непосредственным дифференцированием перемещений мг, которые в соответствии с предположением о сплошности тела являются непрерывными и однозначными функциями координат л ,, произвольной точки тела (1.3). Естественно, что компоненты тензора деформации должны быть также однозначными функциями л ,, и иметь непрерывные производные.  [c.22]


Постановка задачи. В контактной задаче поверхность тела состоит из грех участков Г = Г + Гд +, где — участок возможного контакта тела с жестким основанием или другим телом. Считается, что начальный зазор Др на соизмерим с перемешениями и мало меняется по координатам, а кривизна Гк относительно невелика. Определяются вектор перемещений и и тензоры деформаций е и напряжений а, связанные известными соотношениями  [c.142]

В связи с этим выведем нелинейные соотношения деформации— перемещения, основанные на гипотезе Кирхгофа—Лява плюс упрощающее предположение. Точные соотношения можно получить использованием выражения (9.45) для перемещений и вычислением тензоров деформаций аналогично тому, как это делалось  [c.274]

В этой главе исследуется приложение метода конечных элементов к задачам теории упругости при конечных деформациях ), т. е. к задачам об очень больших деформациях упругих тел, когда не накладывается никаких ограничений на порядок величин перемещений, градиентов перемещений и компонент тензора деформаций. При этом в качестве частных случаев получаются различные дискретные модели задач классической теории упругости при бесконечно малых деформациях. Однако прежде чем рассматривать свойства дискретной модели, надо охарактеризовать механические свойства материалов, которые считаются упругими.  [c.235]

ПЕРЕМЕЩЕНИЯ И ДЕФОРМАЦИИ В ТОЧКЕ ТЕЛА. ТЕНЗОР ДЕФОРМАЦИЙ  [c.19]

В решениях обратных задач задаются либо перемещения, либо компоненты тензора деформаций в рассматриваемом теле и определяются все остальные величины, в том числе и внешние силы. Решения обратных задач особых трудностей не представляют, однако не всегда возможно прийти к решениям, представляющим какой-либо практический интерес. Исходя из этого Сен-Венаном предложен полуобратный метод, состоящий в частичном задании одновременно перемещений и напряжений, затем в определении при помощи уравнений теории упругости уравнений, которым должны удовлетворять оставшиеся перемещения и напряжения. Полученные уравнения сравнительно легко интегрируются. Таким образом, этим методом можно получить полное и точное решение для большого числа частных задач, наиболее часто встречающихся в практике. Сен-Венан применил свой метод к задачам нестесненного кручения и изгиба призматических тел.  [c.89]

Ситуация, возникающая при тензометрических исследованиях напряженного состояния свободных от нагрузок поверхностей, характерна и дня некоторых других экспериментальных методов, в которых на исследуемой поверхности определяется информация не о векторе перемещений, а о тензоре деформаций (напряжений). Надо заметить, что на поверхности измере-  [c.66]


Основными задачами теории скоростей деформаций являются зная в точке Л1 ограниченное число величин — компонент тензора скоростей деформаций, найти в любом направлении установить связь между компонентами тензора скоростей деформаций и компонентами тензоров деформаций установить связь между скоростями деформаций и скоростями перемещений точек деформируемого тела.  [c.94]

Первое показывает, что тензор, обозначенный е, есть деформация лагранжева вектора X на Oi последний должен быть равен заданному здесь вектору перемещения, и ничто не препятствует, отождествив К с вектором перемещения и в объеме V, вернуться к определению тензора е как к величине, задаваемой полем перемещений. В самом принципе минимума дополнительной работы понятие о тензоре деформации отсутствует, поэтому отождествление векторов % н и должно быть привнесено нами, так как принцип об этом не знает .  [c.159]

Здесь векторы и (х) описывают упругие перемещения (с нетривиальным тензором деформаций), а векторы  [c.88]

Сформулируем другой вариант инкрементальной теории с помощью модифицированного подхода Лагранжа, в котором используются модифицированные тензоры напряжений Кирхгофа и модифицированные тензоры деформаций Грина. Обозначим напряжения, деформации, перемещения, массовые силы, внешние силы, действующие на 5,,, и заданные на перемещения в состояниях Q(N) и Q(A/-fi) .дк, как показано в табл. 16.2. Отметим, что напряжения и внешние силы на отнесены к единичной площади, а массовые силы — к единичному объему состояния Q< ). Тогда принцип виртуальной работы в состоянии запишется в виде  [c.392]

Ниже приведены результаты решения стохастической краевой задачи с учетом реального вида моментных функций упругих свойств двухфазных композитов. Построено полное корреляционное приближение задачи в перемещениях, когда при вычислении бинарных ко >-реляционных тензоров деформаций удерживаются только члены бесконечного ряда, содержащие моментные функции упругих свойств с порядком не выше второго. Однако при вычислении бинарных корреляционных тензоров напряжений и условных моментов, характеризующих средние значения и дисперсии полей деформаций и напряжений  [c.39]

Формулы (2.67), (2.68) решают вопрос об определении вектора перемещений по заданному тензору деформации Коши поверхности и заданному вектору конечного поворота. Может врз-никнуть задача определения перемещений точек поверхности по заданным тензору деформаций и какому-либо тензору, определяющему изменение кривизны поверхности, что эквивалентно заданию функций GX(q, q ), BX(q, q ). A эта задача равно-  [c.68]

Рассмотрим. условие совместности деформаций в классической теории упругости, поскольку подобные соотношения б удут играть существенную роль в дальнейшем изложении. Вопрос заключается в определении вектора перемещений по заданному линейному тензору деформации е, согласно (2), поскольку компоненты е. имеют простой физический смысл и могут быть определены опытным путем. Имея шесть уравнений (2) относительно трех неизвестных функций Mi, задачу можно решить наложением определенных условий на величины е . Разделим тело на элементарные объемы (кубики) и сообщим каждому из них деформацию (локальная деформация полагается однородной внутри кубика). Деформированные кубики можно сложить в сплошную среду только при определенной согласованности деформации отдельных кубиков. В обычном случае для вектора перемещений в точке ri можно записать  [c.100]

МОСТИ могут служить вектор перемещения и тензор самих деформаций, тогда как для жидкой деформируемой среды, частицы которой обладают большей подвижностью, такие меры деформируемости не могут быть пригодными и вместо них используются вектор скорости перемещения и тензор скоростей деформаций. Для упругой среды напряжённое состояние в каждой точке ставится в зависимость от тензора самих деформаций. Для жидкости и газа в этом отношении дело обстоит совершенно иначе. Во-первых, при равновесии жидкости и газа под действием внешних сил или при наличии замкнутого сосуда напряжённое состояние характеризуется только одним давлением и вопрос о распределении деформаций даже и не возникает. Во-вторых, при движении жидкостей и газов взаимодействие частиц осуществляется преимущественно с помощью давления, величина которого не ставится в прямую связь с состоянием деформаций в данной точке, а ставится в зависимость в некоторых случаях от плотности и температуры. И только в отношении дополнительных сил взаимодействия частиц жидкости и газа при их движении, которые именуются напряжениями вязкости, дело обстоит примерно так же, как и с упругими напряжениями в упругой среде. Различие состоит лишь в том, что тензор напряжений вязкости ставится в зависимость не от тензора самих деформаций, а от тензора скоростей деформаций.  [c.10]


При решении задач термоупругости, в которых граничные условия заданы в напряжениях (2.1.3), удобно пользоваться системой уравнений в напряжениях, которые получаются, если из уравнений (2.1.1), соотношений (1.5.11) или (1.5.13) и соотношений (1.2.2) исключить перемещения и деформации, выбрав в качестве неизвестных шесть компонентов тензора напряжения о,-,-.  [c.39]

Основные результаты моментной теории термоупругости изложены в работах [3, 17Ь—с, 35g—1, 40b, 43а—Ь, 44Ь, 53Ь]. Выведены уравнения движения и сформулирован принцип сохранения энергии, из которого получены определяющие уравнения для среды с центральной симметрией при условии, что внутренняя энергия есть квадратичная функция от температуры и компонентов тензоров деформаций и кручения. С помощью определяющих уравнений уравнения движения записываются для температуры и векторов перемещения и вращения. Векторы перемещения и вращения представлены в форме Стокса для потенциальных и соленоидальных функций выписаны соответствующие уравнения. Решения последних определяют в пространстве волны расширения, вращения и искажения. Здесь также волны расширения затухают и диспергируют, остальные волны не взаимодействуют с температурным полем. Методом ассоциированных матриц решения уравнений движения для перемещений, вращений и температуры представлены с помощью функций напряжений, для которых получены раздельные уравнения.  [c.245]

Определение вектора перемещения и по тензору деформаций Те с помощью формулы (1.2.89) удобно лишь тогда, когда этот тетзор удовлетворяет уравнению совместности деформаций Б.Сен-Венана (1.2.88). В противном случае интегрирование может бьпъ трудно вьшолнимым. Это является основной причиной редкого применения решения задач МСС в деформациях.  [c.42]

Для жидкости и газа, как правило, удобней эйлерово описание. Для этих сред нет смысла вводить вектор перемещения и (и тензор деформации, е ).но вводится только что описанным способом тензор скорости деформации 4. Для твердых тел. наряду с . рассматриваются тензор С и тензор приращения деформации ДС (см.а.З).  [c.70]

Пусть на бесконечную плоскость действуют заданные объемные силы p/ i(J i, Х2 , pF2(xi, Х2) и при Xi, 2 00 проекции вектора перемещения и компоненты тензора напряжений стремятся к нулю. Определим для случая плоской деформации напряженное состоя-иие. Умножим уравнения равновесия (6.5) и уравнение совместности деформаций (б.П) на ядро Фурье ехр + и проинте-  [c.164]

При некоторых уелрвиях нагружения тел, у которых один размер существенно отличается от двух других измерений (тонкий длинный стержень, тонкая оболочка), могут возникать большие перемещения и при малых деформациях. В этих случаях компоненты имеют более высокий порядок малоети, чем ohj, и в формуле (1.31) необходимо сохранить квадратичные слагаемые относительно со /, т. е. компоненты тензора малой деформации будут определяться формулой  [c.14]

В восемнадцати предшествующих главах были изложены различные разделы механики деформируемого твердого тела, при этом практическая направленность каждого из них не очень акцентировалась. Но основная область приложения механики твердого тела — это оценка прочности реальных элементов конструкций в реальных условиях эксплуатации. С этой точки зре-нпя различные главы приближают нас к решению этого основного вопроса в разной степени. Классическая линейная теория упругости формулирует свою задачу следуюш им образом дано пекоторое тело, на это тело действуют заданные нагрузки, точки границы тела претерпевают заданные перемещения. Требуется определить поле вектора перемещений и тензора напряжений во всех точках тела. После того как эта задача решена, возникает естественный и основной вопрос — что это, хорошо или плохо Разрушится сооружение или не разрушится Теория упругости сама по себе ответа на этот вопрос не дает. Правда, зная величину напряжений, мы можем потребовать, чтобы в каждой точке тела выполнялось условие прочности, т. е. некоторая функция от компонент о.-,- не превосходила допускаемого значения. В частности, можно потребовать, чтобы нигде не достигалось условие пластичности, более того, чтобы по отношению к этому локальному условию сохранялся некоторый запас прочности, понятие о котором было сообщено в гл. 2 и 3. Мы знаем, что для пластичных материалов выполнение условия пластичности в одной точке еще не означает потери несущей способности, что было детально разъяснено на простом примере в 3.5. Поэтому расчет по допустимым напряжениям для пластичного материала безусловно гарантирует прочность изделия. Для хрупких материалов условие локального разрушения отлично от условия наступления текучести и локальное разрушение может послужить началом разрушения тела в целом. Поэтому расчет по допускаемым напряжениям для хрупких материалов более оправдан. Аналогичная ситуация возникает при переменных нагрузках и при действии высоких температур. В этих условиях даже пластические материалы разрушаются без заметной пластической деформации и микротрещина, возникшая в точке, где 42  [c.651]

Для получения уравнений, описывающих температурные поля и напряжения в деформируемом теле, в дальнейшем рассматриваются малые перемещения и градиенты перемещений. В этом случае вектор перемещения и с компонентами Н рассматривается как некоторое векторное поле, тензор деформаций с компонентами Еу - как тензорное поле, определенные в действительном векторном пространстве [75]. Компоненты тензора деформаций выражаются через компоненты вектора перемещений соотношениями Коши .у=(ди1/дХу+диудх,)/1 (здесь и далее /, / = 1, 2, 3, а также везде в формулах подразумевается суммирование по повторяющимся латинским индексам). Тогда из уравнения неразрывности (закона сохранения массы) [19]  [c.182]


Заметим, что не всякий объект, являющийся тензором по отношению к линейным преобразованиям декартовых координат, есть тензор по отношению к преобразованиям криволинейных координат например, большие пзремещения, рассматриваемые в геометрически нелинейной теории упругости, при нелинейных преобразованиях (13) преобразуются по нелинейному закону, а не по векторному. В данной книге используются только бесконечно малые перемещения и деформации, являющиеся векторами и тензорами.  [c.211]

Вследствие использования гипотезы ломаной линии, тангенциальные компоненты вектора перемещений, тензоров деформаций и напряжений распределены по толщине каадого слоя согласно линейному закону (см. гл. 8). В зтой главе, следуя работе [9.3], строится вариант теории упругих многослойных анизотропных оболочек, в котором тангенциальные перемещения, деформации и напряжения распределены по толщине слоев по нелинейному закону, что представляет интерес при расчете напряженно-деформированного состояния в непосредственной близости от торцов композитной оболочки.  [c.186]

При бесконечно малой деформации материальной частицы все тензоры деформаций превращаются в тензор деформаций Коши е, который связан линейными соотношениями (1.56) с тензором градиента перемещений Н, а все тензоры напряжений превращаются в тензор напряжений Коши сг. Предположим, что условие бесконечно малой деформации выполнено для всех материальных частиц тела В. Деформацию тела при выполнении этого условия назовем геометрически линейной или бесконечно малой . Подход к формулировке уравнений с использованием тензоров деформаций е и напряжений сг назовем геометрически линейным или MNO (material nonlinear only) подходом. При этом наряду с геометрически линейным деформированием тела допускается физическая нелинейность деформирования, которая может присутствовать в определяющих соотношениях, связывающих тензоры напряжений и деформаций и/или их скорости.  [c.65]

Использование всех формулировок для упругих материалов эквивалентно в случае малых деформаций (но, возможно, больших перемещений и поворотов). Эти формулировки должны приводить к приблизительно одинаковым результатам при решении задач (см. 2.1.3). Отметим, что определяющие соотношения закона Гука для линейного упругого изотропного материала можно использовать только для малых деформаций тела. Только при таком ограничении закон Гука описывает поведение реальных материалов. Если формально использовать модель линейного изотропного упругого материала при больших деформациях тела, то TL- и UL-формулировки описывают поведение разных материалов. В [49] на примере решения задачи по растяжению куба отмечается большое расхождение значений компонент тензора напря-  [c.198]

На соотношения (2.1) можно смотреть как на систему дифференциальных уравнений относительно вектора перемещения, если компоненты тензора деформаций считаются заданными. Для односвязного тела необходимым и достаточным условием интегрируемости этой системы будет обращение в нуль симметричного тензора второго ранга т], называемого тензором несовместности (1пкотра11ЬШ1е)  [c.11]

Предположение о малости перемещения и поворотов влечет соблюдение малости удлинений и сдвигов. Однако обратное утверждение несправедливо. В то же время существует только общее рассуждение о критерии малости перемещений относительно линейного размера тела. Есть основание полагать, что для тел с микроструктурой необходимо сравнивать перемещения с размерами структурных элементов. Подчеркнем, что в основе классической теории малых деформаций лежит допущение о малости поворотов и перемещений. Если в основу положить малость удлинений и сдвигов по сравнению с единицей, то перемещения и повороты могут быть значительны. Эти преднолон ешш соответствуют линейной теории упругости, в которой реигаются задачи упругого равновесия, сильного изгиба стержней, оболочек и т, п, В этом случае тензор деформации имеет вид  [c.100]

Сферические координаты. При осесимметричном напряженном состоянии компонент uq вектора перемещения, компоненты e e и евф тензора деформации и компоненты сГге и (Тбф тензора напряжения равны нулю ( 2.6).  [c.220]

При рассмотрении изменения перемещений и деформаций во времени (скоростей деформаций) в кинематике непрерывной среды имеет существенное значение, к какой системе координат относятся скорости векторов и тензоров. Скорость в конвективной системе координат, деформирующейся и перемещающейся вместе со средой, так что значения подвижных координат сохраняются постоянными, т. е. скорость в лагранжевой сопутствующей координатной системе выражает временные изменения, присущие среде. В фиксированной (эйлеровой) системе координат скорость представляет собой производную по времени t абсолютного пространственного вектора / (х, t), или тензора /f (х, i), которую принято называть в классической гидродинамике субстанциональной, или материальной, производной и обозначать DIDt, где  [c.15]


Смотреть страницы где упоминается термин Перемещения и деформации. Тензор деформации : [c.32]    [c.72]    [c.27]    [c.61]    [c.55]    [c.60]    [c.102]    [c.16]    [c.305]    [c.265]    [c.57]    [c.92]    [c.507]   
Смотреть главы в:

Механика слоистых вязкоупругопластичных элементов конструкций  -> Перемещения и деформации. Тензор деформации



ПОИСК



Деформация перемещений

Тензор деформаций



© 2025 Mash-xxl.info Реклама на сайте