Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общие уравнения механики деформируемых твердых тел

ОБЩИЕ УРАВНЕНИЯ МЕХАНИКИ ДЕФОРМИРУЕМЫХ ТВЕРДЫХ ТЕЛ  [c.96]

Некоторые формулы сопротивления материалов получены с помощью общих уравнений механики деформируемого твердого тела, что способствовало более компактному построению курса.  [c.2]

Многие формулы, используемые в традиционных курсах сопротивления материалов, в учебнике получены с помощью общих уравнений механики деформируемого твердого тела. Это способствует лучшему пониманию тех допущений, которые лежат в основе используемых формул, и более обоснованному применению их при расчете конструкций на прочность и жесткость.  [c.3]


При составлении уравнений механики деформируемого твердого тела выбирается соответствующая система координат. В зависимости от формы тела используются декартовы, полярные, цилиндрические координаты и др. Эти уравнения можно записать также и для общего случая произвольных криволинейных координат. В данной главе используем наиболее часто применяемую в задачах декартову систему. В последующих главах для характерных задач покажем также особенности использования полярной системы. Применение других систем координат можно найти в более полных курсах теории упругости.  [c.25]

В общем случае все основные уравнения механики деформируемого твердого тела или. любую их часть можно заменить условием стационарности некоторого функционала.  [c.41]

Оператор A(V, ) назовем оператором вязкоупругого равновесия. Для построения общих решений линейных уравнений механики деформируемого твердого тела важную роль, как было показано в предыдущих главах для задач теории упругости, играют соотношения взаимности, связывающие два произвольных поля перемещений в данном теле.  [c.131]

В первом разделе тома даются принципы и основные уравнения механики упругого деформируемого твердого тела теории деформаций и напряжений, дифференциальные уравнения равновесия, связь между компонентами напряжения и деформации, общие теоремы теории упругости и строительной механики, вариационные принципы и их использование для решения задач механики деформируемого твердого тела, методы конечных и граничных элементов.  [c.16]

Различия в модельных представлениях о свойствах тела, которые используются в каждом из перечисленных выше разделов механики деформируемого твердого тела, порождают существенные различия в методах исследования. Каждый их этих разделов механики деформируемого твердого тела имеет свою историю, свой предмет изучения и метод исследования. Именно это и дает основание рассматривать теорию упругости, теорию пластичности и теорию ползучести как самостоятельные науки. Конечно, в этих науках сохранилось и много общего -структура и содержание основных уравнений отличие связано с формулировкой физических соотношений, которыми устанавливается связь между напряжениями и де рмациями.  [c.18]


В последние годы при решении краевых задач механики сплошных сред и, в частности, механики деформируемого твердого тела широкое использование получил метод граничных интегральных уравнений, часто именуемый методом граничных элементов. При использовании этого метода требуется разбиение на конечные элементы лишь границы изучаемой области, что ведет к значительному уменьшению числа конечных элементов, а следовательно, и узловых неизвестных по сравнению с сеточными методами, требующими дискретизации всего объема рассматриваемой области (метод конечных разностей, метод конечных элементов). Отсюда следует, что для получения решения методом граничных элементов (МГЭ) требуется меньший объем исходных данных и меньший объем оперативной памяти ЭВМ, что в итоге может значительно снизить общую трудоемкость решения задачи.  [c.65]

Метод граничных элементов (МГЭ) — это метод решения краевых задач для дифференциальных уравнений в частных производных, появившийся в результате сочетания идей теории потенциала с методами современной теории аппроксимации. МГЭ, с точки зрения теории аппроксимации, имеет много общих черт с широко известным методом конечных элементов, но отличается от него существенным преимуществом дискретизация осуществляется, как правило, не внутри области, в которой ищется решение, а на ее границе. Такое упрощение достигается путем точного удовлетворения исходным дифференциальным уравнениям с помощью представлений решения в виде, характерном для теории потенциала. Указанные представления могут быть использованы в рамках МГЭ лишь в случае, когда известны в явном виде (точно или приближенно) фундаментальные решения (или функции Грина) для рассматриваемых дифференциальных уравнений 1 исследованы граничные свойства соответствующих потенциалов. Путем предельного перехода на границу в формулах представления решения получаются граничные интегральные уравнения (ГИУ), которые являются основным объектом аппроксимации Б МГЭ. Этим объясняется еще одно (более раннее) название МГЭ — метод граничных интегральных уравнений. Заметим, что возникающие в теории упругости и в других разделах механики деформируемого твердого тела ГИУ часто являются сингулярными интегральными уравнениями [114, 107, 84], методы аппроксимации которых далеко не тривиальны.  [c.3]

Деформационная теория термопластичности. Среди разнообразных задач механики деформируемого твердого тела, связанных с определением напряженно-деформированного состояния элементов конструкций из упругопластических материалов, встречаются такие задачи, общим условием в которых является изменение в процессе нагружения всех компонентов девиатора напряжений в окрестности каждой точки среды в одном и том же отношении. В этом случае нагружение называют пропорциональным и при анализе упругопластических напряжений и деформации можно уже исследовать не процессы, а конечные состояния, когда между собой связаны компоненты тензоров напряжений и деформации и температура, т.е воспользоваться соотношениями деформационной теории термопластичности. Для однородной изотропной среды уравнения этой теории, в принципе, можно получить как частный случай теории пластического течения для изотропно упрочняющихся материалов с условием текучести Мизеса.  [c.156]

Принцип возможных перемещений, положенный Лагранжем в основу механики, оказался одним из наиболее общих и плодотворных методов исследования механического движения и равновесия материальных тел, однако механика, являющаяся наукой о природе, не стала главой математического анализа. Задачи, относящиеся к теории упругости, теории пластичности, гидро- и аэромеханике, т. е. к механике деформируемых тел, в большем числе случаев получают ясное решение, если из необходимых уравнений классической механики твердого тела взять те, которые получаются методом возможных перемещений. И вообще, мне кажется, можно сказать наперед, что все общие принципы, которые еще могли бы быть открыты в учении о равновесии, представили бы собой не что иное, как тот же самый принцип возможных перемещений, рассматриваемый с  [c.34]


В последнее время ситуация резко изменилась. Начиная с 1950 г. широкое применение нашли многие новые материалы, поведение которых уже нельзя описать классическими линейными теориями. Термовязкоупругость зарядов твердотопливных двигателей, закритическое поведение гибких конструкций, использование сильно деформируемых надувных конструкций, нелинейное поведение полимеров и синтетических материалов — вот лишь несколько новых областей исследования, стимулировавших интерес к нелинейной механике твердого тела. Сейчас уже сформулирована теория упругости в общем виде, предложены новые нелинейные теории вязкоупругости и термовязкоупругости и выработаны основные, ставшие уже общепризнанными, принципы получения уравнений состояния нелинейных материалов. Девизом современных изысканий в области нелинейного поведения материалов  [c.9]

В рамках теории упругости наследственные модели деформируемых тел рассматривались в механике по предложению Л.Больцмана с конца XIX века [50]. Их основу составляет идея Больцмана о том, что уравнения состояния твердых тел, определяющие связь между локальными напряжениями и деформациями, должны выражаться соотношениями, учитывающими, например, историю деформирования в окрестностях данной точки упругой (наследственно-упругой) среды. В общем такая связь в линейном случае может быть представлена с помощью введения некоторого интегрального оператора в виде [51] (также см. ссылку на монографии [64]вЧ.1)  [c.152]

Если уравнения совместности деформаций, имеющие чисто геометрический характер, могут быть составлены с любой степенью точности чисто аналитически, минуя эксперимент, а уравнения равновесия, опирающиеся на общие для всех тел и хорошо известные давно установленные экспериментальные факты, не нуждаются в опытной проверке, то последняя система — система определяющих уравнений — может быть составлена лишь на основании эксперимента, выясняющего характер сопротивления каждого тела внешним воздействиям. Поэтому мера достоверности теории полностью зависит от идейной полноценности и точности эксперимента, положенного в ее основу, и от адекватного отображения результатов этого эксперимента в математическом аппарате теории через определяющие уравнения. Отмеченным фактом обусловлено фундаментальное значение для всей механики твердого деформируемого тела тех экспериментов, которым посвящена настоящая книга.  [c.8]

Во второй половине XX века стало модным утверждать, что теоретическая механика твердого деформируемого тела построена при минимуме обращений к эксперименту, и что бурное развитие линейной теории упругости в первой половине XIX века с ее динамическим аналогом в электромагнетизме и главные успехи нелинейной механики в нашем столетии достигнуты специалистами, многие из которых мало уделяли внимания эксперименту, в особенности тогда, когда дело касалось определяющих уравнений. Можно, однако, указать и на то, что состояние механики твердого деформируемого тела обычно характеризуется степенью успеха, достигаемого за счет того, что теоретические предпосылки поддаются аналитическому описанию в публикациях, имеющих общий или частный характер, т. е. скорее характеризуется логической математической представимостью, нежели представимостью в терминах разумного экспериментального наблюдения, которое во многих случаях далеко уходит за пределы ограничений, обусловленных уровнем компетентности современных теоретиков.  [c.38]

При использовании метода конечных элементов для решения задач, не связанных с механикой твердого деформируемого тела, требуется более общий подход к построению соотношений для элемента. Таким подходом является метод взвешенных невязок (МВН) [5.3]-В методе взвешенных невязок считается, что выбранная для аппроксимации независимой переменной в задаче математической физики пробная функция (т. е. рассматриваемые в разд. 5.1 и 5.2 полиномы), вообще говоря, не удовлетворяет соответствующим определяющим уравнениям. Так, подстановка пробной функции в определяющие дифференциальные уравнения приведет к невязке, обозначенной через R. Чтобы получить наилучшее решение, требуется минимизировать интеграл от невязок по области, рассматриваемой в задаче, т. е.  [c.142]

В гл. 5...9 изложены основы механики деформируемого твердого тела, на основе которых в дальнейшем (гл. 10... 15) рассмотрены более сложные вопросы, чем в гл. 2...4, традиционные для курса Сопротивление материалов . Это задачи изгиба, кручения, устойчивости стержней. В гл. 15...19 курса на основе полученных ранее (гл. 5...9) общих уравнений механики деформируемого твердого тела излагаются теории пластин и оболочек, а также плоская и пространственная задачи механики деформируемого твердого тела. Такой принцип изложения опробован при чтении курса лекций для студентов специальностей Промышленное и гражданское строительство , программа которого включает в себя как традиционный курс сопротивления материалов, так и раздел теории упругости и пластичности. Объединение частей в единое целое дало возможность более рационально использовать отведенное учебным планом время, а главное — добиться более глубокого понима-  [c.3]

В этом параграфе будет приведена общая схема peuJeния краевых задач механики деформируемого твердого тела при этом не будем вдаваться в анализ возможных форм связи напряжений с деформациями, отметим только, что эта проблема получила удовлетворительное решение лишь для высокоэластичных материалов типа резины (примеры определяющих уравнений будут приведены ниже).  [c.276]

Изучению напряжений, деформаций и перемещений в пластически деформируемых телах посвящен раздел механики деформируемого твердого тела, называемый теорией пластичности [10, 12, 13, 18, 36]. Теория пластичиости решает глав1гым обра юм те же задачи, что и линейная теория упругости, но для материалов с другими физическими свойствами. Поэтому между указанными теориями имеется много общего, в частности общими оказываьзтся уравнения равновесия, зависимости между перемещениями и деформациями, уравнения совместности деформаций. Только вместо закона Гука, используемого в линейной теории упругости, в теории пластичности применяются другие физические соотношения.  [c.293]


Для механики сплошной среды вообще и механики деформируемого твердого тела в частности аппарат теории тензоров является естественным аппаратом. В большинстве теорий выбор системы координат, в которых ведется рассмотрение, может быть произвольным. Проще всего, конечно, вести это рассмотрение в ортогональных декартовых координатах. Очевидно, что доказательство общих теорем и установление обнщх принципов при написании уравнений именно в декартовых координатах не нарушает общности. Что касается решения задач, то иногда бывает удобно использовать ту или иную криволинейную систему координат. Однако при этом почти всегда речь идет о простейших ортогональных координатных системах — цилиндрической или сферической для пространственных задач, изотермической координатной сетке, порождаемой конформным отображением, для плоских задач. В некоторых случаях, когда рассматриваются большие деформации тела, сопровождаемые существенным изменением его формы, система координат связывается с материальными точками и деформируется вместе с телом. При построении соответствующих теорий преимущества общей тензорной символики, не связанной с определенным выбором системы координат, становятся очевидными. Однако в большинстве случаев эти преимущества используются при формулировке общих уравнений, не открывая возможности для решения конкретных задач. Поэтому мы будем вести основное изложение в декартовых прямоугольных координатах, случай цилиндрических координат будет рассмотрен отдельно.  [c.208]

Так в механике деформируемого твердого тела рассматриваются действия сил на материальные тела, то основой этой науки служит теоретическая механика, на положения которой опи-раются н механике деформируемого твердого тела и в сопротивлении материалов, в частности. Это условия равновесия системы сил, уравнения движения, аксиомы статики, в том числе принцип отвердевания. Кроме того, используют метод сечений и метод приведения системы сил к заданному центру. Из общих положений теоретической механики можно отметить, например, принцип возможных перемещений, который в механике твердого деформируемого тела применяется как в теоретических, так и в прикладных исследованиях.  [c.6]

ОС НОРшая задача механики деформируемого твердого тела — описание процессов деформирования с учетом экспериментальных данных, определяющие соотношения которых могли бы быть использованы при решении конкретных технических задач. Поэтому развитие теории механики деформируемого твердого тела идет по пути постепенного усложнения и уточнения определяющих соотношений по мере накопления экспериментальных данных. В качестве основной исходной характеристики обычно принимают деформацию. При упругом деформировании (простейший вид) определяющие уравнения связи между напряжениями и деформациями можно записать, в виде конечных соотношений, при пластическом деформиро Банин — в приращениях или дифференциалах. В последнем случае процесс нагружения-деформирования зависит только от последовательности наложения элементарных процессов (нагрузки, разгрузки, повторной нагрузки и т. п,) и не зависит от промежутков времени, в течение которых эти процессы происходят, т. е. окончательный результат не зависит от масштаба времени. В более общем случае деформирования деформации могут зависеть от масштаба времени, например, изменение деформаций во времени при постоянном напряжении. Поэтому принято полные деформации разделять на мгновенные, или упругопластические, и длительные деформации ползучести.  [c.3]

В современной литературе по механике сплошной среды часто излагается общая теория построения определяющих уравнений для разного рода сред, причем подход к этому у разных ученых различен. В данной книге обсуждаются лишь простейшие модели и простейшие виды определяющих уравнений, относяпщеся к таким материалам и таким процессам, которые изучены достаточно хорошо экспериментально. Обсуждение наряду с реальными моделями всего многообразия возможных мыслимых моделей деформируемого твердого тела в рамках этого курса казалось автору неуместным, хотя это отнюдь не означает отрицательного его отношения к подобного рода попыткам вообще.  [c.15]

В первом разделе рассмотрены основные законы и общие уравнения механики твердого деформируемого тела, применяемые в теории пластичности и ползучести. Особое внимание уделено теориям полей напряжений и деформаций, а также векторному представлению процесса нагружения в точке упругопластически деформируемого тела как в пространстве напряжений, так и в пространстве деформаций. Приведены основные законы и уравнения теории пластичности, показано их применение при решении краевых задач. Обобщены методики приложения теории пластичности к расчету на прочность стержней и стержневых систем, цилиндров, оболочек дисков и пластин. Рассмотрено предельное состояние элементов конструкций.  [c.12]

Во втором томе, наряду с изложением уравнений динамики материальной точки, общих теорем динамики, динамики несвободной системы и специальных задач динамики (млебания, динамика твердого тела), несколько расширяется предмет курса в сторону сплошных деформируемых сред и, кроме того, приводится изложение элементов релятивистской механики.  [c.2]

В теме Связи и их уравнения следует дать характеристику неидеальных связей, при этом обратить внимание на тот важнейший и фундаментальный факт, что при трении обязательно имеет место деформа ция зоны фрикционного контакта. Особенно наглядно это проявляется при скольжении твердых тел по грунтам и другим дисперсным средам, по полимерам, при прокатке, уплотнении, перемепшвании и других технологических процессах. Так как в общем случае при скольжении имеет место перемещение определенных масс в зоне фрикционного контакта, не учитывать этот важнейший факт никоим образом нельзя. Поэтому рекомендуется рассмотреть случай движения твердого тела по деформируемому основанию с учетом реологии фрикционного контакта и перемещения совместно с твердым телом масс переменного состава менее прочного контртела. Удобно это изложить в дополнительных вопросах динамики в теме Механика тела переменной массы , в которой дать вывод дифференциального уравнения движения твердого тела с учетом нестационарных процессов в зоне фрикционного контакта [ 7]. Рассмотрение этого дифференциального уравнения в общем случае позволяет проиллюстрировать методы снижения сил трения.  [c.97]

Предлагаемая вниманию читателей книга известного французского ученого Ж. Можена являет собой яркий пример последовательного приложения всей мощи аппарата современной механики сплошных сред для построения и развития электродинамики твердых деформируемых тел. В настоящее время это самостоятельный предмет, в котором модельные представления охватывают большое число самых разнообразных природных явлений, широко используемых в науке и технике. Книга написана так, что все конкретные модели строятся в рамках единой общей схемы — на основе общих принципов механики и термодинамики. В то же время, поскольку изложение ведется в традиционном и не требующем специальной подготовки ньютоновском приближении, то читатель получает прекрасный рабочий инструмент, непосредственно применимый для решения конкретных практических задач. Большое внимание уделяется методам построения определяющих уравнений — специальных соотношений, вытекающих из законов сохранения и замыкающих систему уравнений. Отличительной особенностью книги является широкое использование лагранжевой системы координат. На основе развитой схемы представлены классические теории пьезоэлектричества и магнитоупругости, а также новые и, несомненно, более сложные теории упругих ферромагнитных тел, упругих ионных кристаллов, сегнетоэлектриков и керамик, построение которых потребовало введения новых параметров и новых феноменологических уравнений.  [c.5]


Большинство задач механики твердого деформируемого тела допускают как локальную (в виде систем дифференциальных уравнений), так и глобальную вариационную (в виде задачи на минимум соответствующего функционала) фор>1улировки. Часто вариационная постановка задачи может оказаться более общей и проще как для теоретического исследования [244, 248, 323, 355], так и для численного решения [247, 250, 251, 380], поскольку при глобальном подходе ослабляются требования к гладкости исходных данных и решения задачи. Корректну о разрешимость многих задач математической физики, в частности, теории упругости удается доказать только ва-риацйонньши методами, поэтому они давно стали мощньш аппаратом математического исследования и практического решения различных инженерных задач.  [c.81]

Во-вторых, весьма желательно, чтобы у читателя сложилось ясное и четкое представление о струк ре теории оболочек, о том, как из уравнений общей теории получаются уравйення, относящиеся к частным видам оболочек или к частным случаям их напряженного состояния. Следует учитывать, что теория пластин и оболочек является ветвью механики твердых деформируемых тел, и поэтому имеется много аналогий с соответствующими разделами других ветвей, например с пространственной задачей теории упругости, с теорией стержней. Важно понимать как эту аналогию, так н отличия между указанными ветвями.  [c.4]

Д ю п е и Пьер Шарль Франсуа (Dupin Pierre harles Fr., 1784—1873)— французский геометр, член Парижской Академии наук (с 1818 г.). По образованию морской инженер. Уже в возрасте шестнадцати лет Дюпен вывел уравнение циклоиды (циклоида Дюпена). Дюпену принадлежит ряд важных результатов в области ди( еренциальной геометрии (введение понятия индикатрисы, носящей его имя доказательство того факта, что поверхности ортогональных систем пересекаются вдоль общих линий кривизн). Наряду с геометрией Дюпен выполнял исследования и по механике твердых деформируемых тел (исследование изгиба деревянных балок и обнаружение прн этом нелинейного участка зависимости перемещений от нагрузки, пропорциональность величины, обратной прогибу, ширине балки и кубу высоты ее поперечного сечения и др.). Все этн результаты. поЛучены до выхода в свет книги Навье по сопротивлению материалов.  [c.20]


Смотреть страницы где упоминается термин Общие уравнения механики деформируемых твердых тел : [c.4]    [c.588]    [c.34]    [c.10]    [c.11]   
Смотреть главы в:

Сопротивление материалов и основы теории упругости и пластичности  -> Общие уравнения механики деформируемых твердых тел



ПОИСК



МЕХАНИКА ДЕФОРМИРУЕМЫХ ТЕЛ Механика деформируемых твердых тел

Механика общая

Общие уравнения

Уравнение общее механики



© 2025 Mash-xxl.info Реклама на сайте