Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Симметрия — основные понятия

Симметрия— основные понятия  [c.46]

Рассмотрим теперь основные понятия квантовой статистической механики — чистые и смешанные квантовые ансамбли, статистический оператор (или матрицу плотности) и квантовое уравнение Лиувилля. Обсудим также симметрию по отношению к обращению времени в квантовой статистике.  [c.22]

Итак, мы напомнили читателю некоторые основные понятия из теории фазовых переходов термодинамически равновесных систем. Если мы посмотрим на отдельные формулы теории фазовых переходов Ландау, то сразу увидим поразительную аналогию с уравнениями для лазера. В самом деле, выражение (13.11), в котором стоит функция 5 , определяемая формулой (13.10), в точности соответствует функции распределения для лазера (при г = д). Таким образом, потенциал V фиктивной частицы, введенный нами в теории лазера, играет ту же самую роль, что и свободная энергия в теории фазовых переходов систем, находящихся в термодинамическом равновесии. Кроме того, уравнение (13.18) имеет точно такой же вид, как упоминавшееся ранее лазерное уравнение. Главное различие же заключается в том, что д — действительная величина, а амплитуда поля В — комплексная. Но нетрудно перенести понятия критического замедления, критических флуктуаций и нарушения симметрии в теорию лазера. С формальной точки зрения в случае лазера мы наблюдаем точно те же явления, что и при фазовых переходах в условиях теплового равновесия. Существенное различие же в том, что лазер является системой, далекой от термодинамического равновесия. Это — открытая система, в нее постоянно накачивается энергия, и она отдает энергию наружу в виде лазерного излучения. Указанная аналогия носит чисто формальный характер. Мощность накачки, которой определяется ненасыщенная инверсия,— аналог температуры. Можно показать, что мощность излучения соответствует энтропии. Теплоемкость же заменяется дифференциальной эффективностью, т. е. изменением мощности излучения, отнесенным к изменению мощности накачки. Несмотря на формальный характер этой аналогии, исследование свойств лазерного излучения с позиций теории фазовых переходов оказалось весьма плодотворным. Тем более, что существует аналогия не только с фазовыми переходами I рода, но и с фазовыми переходами II рода. При таких переходах возникает петля гистерезиса. В определенных лазерных устройствах подобные фазовые переходы могут быть реализованы.  [c.331]


В этой главе вводятся основные понятия, связанные с симметрией кристалла в конфигурационном пространстве [7, 12, 13, 16, 17].  [c.23]

Книга содержит систематическое изложение основ классической механики как вводного раздела курса теоретической физики. Особое внимание уделено раскрытию основных понятий и законов Ньютона, законам сохранения энергии, импульса и момента импульса в их связи с симметрией пространства-времени, а также объяснению физической сущности изучаемых явлений.  [c.2]

В основу настоящей книги положен курс лекций по классической механике, читавшийся автором на физическом факультете Московского государственного педагогического института им. В. И. Ленина на протяжении последних 20 лет. Книга написана в полном соответствии с новой программой по курсу теоретической физики для физических специальностей педагогических институтов, утвержденной Министерством просвещения СССР в 1977 г., в которой механика рассматривается как первый и важнейший раздел единого курса теоретической физики. Поэтому в книге особое внимание уделено принципиальным вопросам классической механики — ее основным понятиям и законам принципам относительности и причинности законам сохранения и их связи с симметрией пространства-времени вариационным принципам механики и общим методам получения первых и вторых интегралов уравнений движения методам качественного исследования поведения механических систем и ее связи с другими разделами современной физики.  [c.3]

В основе наших представлений о твердом теле лежат два ОСНОВНЫХ понятия представление о многочастичной системе и симметрия кристаллической решетки. Свойства симметрии суш,е-ственны для упрош,ения математического описания. Большая информация может быть получена при использовании всех свойств симметрии без количественного решения уравнения Шредингера. Поэтому мы используем вспомогательные методы теории групп. Этим методам посвящено Приложение Б.  [c.17]

Рис. 16.28. К понятию групповых неизвестных а) упруго-симметричная рама б) симметричная основная система и элементарные неизвестные в) единичные состояния основной системы, соответствующие элементарным неизвестным (не обладают ни прямой, ни косой симметрией относительно оси симметрии рамы) г) групповые лишние неизвестные д) единичные состояния, соответствующие групповым неизвестным (обладают прямой или косой симметрией относительно оси симметрии рамы) е) матрица коэффициентов канонических уравнений, соответствующая групповым неизвестным, изображенным Рис. 16.28. К понятию групповых неизвестных а) упруго-симметричная рама б) симметричная <a href="/info/6032">основная система</a> и элементарные неизвестные в) единичные <a href="/info/12627">состояния основной</a> системы, соответствующие элементарным неизвестным (не обладают ни прямой, ни <a href="/info/131345">косой симметрией</a> относительно оси симметрии рамы) г) групповые <a href="/info/5975">лишние неизвестные</a> д) единичные состояния, соответствующие групповым неизвестным (обладают прямой или <a href="/info/131345">косой симметрией</a> относительно оси симметрии рамы) е) <a href="/info/394289">матрица коэффициентов</a> <a href="/info/6077">канонических уравнений</a>, соответствующая групповым неизвестным, изображенным

Книга адресована читателю, серьезно изучающему молекулярную спектроскопию, и хотя предполагается, что он знаком с основными постулатами квантовой механики, теория групп рассматривается здесь из первых принципов. Идея группы молекулярной симметрии вводится в начале книги (гл. 2) после определения понятия группы, основанного на использовании перестановок. Далее следует рассмотрение точечных групп и групп вращения. Определение представлений групп и общие соображения об использовании представлений для классификации состояний молекул даны в гл. 4 и 5. В гл. 6 рассматривается симметрия точного гамильтониана молекул и подчеркивается роль перестановок тождественных ядер и вращения молекулы как целого. Чтобы классифицировать состояния молекул, необходимо выбрать подходящие приближенные волновые функции п понять, как они преобразуются под действием операций симметрии. Преобразование волновых функций и координат, от которых волновые функции зависят, особенно углов Эйлера и нормальных координат, под действием операций симметрии подробно описывается в гл. 7, 8 и 10. В гл. 9 рассматриваются определение группы молекулярной симметрии и применение этой группы к различным системам. В гл. 11 определяется приближенная симметрия и описывается применение групп приближенной симметрии (таких, как точечная группа молекул), а также групп точной симметрии (таких, как группа молекулярной симметрии) для классификации уровней энергии, исследования возмущений, при выводе правил отбора для оптических  [c.9]

Отличительная особенность симметрии состоит в том, что она является фундаментальной закономерностью природы и в то же время принципом познания свойств и законов окружающего нас мира. Понятие симметрии находит широкое применение в математике и кристаллографии, физике атома и физике элементарных частиц, в химии, биологии и механике и других науках. Достаточно отметить, что все основные законы механики установлены на основе симметрии.  [c.30]

Теория групп занимается изучением весьма общих математических понятий. Здесь же мы излагаем ее исключительно для приложений к группам симметрии и поэтому будем избегать чрезмерной абстрактности, иллюстрируя каждый шаг на группах симметрии. Приведем сначала основные определения и элементарные теоремы.  [c.29]

В начале главы определим применяемые в книге основную координатную систему и правило знаков. Далее изучим взаимосвязь между аналитическим конечно-элементным представлением и поведением соответствующего объема реальной конструкции. Вслед за этим определим коэффициенты влияния для элементов конструкции в случае, когда перемещения в зависимости от прикладываемых нагрузок подсчитываются в отдельных точках элемента. Это, естественно, приводит к определению понятий работы и энергии в терминах коэффициентов влияния, а также к доказательству свойства симметрии, которым обладают указанные коэффициенты при рассмотрении линейно-упругого поведения материала.  [c.35]

За последние 50 лет наши взгляды на Природу коренным образом изменились. Классическая наука делала основной упор на равновесие и стабильность. Мы же на всех уровнях от химии и биологии до космологии наблюдаем флуктуации, нестабильности и эволюционные процессы. Всюду вокруг нас необратимые процессы, в которых симметрия во времени нарушена. Различие между обратимыми и необратимыми процессами сначала вошло в термодинамику через понятие энтропии или, как называл ее сэр Артур Эддингтон, стрелы времени. Тем самым наш новый взгляд на Природу приводит к повышенному интересу к термодинамике. К сожалению, большинство вводных курсов посвящено изучению равновесных состояний, и термодинамика в них ограничена идеализированными процессами. Взаимосвязь между происходящими в природе необратимыми процессами, например между химическими реакциями и теплопроводностью, с одной стороны, и скоростью увеличения энтропии, с другой, остается скрытой от изучающего термодинамику. В нашей книге мы предлагаем современное изложение термодинамики, в котором связь между скоростью увеличения энтропии и необратимыми процессами становится ясной с самого начала. Равновесие остается интересной областью исследования, но при современном состоянии науки представ,ляется существенным включать в сферу исследований и необратимые процессы.  [c.7]


Принципиально новым шагом в развитии взаимосвязи симметрия — сохранение были открытие и разработка Софусом Ли теории бесконечно малых канонических преобразований и установление на этом пути канонического варианта обсуждаемой взаимосвязи. С. Ли вошел в историю науки, прежде всего, как создатель теории непрерывных групп. Но основной движуш вй силой этих его исследований было стремление разработать обш,ую теорию интегрирования дифференциальных уравнений, аналогичную теории Галуа для алгебраических уравнений Благодаря новой принадлежаш,ей ему концепции задачи интегрирования дифференциальных уравнений он пришел, с одной стороны, к открытию преобразований прикосновения (или,что то же самое, касательных или контактных преобразований, совпадающих в механике с каноническими преобразованиями. — В. В.) и к теории инвариантов этих преобразований, а с другой стороны, к теории конечных непрерывных групп преобразований... Основные понятия и первые применения тео-232 рии канонических преобразований связаны с именем Якоби (см. гл. XI). Но наиболее глубокие результаты в развитии этой теории были, достигнуты лишь благодаря введению Софусом Ли бесконечно малых преобразований. В 1899 г. Дарбу писал в некрологе, посвященном С. Ли  [c.232]

Одно из основных свойств идеальной просфанственной репгетки симметричность. Вводится понятие оси симметрии. Это - прямая линия, при повороте вокруг которой на некоторый угол фигура совмещается сама с собой. Порядок симметрии п показывает, сколько раз фигура совместится сама с собой при полном повороте на 360 . Согласно представлениям о кристаллах, возможны только оси симметрии 1, 2, 3, 4 и 6 порядков. Это ограничение продиктовано условиями пространственной периодичности и непрерывности структуры.  [c.53]

На возможное возражение, что группа сама по себе является априорным понятием, можно указать, что понятие группы является результатом абстрагирования от различных подвижных инструментов циркуль, линейка и т. д., являющихся орудием геометрического исследования ). Напомним, что уже в геометрии Евклида неявно предполагалось, что все геометрические построения следует проводить с помощью только циркуля и линейки. Смысл этого требования становится ясен только с точки зрения программы Клейна. Геометрические свойства тел выражаются, таким образом, в терминах инвариантов группы и допускают изоморфную подстановку элементов пространства, в котором реализуется группа, и, следовательно, совершенно не зависят от самих геометрических объектов. Укажем, например, на реализацию геометрии Лобачевского на плоскости, предложенную А. Пуанкаре. Приведенный пример указывает на большую методологическую ценность программы Клейна. Аналогичный подход возможен также и в физике, где различные законы сохранения интерпретируются как свойства симметрии относительно различных групп. Основными группами современной физики являются группа Лоренца, заданная в пространстве Минковского, и группа непрерывных преобразований, заданная в криволинейном пространстве общей теории относительности, коэффициенты метрической формы которого определяют поле гравитации. В релятивистской квантовой механике мы переходим от группы Лоренца к ее представлениям, определяющим преобразования волновых функций. Как было показано П. Дираком, два числа I и 5, задающих неприводимое представление группы Лоренца, можно интерпретировать как константы движения угловой момент и внутренний момент частицы (спин). Иначе говоря, операторы, соответствующие этим инвариантам, перестановочны с гамильтонианом (квантовые скобки Пуассона от гамильтониана и этих операторов равны нулю). Числа, обладающие этими свойствами, называются квантовыми числами. В работах Э. Нетер дается общий алгоритм, позволяющий найти полную систему инвариантов любой физической теории, формулируемой в терминах лагранжева или гамильтонова формализмов. В основу алгоритма положена указанная выше связь между инвариантами группы Ли и константами движения уравнений Гамильтона или Лагранжа. В качестве простейшего примера рассмотрим вывод закона сохранения углового момента механической системы, заданной лагранжианом Г(х, X, (). Вводим непрерывную группу вращения, заданную системой инфи-  [c.912]

В симметрии подобия считаются равными не только действительно равные фигуры, но и все подобные им, т. е. все фигуры одной и той же формы, например, члены параметрических рядов различных узлов, машин, механизмов, приборов, станков и т. д., отличающихся друг от друга не компоновкой и не формой, а только размерами. Операции симметрии подобия представляются своеобразными аналогиями трансляций, отражений в плоскостях, поворотов вокруг осей с той разницей, что здесь одновременно увеличивается или уменьшается масштаб подобных фигур и расстояний между ними. Примером трансляции симметрии подобия могут быть подшипники одного параметрического ряда, выстроенные в выставочную линию. Примером винтовой оси симметрии подобия в природе (Служит расположение постепенно уменьшающихся к вершине ветвей по винтовой оси вокруг конического ствола дерева. Простая трансляция симметрии и трансляция симметрии подобия практически характеризуют основные признаки одного из важней,-ших понятий теории архитектурной компози-  [c.49]

Точное геометрическое понятие зеркальной симметрии в художественном конструировании растворяется нередко в смутном понятии уравновешенности, которое сближает методы композиции в технике с искусством. В художественном конструировании, как и в изобразительном искусстве, существуют композиции симметричные и асимметричные. Промежуточной между ними является композиция дисиммет-ричная, в которой симметричность основных элементов нарушена, но общее равновесие композиции сохраняется. При этом говорят о выполнении так называемого правила рычага , или закона равновесия масс , в живописи, т. е. зрительно ощущаемом балансе обеих по-  [c.53]


Реиормализационная группа (РГ) для критических явлений. Сочетание описанных выше операций крупнозернистого разбиения и изменения масштаба определяет совокупность преобразований РГ Д , обладающих групповым свойством = (точнее, полугрупповым, т. к. для них не определено обратное преобразование). Окончательно преобразование R, для РГ можно определить как преобразование = в т. н. параметрическом или (1-пространстве, где каждая точка ц представляет собой набор параметров эфф, блочного гамильтониана, а совокупность преобразований (/Ij—семейство нек-рых траекторий в нём. В общем случае размерность пространства ji превосходит размерность пространства параметров исходного ячеечного гамильтониана (го, и, г) и растёт по мере роста числа преобразований РГ, однако обычно удаётся ограничиться подпространством основных (доминирующих) взаимодействий. Наиб. физ. интерес в методе РГ представляют неподвижные точки ц, инвариантные относительно преобразований симметрии т. е. обладающие свойством при нек-ром конечном S (а следовательно, и в пределе s-> ). Для этих точек вводится понятие критической поверхности,  [c.623]

Современники Тартальи оценили лишь его вклад в геометрию траекторий. Для нас же теперь ясно, что основным его достижением на пути к созданию новой механики является анализ обоих видов движения и вывод об их симметрии, что позволило Тарталье прийти к выводу об их сочетании, хотя и не привело к понятию о единстве этих движений.  [c.106]

С другой стороны, вариации координат (или виртуальные перемещения), широко используемые впервые Лагранжем,можносчитатьирообразами лиев-ских бесконечно малых преобразований непрерывных групп. Больше того, представление об евклидовой симметрии пространства, восходящее к геометрии Евклида и постепенно утвердившееся ко времени Ньютона в физике, в сочетании с представлением о непрерывности пространства приводили естественным образом к понятию бесконечно малых движений пространства. Введя бесконечно малые канонические преобразования и открыв их групп о- вую природу, С. Ли нашел тем самым ключ ко всей гамильтоновой динамике как теории групп . Основное значение в этом новом понимании механики имела теорема, которой С. Ли придавал фундаментальное значение и которая представляет собой нечто иное, как своеобразный канонический вариант взаимосвязи симметрия — сохранение .  [c.232]

Прошло пятьдесят лет с тех пор, как в математике утвердились понятия группы и алгебры Ли. Термин алгебра Ли введен Г. Вейлем в 1934 г. [ 1, с. 467]. На языке групп Ли [ 2] и их инвариантов формулируется одна из основных задач аналитической механики, связанная с интегрированием уравнений движения. Понятие алгебраических инвариантов введено Дж. Сильвестром в 1851 г. и использовано Ф. Клейном для классификации различных геометрий. В работе [ 3], известной под названием Эрлангенской программы , Ф. Клейн предлагает любое многообразие задавать системой инвариантов относительно группы преобразований. В 1872—1876 гг. опубликована серия работ С. Ли [4], в которой устанавливается глубокая внутренняя связь симметрия — законы сохранения , свойственная задачам аналитической механики [5. 6]. С. Ли показал, что первые интегралы движения гамильтоновых систем являются следствием существования группы контактных преобразований фазовых переменных.  [c.70]

В настоящей работе мы сосредоточили внимание на применении метода виртуального варьирования и метода переменного действия в области механики в связи с изучением классических дифференциальных и интегральных принципов. Метод переменного действия позволяет изучать основные образы всех трёх картин механики силовой, энергетической и геометрической. Без понятия о действии не обходятся и в других областях естествознания. Вспомним, например, принцип неопределённости в квантовой механике законы сохранения и симметрии уравнений движения в математической физике теорию интегральных инвариантов построение аналитической динамики систем Гельмгольца, Биркгофа и Намбу и т. д. Эти и многие другие направления исследования остались вне рамок книги. Обобщая сказанное, можно заметить важнейшую роль понятия о действии в развитии теории несвободных динамических систем и в становлении новой парадигмы науки в целом. Достаточно отметить, что понятие о действии стоит в одном ряду с понятиями энтропии и информации, которые являются концептуальными для естествознания.  [c.264]

В главах 2—7 и 9 излагается теория пространственных групп. В гл. 2 дается описание структуры кристаллических пространственных групп как групп симметрии трехмерного пространства кристалла. Особое внимание уделяется математической структуре кристаллических пространственных групп. Мы не приводим полного описания 230 пространственных групп, так как оно вместе с иллюстрациями имеется в литературе. В гл. 3 дается обзор стандартного материала по теории представлений конечных групп. Хотя этот материал широко известен, он необходим нам как основа для изложения теории представлений пространственных групп. В гл. 4 излагается теория представлений группы трансляций Неприводимые представления групп трансляций кристалла играют центральную роль в теории, поэтому важно рассмотреть их надлежащим образом, а также правильно ввести понятие первой зоны Бриллюэна. Далее в гл. 5 дается детальный вывод построения и свойств неприводимых предста влений и векторных пространств кристаллической пространственной группы . Этот материал оказывается центральным для характеристики собственных функций и собственных значений при их классификации по симметрии. Рассмотрение в главах 6 и 7 посвящено определению коэффициентов приведения для пространственных групп. Эти коэффициенты приведения являются основными входящими в рассмотрение величинами при определении правил отбора. С математической точки зрения они являются коэффициентами рядов Клебша — Гордана в разложении прямого произведения неприводимых представлений двух пространственных групп.  [c.19]


Смотреть страницы где упоминается термин Симметрия — основные понятия : [c.160]    [c.270]    [c.236]    [c.236]    [c.21]    [c.207]    [c.61]   
Смотреть главы в:

Архитектура машины  -> Симметрия — основные понятия



ПОИСК



SU (3)-Симметрия

Понятие о SU (6)-симметрии



© 2025 Mash-xxl.info Реклама на сайте