Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обмотка возбуждения

Режим в генераторах с жесткими внешними характеристиками регулируют только путем изменения тока намагничивания с помощью реостата в цепи этой обмотки. При необходимости регулирования или включения сварочного тока автоматически в цепь намагничивающей обмотки возбуждения вводят контактные или бесконтактные (тиристорные) регуляторы.  [c.130]

В генераторах с самовозбуждением и размагничивающей последовательной обмоткой возбуждения (рис. 32, б) используется принцип самовозбуждения. Напряжение на намагничивающую обмотку возбуждения НО снимается со щеток а и с самого генератора, это напряжение почти постоянно по величине, поэтому магнитный поток Ф практически не меняется.  [c.62]


Если изменять подачу топлива в ДВС, то его механическая характеристика примет вид семейства кривых (рис. 4.5, а) чем больше подача топлива (параметр h семейства), тем выше располагается характеристика. Семейством кривых изображается и механическая характеристика шунтового электродвигателя (рис. 4.5, б) чем больше сопротивление цепи обмотки возбуждения двигателя (параметр h), тем правее размещается кривая. Характеристика гидродинамической муфты также имеет вид семейства кривых (рис. 4.5, в) чем больше наполнение муфты жидкостью (параметр А), тем правее и выше располагаются характеристики.  [c.143]

Ограничение (7.4) вызвано максимально допустимыми параметрами выпрямителей в схеме питания обмотки возбуждения. Ограничения (7.5) можно задавать в виде равенства, если требуется максимальное использование активных материалов.  [c.201]

Попытка максимизировать быстродействия и КПД с помощью аналитических методов сделана в [15]. Задача быстродействия решена на основе принципа максимума для линейной зарядной системы второго порядка при пренебрежении индуктивностью в зарядной цепи. Задача о КПД решена методами классического вариационного исчисления также для системы второго порядка при пренебрежении инерционностью обмотки возбуждения и отсутствии корректного учета граничных условий. Допущения, сделанные в обоих случаях, сильно ограничивают практическую применимость полученных результатов. Поэтому в данном примере обе задачи решаются поисковыми методами, не требующими указанных выше допущений.  [c.220]

Рис. 5.14. Область поиска минимального активного объема )д / индукторного генератора при непрерывном (а) и дискретном (б) изменении диаметра проводника обмотки возбуждения Рис. 5.14. Область поиска минимального активного объема )д / индукторного генератора при непрерывном (а) и дискретном (б) изменении диаметра проводника обмотки возбуждения
В данном случае осуществлялся поиск минимального активного объёма машины Р 1 в пространстве параметров дискретного (числа эффективных проводников в пазу) и непрерьшного (индукции в воздушном зазоре) при ограничениях синхронного переходного реактивного сопротивления дЛ < 03, тока в обмотке якоря /д <5,11 А и в обмотке возбуждения 7 < 1,9 А. При дискретном изменении шаг по этому параметру кщ =2. Как видно из рисунка, метод покоординатного поиска, хотя и требует больших затрат на поиск экстремума по сравнению с методом градиента, позволяет в данных условиях установить более достоверно местоположение экстремума, поскольку реально параметр может быть равен в данном случае только 22.  [c.162]


Подвижный магнит // прикреплен к алюминиевой пластине, которая удерживается двумя растяжками 3 из тонкой бронзовой ленты. На этой же пластине ниже, под магнитом, расположено зеркало 7, на которое падает луч света от лампочки 8 через конденсор 9 и объектив 10. Отражая этот луч, зеркало дает яркое изображение световой полоски па шкале 6 гальванометра. Подвижный магнит расположен одновременно в зазоре между наконечниками 4 из пермаллоя, по которым проходит магнитный поток от неподвижного постоянного магнита 2, и в зазоре между полюсами электромагнита с обмоткой возбуждения 12, питаемой переменным током. Сердечник 5 электромагнита также выполнен из пермаллоя.  [c.56]

Обмотка возбуждения 12 электромагнита включается в цепь измеряемого напряжения через делитель напряжения 1, являющийся регулятором чувствительности гальванометра. Гальванометр имеет переключатель полярности для изменения направления тока это позволяет обнаружить наличие помех в измерительной схеме. Постоянные гальванометра при наибольшей чувствительности по току 10 А/мм, по напряжению 2-10 В/мм. При использовании усилителя, поставляемого в комплекте с гальванометром, чувствительность может быть повышена до 5-10 В/мм.  [c.57]

Имеются образцы индукционных плит бытового назначения. Плита имеет магнитную систему из расслоенной стали с несколькими открытыми полюсами, обращенными к днищу специальной кастрюли. Обмотки возбуждения, намотанные на полюсы, обдуваются встроенным вентилятором. Чтобы уменьшить вибрации и шум из-за электродинамических усилий, магнитные потоки отдельных групп полюсов сдвигают по фазе. Кастрюля изготавливается из магнитной нержавеющей стали с дном, покрытым слоем алюминия.  [c.227]

Напряжение генератора Г регулируется путем изменения угла отпирания тиристоров выпрямителя В, питающего обмотку возбуждения ОВ. Угол отпирания а устанавливается блоком сравнения БС и усилителем-фазорегулятором УФР.  [c.262]

Обозначим индуктивности обмоток возбуждения и якоря че- рез Lb, i-я, взаимную индуктивность через Z-вя — i-яв = М, токи В обмотках возбуждения и якоря соответственно через /в и /я. Тогда функция Лагранжа — Максвелла получает вид  [c.283]

Величина /С/в равна магнитному потоку в воздушном зазоре между ротором и статором, если считать, что магнитный поток создается только обмоткой возбуждения. Следовательно, движущий момент Мя равен произведению магнитного потока на ток в обмотке якоря.  [c.285]

Для электродвигателей постоянного тока с последовательным возбуждением ток в обмотке возбуждения равен току в об мотке якоря  [c.287]

Для многих сталей хорошие результаты получаются, если ток возбуждения обеспечивает напряженность поля, которой соответствует максимальная магнитная проницаемость. Если конфигурация контролируемых деталей изменяется, то путем подбора тока в обмотках возбуждения проходного ВТП в большинстве случаев можно добиться такой же закономерности распределения кривых на экране ЭЛТ, как и при испытаниях образцов другой формы из этого же материала. Следует иметь в виду, что показания приборов типа ВС-ЮП в большой степени за-  [c.153]

Обычно для изменения скорости растяжения образца применяются схемы регулирования числа оборотов электродвигателя постоянного тока с помощью включения в обмотку якоря или обмотку возбуждения управляющего реостата. Включение реостата требует значительного дополнительного расхода электроэнергии в цепи управления. Кроме того, сопротивление реостата ограничивает пределы изменения частоты вращения электродвигателя в области низких значений скорости растяжения, поэтому при такой схеме регулирования приходится использовать электродвигатель с заведомо увеличенной в несколько раз мощностью с тем, чтобы при минимальной частоте вращения получить требуемое значение крутящего момента на валу двигателя и, таким образом, усилие растяжения образца.  [c.84]

Применение тиристорного управления частотой вращения электродвигателя требует очень малой энергии в цепи управления по сравнению с регулированием с помощью реостата. Благодаря импульсному характеру работы тиристора создаются благоприятные условия для преодоления инерции якоря и электродвигатель обеспечивает сохранение среднего значения крутящего момента при плавном изменении скорости деформирования в пределах нескольких порядков и, что особенно важно, при минимальной частоте вращения двигателя. Кроме того, применение стабилитронов в цепи управления частотой вращения и стабилизированного выпрямителя в цепи обмотки возбуждения электродвигателя позволяет легко обеспечить постоянство величины скорости растяжения образца.  [c.84]


Другой тип конструкции феррозонда изображен на рис. 4, б [51, 52]. В этой конструкции обмотка возбуждения образова-  [c.55]

В [54] описан феррозонд с поперечным возбуждением, содержащий основание из изолированного материала, обмотку возбуждения, выполненную из комбинированного провода (например, медь, изолятор, пермаллой), и соосную с ним измерительную катушку, расположенную поверх обмотки возбуждения. Для упрощения технологии изготовления, улучшения отношения сигнал/помеха и повышения импеданса обмотка возбуждения уложена в зигзагообразные параллельные пазы цилиндрического основания с четным числом прямолинейных параллельных участков и шагом намотки на порядок меньше длины волны. Очевидно, что этот феррозонд принадлежит к датчикам первого типа, представленным на рис. 4, а.  [c.57]

Предложенный в Японии способ непрерывного измерения твердости стальной ленты [9] заключается в том, что она пропускается через проходной датчик, состоящий из обмотки возбуждения и измерительной. Обмотка возбуждения питается переменным током. При большом импедансе цепи для определения магнитного потока постоянной поддерживается одна из трех физических величин (ток возбуждения, напряжение возбуждения, напряжение на измерительной обмотке), а одна из двух  [c.62]

II] был получен Р. Скоттом. Это устройство может быть использовано для непрерывного контроля магнитных и механических свойств ферромагнитных материалов в потоке производства. Оно включает (рис. 1,г) два подковообразных электромагнита 1, расположенных симметрично по обе стороны контролируемого материала 5. На центральной части сердечников электромагнитов помещаются обмотки возбуждения 2 и эталонные 3, а на торцах — измерительные 4 (или датчики Холла), в которых индуцируется сигнал в соответствии с магнитным сопротивлением в зазоре между сердечниками, т. е. в соответствии с магнитными свойствами контролируемого материала. Первичные обмотки 2 соединены так, что создаваемые электромагнитами 1 потоки направлены навстречу друг другу сигналы эталонных обмоток S суммируются. Аналогично соединены и измерительные обмотки 4. Эталонные и измерительные обмотки соединены через автотрансформатор, чтобы при отсутствии в зазоре между сердечниками электромагнитов контролируемого материала сигнал с измерительных обмоток компенсировался сигналом с эталонных и результирующий сигнал, подаваемый на регистрирующее устройство, равнялся нулю.  [c.64]

Ю. С. Калинин и Е. Я- Симонова i[28] большое внимание уделили вопросу отстройки от влияния колебаний зазора на величину считываемой информации при использовании феррозондов в качестве считывающих элементов. Авторы, применяя емкостный датчик зазора, преобразовывали изменение емкости этого датчика в электрический сигнал, с помощью которого регулировали величину тока в обмотке возбуждения измерительного датчика.  [c.72]

При вибрационных обследованиях проводили измерение вибрации подшипниковых опор электродвигателей, редукторов, нагнетателей, элементов фундаментов и трубной обвязки нагнетателя выявление амплитудно-частотных характеристик при пусках и остановках агрегатов снятие спектральных характеристик редукторов, нагнетателей и подшипниковых опор динамическую балансировку роторов электродвигателей в собственных подшипниках выявление расцентровок электродвигатель—редуктор-нагнетатель и др. В результате выявлены как механические, так и электрические причины повышенной вибрации остаточная неуравновешенность ротора электродвигателя, о чем свидетельствуют многочисленные пуски двигателя без редуктора остаточная неуравновешенность колеса редуктора неуравновешенность, вызванная смещением текстолитовых клиньев и смещением пазовых латунных клиньев от чрезмерного нагрева нарушения жесткости подшипниковых опор из-за разрушения текстолитовых изоляционных шайб большие зазоры в подшипниках (0,45—0,6 мм), что приводило к срыву масляного клина (масляное биение) осевое давление ротора на вкладыш вследствие несовпадения магнитных осей ротора и статора в переходных процессах при работе агрегата под нагрузкой межвитковое замыкание в обмотке возбуждения.  [c.28]

Если бы обмотку возбуждения электрической машины (по сути дела электромагнит особой формы) удалось сделать из сверхпроводника, это сразу бы решило ряд проблем. Во-первых, исчезло бы нагревание обмоток. Во-вторых, магнитные ноля и токи в машине возросли бы в несколько раз, что привело бы к резкому сокращению размеров машины. Проведенные исследования показывают, что генератор мощностью в два миллиона киловатт со сверхпроводящей обмоткой возбуждения имел бы меньшие размеры, чем обычный генератор вдесятеро меньшей мощности. Недаром проблема создания сверхмощных электрогенераторов со сверхпроводниками поставлена сейчас в число важнейших.  [c.156]

По способу включения электромагниты постоянного тока подразделяются на электромагниты с обмоткой параллельного возбуждения (шунтовые), катушки которых включаются параллельно обмотке электродвигателя механизма, и на электромагниты с обмоткой последовательного возбуждения (сериесные), включаемые последовательно с обмоткой возбуждения двигателя механизма. Тяговое усилие и характеристика электромагнита параллельного возбуждения не зависят от типа и нагрузки двигателя механизма. Тяговое усилие и ток в обмотке электромагнитов последовательного возбуждения определяются нагрузкой и типом двигателя механизма. При малых нагрузках магнитный поток может оказаться недостаточным для срабатывания магнита. Поэтому обычно такие магниты устанавливают на тормозах механизмов, для которых нагрузка и величина тока меняются мало (например, механизмы передвижения и поворота) или в которых цепь возбуждения является самостоятельной и ток в ней не уменьшается ниже определенного значения.  [c.396]

Асинхронные электродвигатели переменного тока с коротко-замкнутым ротором имеют на статоре две обмотки возбуждения и управления, смещенные по фазе на 90°. Обмотка возбуждения подключена к сети переменного тока, а обмотка управления — к цепи управления. Ротор двигателя неподвижен, пока в обмотку управления не будет подан управляющий сигнал, величина которого может изменяться по амплитуде напряжения или по фазе. Направление вращения ротора будет изменяться в зависимости от того, какое из двух напряжений — возбуждения или управления, будет опережающим. Электродвигатели постоянного тока, пример использования которых был приведен на рис. 132, имеют коллектор и две обмотки на статоре и якоре. Одна из них также является обмоткой возбуждения, другая — обмоткой управления.  [c.209]


Сигнал на разгон и торможение ведомого двигателя снимается с динамического моста ведущего двигателя. Э.д.с., наводимая в роторе генератора для ненасыщенной части характеристики, изменяется пропорционально току (или напряжению) обмотки возбуждения генератора.  [c.112]

Основной способ регулирования режима данных систем генераторов — изменение силы тока в намагничивающей обмотке возбуждения с помощью реостата, включенного последовательно в цедь обмотки. При унеличеттии тока i увеличивается напряжение X0J[0 T0r0 хода Uq генератора, а следовательно, повышается и сила тока дуги. Зависимость тока нагрузки от тока в обмотке возбуждения называется регулировочной характеристикой = = / (ill)-  [c.130]

Числовой подход к решению задачи требует применения ЭВМ и поисковых методов оптимизации. При решении данного примера в качестве параметров оптимизации приняты высота полюсного наконечника hp, высота hm и ширина Ьт полюсного сердечника, высота ярма hj. Однако независимыми являются только параметры Лт и bm, так как hj жестко связан с Ьт, а Ар однозначно определяется одним из равенств а р = Одоп или,Вкр = Вдсл. Они обусловлены тем, что возникающее в процессе оптимизации стремление увеличить окно обмотки возбуждения приводит к превращению соответствующих неравенств в равенства. Все остальные исходные данные расчета индуктора с учетом предыдущих этапов расчета генератора предполагаются фиксированными. Для поиска оптимальных решений использованы градиентный метод и метод локального динамического программирования. Числовое решение рассматриваемой задачи не достигает конечной цели, т. е. не приводит к уравнениям расчета оптимальных значений параметров оптимизации. Конечную цель можно достичь только при сочетании числовых результатов с методами планирования эксперимента. При этом в качестве единичного эксперимента следует рассматривать отдельное оптимальное решение рассматриваемой задачи, полученное для конкретного набора исходных данных. В качестве факторов можно рассматривать любые независимые исходные данные.  [c.105]

Опыт проектирования и создания АСГ показывает, что в настоящее время наилучшей является явнополюсная конструкция с питанием обмотки возбуждения через вращающиеся выпрямители от возбудителя. Хорошее использование АСГ обеспечивают следующие активные и изоляционные материалы сталь электротехническая кобальтовая 27КХ (толщина листа якоря 0,02 см, индуктора—0,07 см), медь типа МГМ прямоугольного сечения, эмалевая нагревостойкая изоляция толщиной 0,015 см. Эти материалы позволяют повысить максимальную индукцию-до 2,1 Тл и максимальное механическое напряжение а до 1.76-10 Н/м .  [c.201]

При решении задачи быстродействия сделаны следующие допущения. Генератор трехфазный, явнополюсный, нагрузка симметричная, частота вращения постоянная, наличием демпферных контуров в первом приближении можно пренебречь. АСГ регулируется только с помощью одной обмотки возбуждения, т. е, управляющим воздействием является напряжение возбуждения U,. При этих допущениях динамику АСГ можно описать уравнениями (4.3).  [c.218]

Рис. 10-4. Ультразвуковой вискозиметр а — зонд вискозиметра — магнитострикциопный датчик 2 — обмотка возбуждения Рис. 10-4. <a href="/info/348151">Ультразвуковой вискозиметр</a> а — зонд вискозиметра — магнитострикциопный датчик 2 — обмотка возбуждения
Если считать ток в обмотке возбуждения постоянным, то состояние рассматриваемой электромеханической системы определяется двумя обобщенными координатами ф и Ih, которые м,огут  [c.283]

Существуют феррозонды различных типов и модификаций [2]. Однако при неразрушающем контроле наибольшее распространение получили дифференциальные феррозонды с продольным возбуждением. Конструктивно они представляют собой два пермал-лоевых сердечника с первичными обмотками возбуждения и вторичными измерительными обмотками на каждом.  [c.10]

В качестве индикатора полей рассеяния от дефектов, обусловленных поперечной тангенциальной составляющей, применены одиночные ферроэлементы, обмотки возбуждения которых питаются переменным током ча-стотой 4000 Гц.  [c.181]

Изобретение феррозондов связывают с именами немецких ученых Ашенбреннера и Губо [9]. Ими был предложен и опробован феррозонд кольцевого типа. В качестве сердечника они использовали железную проволоку, покрытую шеллаком. Обмотка возбуждения наматывалась непосредственно на сердечник, измерительная размещалась на специальном каркасе и настраивалась в резонанс на частоту второй гармоники. Амплитуда э.д.с. удвоенной частоты была пропорциональна измеряемой компоненте поля, действующей в направлении нормали к плоскости витков вторичной обмотки. Магнитометр предназначался для измерения короткопериодичных магнитных возмущений, обусловленных ионосферными явлениями. Постоянная составляющая геомагнитного поля уравновешивалась с помощью магнита, размещенного вблизи феррозонда.  [c.40]

Промышленность, и в особенности электроэнергетическая, тоже, естественно, не могла упустить широких возможностей использования сверхпроводяш,их материалов. Как на пример можно указать на уже построенные в различных странах униполярные двигатели со сверхпроводящей обмоткой возбуждения, мощностью до 10 000 киловатт. По всем показателям — весу, габаритам, стоимости, эксплуатационным расходам и надежности работы — эти электродвигатели превосходят аналогичные машины с медной обмоткой возбуждения.  [c.156]


Смотреть страницы где упоминается термин Обмотка возбуждения : [c.147]    [c.99]    [c.106]    [c.221]    [c.108]    [c.108]    [c.146]    [c.197]    [c.10]    [c.181]    [c.202]    [c.43]    [c.73]    [c.500]   
Автомобиль Основы конструкции Издание 2 (1986) -- [ c.77 ]

Электрооборудование автомобилей (1993) -- [ c.15 ]

Техническая энциклопедия Т 10 (1931) -- [ c.0 ]

Справочник авиационного техника по электрооборудованию (1970) -- [ c.16 , c.60 ]

Техническая энциклопедия Том 6 (1938) -- [ c.0 ]



ПОИСК



Возбуждения



© 2025 Mash-xxl.info Реклама на сайте