Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод уравнений движения

Прямой метод. Уравнение движения системы с одной степенью свободы и с вязким демпфированием, на которую при = 0 действует импульсная нагрузка F6(t), можно представить в виде однородного дифференциального уравнения  [c.162]

У равнения Дайсона. К задаче о вычислении функций Г рина и корреляционных функций можно подойти с разных сторон. Например, дифференцируя их по временным аргументам и используя затем уравнения движения для операторов поля, можно получить так называемую цепочку уравнений Мартина-Швингера [124], которая аналогична цепочке уравнений для приведенных матриц плотности, рассмотренной в главе 4 первого тома. Расцепляя на каком-то шаге цепочку Мартина-Швингера с помощью аппроксимаций для высших функций, можно получить приближенные замкнутые уравнения для одночастичных функций Грина и корреляционных функций (см., например, [49]). Другой путь состоит в том, чтобы записать гамильтониан в виде Я = Я + Я, где Я описывает свободные частицы, и перейти в представление взаимодействия, разложив функции Грина и корреляционные функции в ряды по Я. Для суммирования бесконечных последовательностей членов теории возмущений удается построить диаграммную технику [19] (см. также [55]). В настоящее время хорошо изучена связь аппроксимаций высших функций в цепочке Мартина-Швингера с суммированием диаграмм определенных типов, поэтому выбор подхода, во многом, дело вкуса. Поскольку метод уравнений движения более удобен для исследования общих свойств временных функций Грина, именно им мы и воспользуемся ).  [c.43]


Во-вторых, описанная в работе [11] графическая техника позволяет вычислять именно температурную функцию Грина, входящую в правую часть соотношения [6.14]. Отметим, что для нахождения температурной функции Грина можно воспользоваться и другими методами, например методом уравнений движения или методом уравнений в функциональных производных 112].  [c.66]

Пренебрежем сначала членом электрон-электронного взаимодействия в выражении (3.157) и посмотрим, как рассматриваемый метод уравнений движения приведет нас к приближению Хартри — Фока. Непосредственно вычисляя в гамильтониане (3,157) коммутаторы р (к, р)  [c.188]

Метод уравнений движения  [c.107]

Решение уравнений движения представляется, вообще говоря, тривиальным, если пренебречь силами инерции в жидкости. При таком упрощении легко вычислить значение Ут на основании кинематики физических границ системы. Фактически существует другой метод определения т , базирующийся только на кинематических измерениях (в то время как использование уравнения (5-4.9) предполагает также измерение напряжений). Этот метод будет подробно обсужден только для некоторой геометрически простой ситуации, анализируемой ниже. Для случаев, относящихся к другой геометрии, будут приведены лишь окончательные результаты.  [c.196]

Так, в первой части введены дифференциальные уравнения движения жидкости, теорема о количестве движения в применении к жидкости, понятие о я-тео-реме и методе размерностей и др.  [c.3]

Для получения критериального уравнения движения плотного слоя методами теории подобия преобразуем исходные уравнения. Тогда из условия предельного равновесия (9-30)  [c.289]

Если остановиться на методах расчета распределения потока вдоль каналов с путевым расходом, разработанных в одномерном приближении без учета структурных неоднородностей, вызванных оттоком или притоком массы, то к получаемому при этом уравнению движения различные исследователи приходят двумя основными путями исходя из уравнения импульсов [80, 104] и уравнения энергии [29, 39, 121 ]. В случае изолированных раздающего и соответственно собирающего каналов (см. рис. 10.29, а и б) получается следующее дифференциальное уравнение [73]  [c.294]

Метод решения задач ламинарного движения заключается в составлении дифференциального уравнения движения элемента жидкости, преобразовании этого уравнения с помощью подстановки выражения закона жидкостного трения Ньютона и интегрировании его при заданных граничных условиях задачи.  [c.187]


Представленный в данной главе феноменологический метод вывода уравнений движения сплошных сред обладает логической стройностью и эвристической силой. Для получения замкнутых систем уравнений необходимо привлечение дополнительных гипотез или соотношений, связывающих макроскопические характеристики. В некоторых случаях такой метод приводит к желаемым результатам — правильному количественному описанию процессов в гетерогенных смесях.  [c.51]

В следующих главах (гл. 2 и 3) представлен другой более подробный и явный метод вывода уравнений движения многофазных сред — метод осреднения.  [c.51]

Составляя дифференциальные уравнения движений, можно было воспользоваться и другим методом.  [c.553]

Колебания, совершаемые материальной точкой под действием силы, пропорциональной расстоянию, будут подробнее изучены в х л. XIX. Там будет рассмотрен другой метод интегрирования получающихся в этом случае дифференциальных уравнений движения.  [c.194]

Имея уравнения движения точки, можно методами кинематики определить все характеристики данного движения.  [c.199]

При решении задач уравнением (66) целесообразно пользоваться тогда, когда система состоит только из одного вращающегося тела. Если в системе кроме одного вращающегося тела есть еще другие движущиеся тела (см., например, задачи 134, 140 и т. д.), то уравнение движения лучше составлять с помощью общих теорем или методов, изложенных в 141 и 145.  [c.324]

Значение принципа Даламбера состоит в том, что при непосредственном его применении к задачам динамики уравнения движения системы составляются в форме хорошо известных уравнений равновесия это делает единообразным подход к решению задач и часто упрощает соответствующие расчеты. Кроме того, в соединении с принципом возможных перемещений, который будет рассмотрен в следующей главе, принцип Даламбера позволяет получить новый общий метод решения задач динамики (см. 141).  [c.345]

Принцип Даламбера дает единый метод составления уравнений движения любой несвободной механической системы. Им особенно удобно пользоваться для нахождения реакций связей, когда движение системы известно или может быть определено с помощью уравнений, не содержащих реакций, например с помощью теоремы об изменении кинетической энергий или уравнений, которые будут получены в 141, 14,5. При этом из рассмотрения исключаются все наперед неизвестные внутренние силы. В случаях, когда надо определить реакции внутренних связей, систему следует расчленить на такие части,. по отношению к которым искомые силы будут внешними.  [c.348]

Обращаем внимание на то, что для системы с одной степенью свободы составление дифференциального уравнения движения методом Лагранжа сводится по существу к тем же расчетам, что и при использовании теоремы об изменении кинетической энергии.  [c.381]

Найти канонические уравнения движения материальной точки и уравнение ее движения, применив метод интегрирования Остроградского — Якоби.  [c.385]

Аналитический метод. При аналитическом методе должны быть заданы уравнения движения плоской фигуры (рис. 6.3)  [c.372]

Найти уравнение движения груза, применив метод вариации произвольных постоянных. Ось д направлена вдоль оси пружины вниз, начало отсчета взято в положении статического равновесия груза,. Начальные условия движения груза  [c.120]

Метод кинетостатики. Методом кинетостатики называется формальный прием, дающий возможность записать уравнения движения в виде уравнений равновесия.  [c.349]

В формулировке метода кинетостатики сила инерции именуется фиктивной, так как она к данной материальной точке не приложена. (В действительности эта сила инерции приложена к ускоряющим материальным точкам и к связям, наложенным на данную точку.) Добавление к силам и силы инерции 7, не приложенной к данной точке, приводит, естественно, к тому, что уравнения движения принимают вид уравнений равновесия.  [c.349]


Не прибегая к методу кинетостатики, эту прямую задачу можно было решить с помощью дифференциального уравнения движения груза в проекции на ось х  [c.352]

Таким образом, применение в этой задаче метода кинетостатики несколько более громоздко (приходится дополнительно определить и изобразить силу инерции) и никаких преимуществ перед использованием дифференциального уравнения движения материальной точки не имеет.  [c.352]

Из общего уравнения динамики вытекают дифференциальные уравнения движения системы материальных точек, в которые не входят силы реакций идеальных связей. Возможно решение как прямых (определение сил по заданному движению), так и обратных задач (определение движения по заданным силам) динамики. При решении обратных задач приходится интегрировать составленную систему дифференциальных уравнений движения. Заметим, что использование общего уравнения динамики является формальным методом составления дифференциальных уравнений движения системы. Этот метод является менее удобным и менее эффективным по сравнению с применением уравнений Лагранжа второго рода (читатель сможет в этом убедиться, ознакомившись с содержанием следующего параграфа).  [c.414]

Если по условию задачи требуется определить силы реакций связей, то задачу следует решать в два этапа 1) с помощью уравнений Лагранжа или общего уравнения динамики определить ускорения точек системы, 2) применив принцип освобождаемости от связей, использовать дифференциальные уравнения движения соответствующей материальной точки, либо применить метод кинетостатики.  [c.539]

Основными и вместе с тем наиболее трудными являются обратные задачи динамики, в которых по заданным силам определяется движение. При этом приходится интегрировать систему дифференциальных уравнений движения. Эти задачи редко удается решить в квадратурах. Иногда приходится применять приближенные методы интегрирования или пользоваться математическими машинами.  [c.544]

Наиболее общим приемом составления дифференциальных уравнений движения системы материальных точек является применение уравнений Лагранжа или общего уравнения динамики. (Применение общего уравнения динамики является менее удобным и притом формальным методом в связи с использованием сил инерции.)  [c.544]

В присутствии внешнего пробного заряда, потенциал взаимодействия с которым задается выражением (3.1096). Данный способ, по существу, совпадает с методом, предложенным Эренрейхом и Коэном [47]. Он весьма близко связан с методом уравнений движения , изложенным в 2 настоящей главы. Итак, будем искать величину  [c.188]

В дальнейщем мы рассмотрим прежде всего упрощенный способ учета влияния межэлектронного взаимодействия на величину матричных элементов взаимодействия электронов с фононами, а также на частоту звуковых волн. Этот способ был предложен Бардином и ав-, тором настоящей книги в работе [4]. Затем путем непосредственного обобщения понятия диэлектрической проницаемости и метода уравнений движения, обсуждав-щегося в гл. III, мы рассмотрим процессы 1, 2, 3, 4 и 5.  [c.304]

Г. В большинстве технических задач приведенный момент движущих сил и приведенный момент сил сопротивления задаются в виде графиков, в виде графика также задается и приведенный MOMeFiT инерции. Поэтому решение уравнений движения механизма ведется графочисленными методами. При графочисленном решении уравнений движения удобно применить уравнение кинетической энергии. Для этого можно использовать диаграмму Т = Т (Уп), устанавливающую связь между кинетической энергией Т и приведенным моментом инерции  [c.349]

Выражение для кинетической энергии получилось проще, что, конечно, упрощает составление дифференциальных уравгенин движения, хотя метод их составления остается тем же (см. f 76). Следует заметить, что уравнения движения для этого конкретного случая соосного механизма могут быть несколько упрои сны, если за одну из обобш.енных координат принять угол м жду звенья.ми АВ AD.  [c.363]

Общие уравнения движения в канале при наличии решетчатых перегородок 92 9. Регулярная неравномерность потока 96 10. Полная неравномерность потока 102 11. Полуэмпирическпй метод расчета растекания узкой струи по фронту сопротивления 108  [c.349]

В монографии последовательно изложены теоретические основы, необходимые для понимания и расчета движения гетерогенных или многофазных смесей в различных ситуациях. Такие смеси широко представлены в различных природных процессах и областях человеческой деятельности. Подробно изложены вопросы вывода уравнений движения, реологии и термодинамики гетерогенных сред. Для этого рассмотрены как феноменологический метод, так и более глубокий метод осреднения. Получены замкнутые системы уравнений для монодпсперсных смесей с учетом вязкости, сжимаемости фаз, фазовых переходов, относительного движения фаз, радиальных пульсаций пузырей, хаотического движения и столкновений частиц и других эффектов. Рассмотрены уравнения и постановки задач применительно к твердым пористым средам, насыщенным жидкостью. Описаны имеющиеся в совремеввой литературе решения задач о движении и тепло- и массообмене около капель, частиц, пузырьков.  [c.2]

Численный эксперимент на основе конечно-разностных методов интегрирования уравнений движения, а также методов сращиваемых асимптотических разложений полей скоростей [61], температур и концентраций [17] около частицы и вдали от нее позволяет обобщитьТприведенные формулы (см. [6]) на случаи конечных чисел Рейнольдса Re и чисел Пекле Pei и Pei  [c.263]


Для решения задач динамики механических систем со многими степенями свободы методы, принятые в классической теории механизмов и машин, оказываются несостоятельными. Эти задачи требуют более мощного аппарата общей механики и математики, в частности применения дифференциальных уравнений движения механических систем в лагранжевых и канонических 1еременных, а также теории линейных и нелинейных колебаний.  [c.53]

Приняв лагранжев спектр турбулентности, Чен рассмотрел стационарный ) случай, когда начальный момент временя о равен — схз. В. лагранжевой системе координат прослеживается путь частицы и отмечаются статистически осредненные характеристики потока II твердой частицы. Первоначальная методика Чена была модифицирована Хинце в отношении определения интенсивностей и коэффициентов диффузии. Эти теоретические методы, а также методы Лью [497], Со/ [721 [, Фрпдлендера [232] II Ксенеди [134] были обобщены Чао [104] путем рассмотрения приведенного выше. лагранжева уравнения движения как стохастического, к которо.му внача.ле при.меняется преобразование Фурье. Излагаемый ниже метод принадлежит Чао.  [c.50]

Тей.лор и Акривос [791] рассчитали движение капли в неподвижной неограниченной жидкой среде при малых числах Рейнольдса, решая уравнение движения методом возмущений. При малых числах Вебера We капля деформируется в сплющенный сфероид, а с увеличением We приобретает форлгу сфероидальной чашки. Для капли, поверхность которой можно описать уравнением ria = 1 -г OS 9, где а — радиус соответствующей сферической капли, а  [c.109]

Вместо искусственного сочетания некоторых общих теорем и уравнений динамики, выбор которых представляет значительные трудности, указанные методы быстро и естественно приводят к составлению дифференциальных уравнений движения. Удачный выбор обобщенных координат обеспечивает простоту и изящество решения задачи. Удобно и то, что составленные дифференциальные уравнения движения не входят силы реакций идеальных св5Гзей, определение которых обычно связано с большими трудностями (силы реакций связей при движении системы являются функциями от времени, положения, скоростей и ускорений точек системы).  [c.544]


Смотреть страницы где упоминается термин Метод уравнений движения : [c.5]    [c.240]    [c.240]    [c.139]    [c.63]    [c.473]    [c.539]   
Смотреть главы в:

Элементарные возбуждения в твёрдых телах  -> Метод уравнений движения



ПОИСК



Движение, метод

Уравнение метода сил



© 2025 Mash-xxl.info Реклама на сайте