Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Преобразование тензоров деформаций и напряжений

Преобразование тензоров деформаций и напряжений  [c.111]

Для тензоров деформаций и напряжений, используемых при построении определяющих соотношений, желательным является свойство объективности. Под объективностью понимается неизменность компонент тензоров в некоторых системах координат при преобразованиях, соответствующих жесткому движению тела [36, 38, 72, 121] ,  [c.26]

Будем считать, что все рассматриваемые функции обладают гладкостью, необходимой для проведения используемых преобразований, и изменяются на временном отрезке [О, тензоры деформаций и напряжений вместе со всеми своими производными равны нулю.  [c.229]


Как мы уже показали, тензоры деформаций и напряжений связаны со своими главными значениями следующими формулами преобразования  [c.111]

Путем некоторых преобразований можно показать, что шести полученных компонентов деформации достаточно для того, чтобы определить линейные и угловые деформации в данной точке в любых направлениях. Таким образом, деформированное состояние в точке определяется шестью компонентами и, так же как и напряженное состояние, представляет собой тензор.  [c.251]

Предположим, что сопротивление среды деформированию не зависит от направления деформирования, т. е. среда изотропна. Это означает, что если в теле создать определенное состояние деформации, описываемое тензором деформации е,у, а затем систему координат подвергнуть произвольному преобразованию (для простоты речь идет о декартовых системах) и после этого в теле создать состояние деформации, по отношению к новой системе описываемое теми же компонентами тензора деформации, что и в первом случае, то компоненты тензора напряжений в обоих случаях совпадут.  [c.47]

В третьей главе было сказано, что шесть компонентов тензора деформаций ehr не являются произвольными функциями координат точки тела, а должны удовлетворять шести условиям совместности деформаций Сен-Венана. Учитывая это обстоятельство, подставим формулы (5,27) в условия совместности деформаций Сен-Венана тогда после ряда преобразований найдем шесть соотношений, связывающих между собою компоненты тензора напряжений. Следовательно, в итоге будем иметь три дифференциальных уравнения (5.26) и шесть соотношений между компонентами тензора напряжений, к выводу которых и приступим. Будем считать, что тело однородное, т. е. Я и не зависят от координат. Тогда полученная система уравнений будет применима только для изотропных, однородных и линейно-упругих тел.  [c.81]

Из пропорциональности деформаций сдвига и касательных напряжений следует совпадение главных осей тензоров напряжений Та и деформаций Т . Поскольку при преобразовании осей координат как для тензора напряжений, так и для тензора деформаций матрица перехода одна и та же, то уравнения (3.30) оказываются инвариантными относительно выбора направления осей.  [c.224]

Введение коэффициента 1/2 перед величинами деформаций сдвига необходимо с формальной точки зрения для того, чтобы преобразования от системы координат х, у, г к системе координат х, у, z происходили по тем формулам, которые соответствуют определению понятия тензора. Тензор деформаций Гд, так же как и тензор напряжений Гв, является симметричным тензором.  [c.30]


Решение строится обратным методом и состоит из нескольких этапов 1) задаемся формой осуществляемого преобразования V- в V-объем, 2) составляется выражение меры (или тензора) деформации, 3) записывается закон состояния, и осуществляется проверка, что определяемый им тензор напряжений удовлетворяет уравнениям статики в У-объеме, 4) определяются поверхностные силы, требующиеся для поддержания этого напряженного состояния. Получаемые при этом порядке построения решения содержательны, если распределение так найденных поверхностных сил (массовые считаются отсутствующими или наперед заданными) достаточно просто реализуемо, а также если постановка задачи допускает замену найденного распределения статически эквивалентной системой поверхностных сил.  [c.686]

Подставляя компоненты матрицы (6.17) в формулы (2.27) и (3.78) преобразования тензоров напряжений и деформаций, находим, что матрица упругих констант для среды,  [c.203]

Преобразование составляющих деформации к новым осям производится по формулам, весьма схожим с (2.5) — (2.7), так как эти составляющие образуют тензор, аналогичный тензору напряжений. Сопоставляя эти два тензора, мы видим, что нормальному напряжению а соответствует относительное удлинение 8, а касательному напряжению т — половина одноименного сдвига V2 7- Следовательно, формулы для составляющих деформации, отнесенных к новым осям, мы получим из (2.3), подставляя в них г вместо а и /о 7 вместо т.  [c.22]

Таким образом, хотя и введенная в 6 гл. I матрица Г и введенная выше матрица S определяют симметричные тензоры второго ранга, однако эти два тензора заданы нами в двух по существу различных системах координат. Несколько ниже тензор напряжения будет преобразован к декартовой системе координат точек тела до деформации. Тогда его компоненты при повороте координат осей будут преобразовываться по закону, идентичному формулам I (6.4). Можно было бы поступить и наоборот—-определить тензор деформации в декартовой системе координат точек тела после деформации. Однако последнее было бы равносильно отказу от материальных координат и переходу к пространственным координатам, что было признано в начале первой главы нерациональным.  [c.64]

Анизотропным однородным будем считать такое тело, упругие свойства которого в разных направлениях различны, т. е. соотношения ежду напряжениями и деформациями (между и в случае малых деформаций определяются тензором упругих постоянных , компоненты которого изменяются при преобразованиях системы координат. Такими свойствами обладают кристаллы и конструктивно-анизотропные тела. Среди последних, например, стеклопластики (тела, образованные густой сеткой стеклянных нитей, скрепленных различными полимерами—смолами), многослойные фанеры и др. (рис. 15 а — полотняное переплетение стеклоткани б—многослойные модели армированных стеклопластиков). В случае конструктивной анизотропии предполагается, что малый объем бУ содержит достаточное число ориентирующих элементов, т. е., по выражению А. А. Ильюшина, является представительным.  [c.42]

Преобразование компонент тензоров напряжений и деформаций к новым осям в общем случае осуществляется по известным формулам [311  [c.18]

Можно было бы ограничиться линейными преобразованиями координат (это делается весьма часто). Однако в нашем анализе неоднородного напряжения и неоднородной деформации такое ограничение неприемлемо. Одной из главных причин применения в реологических приложениях понятия телесного поля является то, что при пользовании ими отпадает необходимость в сложении тензоров в двух или более различных точках одного и того же многообразия (необходимость сравнивать тензоры в соседних точках все же остается, так как этого требует ковариантное дифференцирование).  [c.385]

Симметрия таких величин, как напряжения в элементе какой угодно соответствует преобразованию ком-тензора при повороте прямоугольной системы координат. Это преобразование сводится для напряжений и деформаций к суммированию произведений, содержащих множителями по два косинуса углов поворота осей координат, поэтому ранг соответствующего тензора — второй. Число компонент тензора напряжений не зависит от симметрии среды, а величина компонент не характеризует свойств среды, так как это полевой тензор. Например, действие гидростатического давления можно описать шаровым тензором напряжений, у которого все компо-  [c.8]


Реономные свойства анизотропных тел существенно зависят от ориентации. Для их описания при самом общем подходе могут быть применены, например, соотношения теории термовязкоупругости анизотропных сред, полученные в [10]. Связь между напряжениями и деформациями, записанная в интегральном виде, определяется некоторыми интегральными операторами. Для этих операторов справедливы те же законы преобразования и симметрии, что и для тензора упругости.  [c.55]

Фундаментальные результаты по определению поля упругих напряжений внутри и вне эллипсоидального включения, помещенного в неограниченную однородную деформируемую матрицу, получены Дж. Эшелби [302]. Им показано, что в рассматриваемом случае поле напряжений внутри включения является однородным. Представляя результаты Дж. Эшелби таким образом, чтобы установить связь между деформацией сферического включения (пометим индексом s) и однородной деформацией, характеризуемой тензором с компонентами e,j, вдали от включения, после очевидных преобразований получим  [c.247]

Как и при геометрически линейном деформировании, все три определения упругого материала, рассмотренные в 2.1.2, теоретически эквивалентны при малой деформации тела, материал которого подчиняется закону Гука. Тензоры напряжений s, S и деформаций е, Е связаны преобразованиями поворота (см. 1.3.4 и 1.4.1)  [c.77]

В 3 были установлены дифференциальные уравнения движения жидкости в напряжениях. Чтобы написать эти уравнения через проекции вектора скорости, необходимо воспользоваться соотношениями, представляющими компоненты тензора напряжения через компоненты тензора скоростей деформации. Такое преобразование мы проведём лишь для случая вязкой жидкости, для которой принимается обобщённая гипотеза Ньютона, связывающая компоненты напряжения с компонентами скоростей деформаций линейными соотношениями (11.1) и (11.16) главы I.  [c.90]

Действуя согласно правилам преобразования компонент тензора напряжений и тензора скоростей деформации, можно представить закон пространственного деформирования вязкопластической среды в произвольной системе координат и получить полную систему уравнений для решения задач пространственного течения.  [c.625]

Согласно известным формулам преобразования компонент тензора напряжений и компонент тензора скоростей деформации (см. также круги Мора на рис. 189, 190) имеем в данном случае соотношения  [c.629]

Ориентационное усреднение применяем как средство перехода к описанию свойств таких объемов К Ко, в которых возможна формулировка задачи уже в терминах инженерной механики материалов, т. е. в физически наблюдаемых величинах, характеризующих свойства кристалла как сплошной и относительно однородной среды. Обращение к ориентационным методам усреднения делает предмет анализа математически определенным, поскольку законы преобразования всех переменных в угловых пространствах известны и сводятся к использованию определений такого понятия, как тензор произвольной валентности. В то же время усреднение по пространственным координатам трудноосуществимо, так как конкретное распределение деформаций, напряжений и других переменных по координатам обычно совершенно неизвестно. В некоторых случаях будем прибегать к статистическим методам усреднения, если искомые характеристики действительно определяются какой-либо пространственной статистикой.  [c.13]

Используя правило преобразования напряжений и деформаций, доказать, что упругие константы являются компонентами декартова тензора  [c.226]

Связи, аналогичные (3.8), можно установить и между составляющими тензоров напряжений и деформаций. Для этого оси х, г/, г необходимо совместить с направлением действия соответственно о,, Сд и воспользоваться формулами (3.4), (3.5) и (3.8). После ряда преобразований (3.4) приводится к виду  [c.66]

Оба тензора напряжений Пиолы—Кирхгофа Т(х) и 2 (л ) зависят от деформации ф. Эта зависимость изучается в гл. 3. Она обусловлена, во-первых, структурой преобразования Пиолы и, во-вторых, зависимостью от ф тензора напряжений Коши.  [c.107]

Соотношения типа (1. ) называются формулами преобразования компонент тензора напряжений при повороте координатных осей. Заметим, что вообще всякая физическая величина, определяемая шестью компонентами, которые удовлетворяют формулам преобразования при повороте осей координат типа (1.2), называется симметричным тензором второго ранга. Примерами таких величин являются деформация тела, инерция твёрдого тела с одной неподвижной точкой и другие ). Как числа и как векторы, тензоры можно складывать, вычитать, умно-  [c.19]

При аффинном преобразовании отсчетной конфигурации в актуальную тензор напряжений постоянен и представйм в единой для всех материалов форме записи уравнения состояния. Явное задание его коэффициентов или представление удельной потенциальной энергии через инварианты деформации требовалось на этапе количественного разыскания связей между деформациями и напряжениями в конкретном материале.  [c.206]

Тогда векторы о и е служат изображением тензоров напряжений и деформаций в шестимерных пространствах напряжений и деформаций соответственно. Впоследствии будет выяснено, почему в качестве е , Сь и выбраны удвоенные компоненты тензора ец. Такое изображение не единственно с одной стороны, можно было бы ввести не шестимерное, а девятимерное пространство, если не обращать внимание на симметрию тензоров и е , обозначать, скажем, О12 и Оц как разные компоненты вектора о и не умножать вц i j) на два. С другой стороны, нужно помнить, что представление тензора в виде вектора имеет лишь ограниченный смысл и пригодно только для определенной фиксированной системы отнесения формулы преобразования компонент вектора и компонент тензора при изменении осей координат различны, поэтому, отнеся тензор напряжений или дефор-  [c.236]


В рамках классической механики сплошных сред тензор напряжения и тензор деформации — симметричные двухвалентные тензоры и, следовательно, элементы множества ш. Соответствующим образом конкретизируя физическую размерность базисных элементов, можно рассматривать два экземпляра этого множества — пространство напряжений и пространство деформаций . Девиаторы в каждом из этих пространств образуют линейное подмножество (подпространство), которое обозначим соответственно через Ds и Вэ- Постулат изотропии (А. А. Ильюшин, 1954), представляет собой утверждение, согласно которому для начально изотропной среды траектория процесса в В зависит лишь от таких свойств траектории ъ Вэ, которые инвариантны по отношению к ортогональным преобразованиям В д. Под ортогональными при этом понимаются линейные преобразования пространства 2)а, при которых сохраняются квадратичные скаляры девиаторов (девиатор с компонентами эц преобразуется в девиатор Эц, для которого 5арЭар — ЭацЭар). Так как кубические скалярные инварианты девиаторов произвольное ортогональное преобразование не сохраняют, сфера действия постулата изотропии определенным образом ограничена — включает в себя лишь среды, закон материала для которых описывается уравнениями, не содержащими произведения двухвалентных тензоров (тензоров с компонентами вида и т. д.) и скаляр-  [c.94]

В вышеприведенных рассуждениях мы применяли векторный язык, ведя разговор о тензорах. Для простоты и краткости в дальнб11шем мы будем часто пользоваться и векторной символикой, обозначая через в напряженное состояние, а через г — распределение скоростей деформаций. Однако нужно помнить, что любые векторные операции для векторов о и е совершенно незаконны, их нельзя, например, преобразовывать к другим осям координат, формулы преобразования компонент тензора и вектора различны.  [c.483]

Две оставшиеся компоненсы Е ч з , характеризующие влияние поперечных к плоскости 2 3 касательных напряжений на деформации в ней, зависят от угла поворота осей ф, что потребовало к свойству осевой симметрии материала добавить приставку квази . Между компонентами Е и "П, относящимися к координатным плоскостям 1 2 и 13, должен существовать взаимный переход их значении при угле поворота, меньшем чем л/2. Так как ось 1 является осью симметрии третьего порядка (упругие свойства материала при повороте вокруг нее на 120° сохраняются), угол между компонентами Е и т) равен я/6. Дейст вительно, преобразованием компонент тензора податливости нетрудно убедиться, что  [c.193]

Вместо алгебраического решения характеристического у равнения (1) можно использовать графический способ, известным под названием круга Мора, позволяющий находить компоненты тензора второго ранга в пространстве двух измерений и в произвольной системе ортогональных осей координат (напряжения или деформации в точке, моменты инерции площадей плоских фигур, кривизны нормальных сечений поверхности и пр.). Круг Мора дает графическую интерпретацию линейного преобразования любой симметричной матртЦ) или квадратичной формы второго ранга при повороте осей и, в частности, может служить для решения векового уравнения второй степени.  [c.54]

Накопление опыта решения нелинейных задач при больших деформациях обязано применению полуобратного метода — метода, которым были достигнуты первые выдающиеся успехи и в линейной теории. На первом этапе процесса задаются предполагаемой формой осуществляемого преобразования R (г ( отсчетной неискаженной коифигурации в актуальную, содержащей подлежащие определению функции материальных координат, на втором —по этому заданию составляется выражение меры деформации, а по ней (из уравнения состояния материала) тензор напряжений (Коши Т или Пиола Р). Третий этап — по уравнениям равновесия в объеме и на поверхности находят распределения массовых н поверхностных сил, допускаемые предположенным заданием вектора места R. Требуется, чтобы так определяемые массовые силы соответствовали их заданиям, например, были постоянны (сила веса) или пропорциональны расстоянию от некоторой оси (центробежная сила). Чаще всего принимают к = 0, наперед предполагая, что напряженное состояние создается  [c.134]

Две материальные частицы называются материально-изоморфными друг другу, если в одном и том же динамическом процессе (например, перемещении или деформации) они демонстрируют одно и то же поведение в течение всего времени. Простейший тип материального изоморфизма образуют пространственные трансляции в Жк, т. е. преобразования вида Х = Х + В, где В — постоянный вектор. Однородный материал определяется как материал, инвариантный к преобразованию трансляции с любым В, а это означает, что определяющие уравнения для однородного материала не могут явно зависеть от X. В качестве другого примера рассмотрим случай изотропно упругих тел. Упругие материалы в теории градиента первого поряда (без учета термодинамики) описываются при помощи определяющего уравнения для тензора напряжений Коши следующего вида  [c.108]


Смотреть страницы где упоминается термин Преобразование тензоров деформаций и напряжений : [c.103]    [c.60]    [c.471]    [c.172]    [c.29]    [c.68]    [c.415]    [c.226]    [c.471]    [c.298]    [c.135]    [c.9]   
Смотреть главы в:

Вариационные методы в теории упругости и пластичности  -> Преобразование тензоров деформаций и напряжений



ПОИСК



597 — Деформации и напряжения

Напряжения. Тензор напряжений

Преобразование тензора напряжений

Преобразование тензоров

Тензор деформаций

Тензор напряжений



© 2025 Mash-xxl.info Реклама на сайте