Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Момент количества движения системы материальных точек (кинетический момент)

Момент количества движения системы материальных точек (кинетический момент)  [c.72]

Главный момент количеств движения системы материальных точек. Моментом 1о количества движения (кинетическим моментом) материальной точки относительно центра О называется вектор, определяемый формулой 1  [c.185]

Главным моментом количества движения системы или ее кинетическим моментом относительно центра моментов О называется векторная сумма моментов количеств движения материальных точек, входящих в состав системы относительно центра О  [c.54]


Главный момент количеств движения всех материальных точек системы относительно данного центра или данной оси называется кинетическим моментом системы относительно этого центра или этой осн.  [c.335]

Главным моментом количеств движения системы относительно центра (или кинетическим моментом) называется векторная сумма моментов количеств движения всех входящих в систему материальных точек относительно того же центра. Обозначая главный момент количеств движения через К, т. е., полагая  [c.160]

Момент количеств движения системы. Моментом количеств движения (или кинетическим моментом) относительно какой-нибудь точки о какой угодно материальной системы 5 в любое мгновение называется результирующий момент относительно О всех количеств движения отдельных точек Р,- системы (приложенных в соответствующих точках), т. е. векторная величина  [c.236]

Момент количество движения системы. Момент количества движения или кинетический момент системы материальных точек относительно точки О определяется формулой  [c.113]

Если на материальную точку действуют несколько сил, то на основании теоремы Вариньона в правых частях предыдущих уравнений нужно писать сумму (геометрическую) моментов всех этих сил относительно данного центра или сумму (алгебраическую) их моментов относительно данной оси. В случае системы материальных точек, кинетическим моментом системы относительно данной точки или данной оси называется главный момент количеств движения всех материальных точек системы относительно этой точки или этой оси. Следовательно, если обозначить кинетический момент системы относительно точки О (начала координат) через 0 , а кинетические моменты системы относительно координатных осей через 0 , Оу, 0 , то  [c.380]

ГЛАВА IX. ТЕОРЕМЫ ОБ ИЗМЕНЕНИИ МОМЕНТА КОЛИЧЕСТВА ДВИЖЕНИЯ МАТЕРИАЛЬНОЙ ТОЧКИ И ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОГО МОМЕНТА МЕХАНИЧЕСКОЙ СИСТЕМЫ  [c.145]

Главный момент о количеств движения системы (кинетический момент) материальных точек относительно центра О равен векторной сумме моментов количеств движения относительно того же центра материальных точек системы, т. е.  [c.185]

В динамике точки ( 212 первого тома) рассматривалась теорема об изменении момента количества движения материальной точки. Теорема об изменении кинетического момента системы является дальнейшим обобщением этой теоремы динамики точки.  [c.62]


Положение обеих точек Ai и G определяется углом б между горизонтальной проекцией G и осью gx и углом <р, образованным той же проекцией G с осью gz . Движение точки С будет таким же, как если бы эта точка была материальной точкой с массой т, к которой были бы приложены все действующие на сферу внешние силы (вес, нормальная реакция горизонтальной плоскости и реакция точки М на сферу, направленная по МС). Если применить к системе теорему моментов количеств движения относительно оси gzi и теорему кинетической энергии, то получатся два первых интеграла, определяющих 6 и в функции t  [c.229]

Общие теоремы динамики системы материальных точек теоремы количеств движения и моментов количеств движения, а также теорема об изменении кинетической энергии имеют широкое применение при изучении движений сплошных сред и, в частности, жидкостей и газов. Они были уже применены в предыдущих параграфах при выводе основных уравнений механики сплошных сред, причем использовалось лагранжево представление движения. Остановимся на некотором своеобразии применения этих теорем, связанном с эйлеровым представлением движения.  [c.75]

Момент количества движения материальной точки. Главный момент количеств движения материальной системы. Моментом Iq количества движения (кинетическим моментом) материальной точки относительно центра О назьшается вектор, определяемый формулой  [c.230]

Вектор Lo = rn,Q nw), т. е. главный момент количеств движения материальных точек системы относительно центра О, называется кинетическим моментом системы относительно этого центра О.  [c.482]

Определение 2. Моментом количества движения К системы материальных точек (или кинетическим моментом) называется векторная сумма моментов количества движения всех точек системы  [c.130]

Теоремы об изменении количества движения и кинетического момента применительно к системам переменного состава. Рассмотрим в системе отсчета х, у, г (эта система может быть и неинерциальной) систему материальных точек, которые в момент  [c.110]

Иначе — кинетический момент является главным моментом количеств движения материальных точек системы.  [c.54]

Постараемся выяснить теперь, как изменяется кинетический момент системы материальных точек при действии на эту систему ударных сил. Сохраняя обозначения предыдущего параграфа и применяя к каждой точке системы теорему об изменении при ударе момента количества движения материальной точки относительно какого-нибудь неподвижного центра О ( 149), будем иметь  [c.586]

В задачах программированного контроля по динамике студент должен показать знание и умение вычислять основные динамические характеристики материальной точки и твердого тела (количество движения, момент количества движения или кинетический момент относительно точки или оси, кинетическую энергию). Примером может служить карточка программированного контроля по теме Теорема об изменении кинетического момента системы материальных точек относи тельно точки или оси  [c.15]

Главный момент количеств движения системы. Понятие о моменте количества движения для одной материальной точки было введено в 116. Главным моментом количеств движения (или кинетическим моментом) системы относительно данного центра О называется величина Ко, равная геометрической сумме мо.нентов количеств движения есех точек системы относительно этого централу.  [c.359]

Динамика системы материальных точек сначала излагается для случая, когда движение стеснено произвольными дифференциальными связями. Из принципа Даламбера-Лагранжа (общее уравнение динамики) с использованием свойств структуры виртуальных перемещений [68] выводятся общие теоремы динамики об изменении кинетической энергии (живой силы), кинетического момента (момента количеств движения), количества движения. Изучается динамика системы переменного состава [1]. На основе принципа Гаусса наи-меньщего принуждения выводятся уравнения Аппеля в квазикоординатах. Получены также уравнения Воронца и, как их следствие, уравнения Чаплыгина. Установлено, что воздействие неголономных связей включает реакции, имеющие гироскопическую природу [44].  [c.12]


Главным моментом количеств движения точек системы (кинетическим моментом системы материальных точек) Ко относи гельно центра О называется геометрическая сумма вект ров-мо-ментов количеств движения всех точек системы относительно того же центра  [c.345]

МОМЕНТ КОЛИЧЕСТВА ДВИЖЕНИЯ (кинетический момент, момент импульса, орбитальный момент, угловой момент) — одна из динамич. характеристик движения материальной точки или механич. системы играет особенно важную роль при изучении вращат. движения. Как и для момента силы, различают М. к. д. относительно центра (точки) и относительно оси.  [c.207]

Основные законы динамики, рассмотренные в главах VI— VIII, МОЖНО было бы назвать законами физической динамики, ибо количество движения, кинетический момент и кинетическая энергия материальной точки или системы имеют определенный физический смысл. Рассмотрим, в какой мере эти законы позволяют решить общую задачу динамики несвободной материальной системы в соответствии с планом, намеченным в 2, гл. III.  [c.308]

Как известно, на заре развития механики предлагались в качестве меры механического движения для материальной точки количество движения ти (Декарт) и удвоенная кинетическая энергия (Лейбниц), но эти меры движения являются менее совершенными и менее универсальными, чем величины 81, и 8н-Для дальнейшего оказывается весьма полезной следующая геометрическая интерпретация движения системы. Пусть механическая система точек (или твердое тело) имеет 5 степеней свободы и ее положение относительно системы отсчета (материального базиса) определяется обобщенными координатами ( 1, <72, дг,, де). При движении системы обобщенные координаты будут изменяться, т. е. будут некоторыми функциями времени t. Будем рассматривать совокупность обобщенных координат (< 1, , <7 ) для каждого момента времени как координаты точки в пространстве -измерений. Тогда каждой конфигурации (положению в пространстве) механической системы будет соответствовать точка в -мерном пространстве. Так как по природе реального механического движения обобщенные координаты ( 1,. . ., дз) являются непрерывными функциями времени, то каждому конечному перемещению системы с степенями свободы в трехмерном евклидовом пространстве будет соответствовагь некоторая кривая в -мерном пространстве. Мы будем называть такое -мерное пространство пространством конфигураций, а кривую в этом -мерном пространстве, соответствующую реальному движению системы, — траекторией механической системы (соответственно твердого тела) в пространстве конфигураций. Каждая точка такой траектории в пространстве конфигураций однозначно соответствует некоторому положению в евклидовом пространстве реальной механической системы. Пользуясь введенной терминологией, можно сказать, что для реально осуществляющихся механических движений на истинной траектории в пространстве конфигураций меры движения 8ь и 8ц принимают  [c.123]

МОМЕНТ КОЛИЧЕСТВА ДВИЖЕНИЯ (кинетический момент, угловой м о м е и т) — одна из динамич. характеристик движения материальной T041IU или механич. системы играет особенно важную роль ири изучении вращательного движения. Очень больн.гое значение имеет М. к. д. в квантовой механике (с.м. Квантование момента количества движения). 1 ак и для момента силы, различают М. к. д. относительпо центра (точки) и относительно оси.  [c.310]

Кинетическим моментом или главным моментом количеств движения механической системы относительно данного центра называют вектор, равный геомет.рической сумме моментов количеств дви-жения всех материальных точек системы относительно этмго центра.  [c.152]

Эту же величину называют также кинетическим моментом системы материальных точек относительно данного центра. Главный Moivi r количества движения системы относительно центра является динамической характеристикой механического движения, учитывающей положение материальной системы по отношению к данному центру.  [c.317]

Динамика твердого тела изучается на основе общих теорем об изменении кинетической энергии, кинетического момента и количества движения, а также с помощью основных понятий геометрии масс. Показывается, что аппарат динамики системы материальных точек применим для описания движения твердого тела и систем твердых тел. Проясняется вычислительная экономность использования уравнений Эйлера. Традиционно анализируются случаи Эйлера-Пуансо, Лагранжа-Пуассона, Ковгияевской [24]. В качест)зе примера методики по.чучения частных случаев интегрируемости приводятся случаи Гесса и Бобылева-Стеклова [6]. С целью демонстрации приложения развитых методов к практике даются основы элементарной теории гироскопов [14, 41], достаточные для качественного анализа действия гироскопических приборов.  [c.12]

Как инструмент для изучения произвольных голономных систем материальных точек получены уравнения Лагранжа второго рода и канонические уравнения Гамильтона [66]. Дается понятие о лагран-жевом формализме [1, 36]. Изучается поведение полной энергии системы в зависимости от структуры обобщенных сил и кинетической энергии. Дается метод циклических координат [5, 58]. Устанавливается, что для голономных систем интегргипы количества движения, кинетического момента и обобщенный интегргия энергии Якоби [70] всегда могут быть представлены как следствие существования соответствующих циклических координат. Указывается на возможность использования аппарата теории групп для поиска интегралов движения [5]. Изложение вариационных принципов Гамильтона и Мопертюи-Лагранжа-Якоби [17, 38, 70] выполнено в соответствии с современной теорией оптимальных процессов [2, 5, 13]. Геометрически наглядная трактовка придана теории малых колеба-  [c.12]


Кинетический момент системы равен векторной сумме момента количества движения материальной точки, находяш,ейся в центре инерции системы и имеютцей массу, равную массе системы, относительно центра О, и кинетического момента движения системы относительно ее центра инерции.  [c.55]

С математической точки зрения основные теоремы динамики — теоремы о движении центра инерции, об изменении количества движения, об изменении кинетического момента и об изменении кинетической энергии дают возможность находить в частных случаях первые интегралы дифференциальных уравнений движения. Возможность получешгя этих интегралов завггеггт от особенностей системы сил. приложенных к точкам материальной системы. Эти свойства были подчеркнуты при рассмотрении соответствующих теоре.м на протяжении последней главы.  [c.105]

Кинетический момент системы материальных точек относительно неподвижной оси раней сумме кинетического момента системы K-j относительно параллельной ей подвижной осп, проходящей через центр масс С, и момента количества движения системы, приложенного в центре масс, относительно неподвижной оси. Иными словами, кинетический момент системы материальных точек в ее абсолютном движении равен кинетическому моменту в движении относительно осей Кёнига, сложенном с, моментом количества движения центра масс системы в абсолютном движении (если его массу принять равной массе системы).  [c.356]

Но такой метод решения для большинства практических задач неприемлем из-за математической сложности. Трудности возникают также из-за того, что ни внутренние силы, ни реакции связей, как правило, заранее неизвестны. Однако в большинстве задач не требуется определять движение каждой точви системы, а достаточно найти параметры, характеризующие движение системы в целом. Эти суммарные характеристики движения механической системы определяются с помощью общих теорем динамики, являющихся следствием дифференциальных уравнений движения системы (9.1). К числу этих теорем относятся теорема об изменении количества движения, теорема об изменении кинетического момента и теорема об изменении кинетической энергии. Эти теоремы применимы как для точки, так и для системы материальных точек.  [c.145]

Объединение законов изменения количества движения и кинетического момента системы в один закон. Если вспомнить определение геометрической производной ог системы скользящих векторов ( 31), то оба закона, закон изменения количества движения (31.6) и закон изменения кинетического момента (31.17), можно соединить в один. Действительно, обозначим буквой систему векторов т. е. количеств движения частиц материальной системы,и буквойЕ систему векторов F f > +  [c.310]

Мы видели, что дифференциальное уравнение (84) относительного движения материальной точки имеет тот же вид, что и дифференциальное уравнение движения точки относительно неподвижной системы отсчета различие между этими уравнениями состоит лишь в том, что в уравнение относительного движения, кроме заданных сил и реакций связей, входят еще переносная и кориолисова силы инерции. С другой стороны, в главе 21 мы видели, что все общие теоремы динамики точки (теорема о количестве движения, теорема о моменте количества движения, теорема о кинетической энергии) являются следствием основного дифференциального уравнения динамики точки, выражающего второй закон Ньютона. Отсюда следует, что все эти обпще теоремы применимы и к относительному движению точки, но понятно, что, применяя эти теоремы к относительному движению, мы должны принять во внимание переносную и кориолисову силы инерции. В частности, при решении задач, относящихся к относительному движению точки, нередко приходится пользоваться теоремой о кинетической энергии. Нри составлении уравнения, выражающего эту теорему в относительном движении, необходимо принять во внимание работу переносной и кориолисовой сил инерции на относительном перемещении точки. Но так как ускорение Кориолиса Н7д всегда перпендикулярно к относительной скорости v , то следовательно, работа кориолисовой силы инерции в относительном движении равна нулю, и эта сила в уравнение теоремы о кинетической энергии не войдет. Поэтому это уравнение в дифференциальной форме будет иметь следующий вид  [c.456]

В связи с этим следует обратить внимание на различие между уравнениехм (115) и уравнениями, выражающими общие теоремы динамики системы, рассмотренные в предыдущих параграфах. Как мы видели выше, в уравнения, выражающие теоремы о количестве движения, о движении центра масс и о кинетическом моменте системы, внутренние силы не входят, но реакции связей, если они относятся к внешним силам, из этих уравнений не исключаются в уравнение же, выражающее теорему о кинетической энергии системы, внутренние силы войдут, так как работа внутренних сил вообще не равна нулю. Чтобы убедиться в этом, достаточно рассмотреть следующий простой пример пусть имеем систему, состоящую из двух материальных точек, притягивающихся по какому угодно закону (например, по закону Ньютона). Силы взаимного притяжения этих точек являются для рассматриваемой системы внутренними силами эти силы равны по модулю и направлены по прямой, соединяющей данные точки, в противоположные стороны. Ясно, что если под действием этих сил точки будут сближаться, то работа каждой силы будет положительна и, следовательно, сумма работ внутренних сил не будет равна нулю, а будет больше нуля.  [c.489]


Смотреть страницы где упоминается термин Момент количества движения системы материальных точек (кинетический момент) : [c.35]    [c.240]    [c.380]    [c.605]   
Смотреть главы в:

Классическая механика  -> Момент количества движения системы материальных точек (кинетический момент)



ПОИСК



Движение материальной точки

Движение системы

Кинетическая системы

Кинетический момент системы материальных точек

Кинетический момент точки

Кинетический момент точки и системы

Количество движения

Количество движения и момент количеств движения системы

Количество движения материальной

Количество движения материальной системы

Количество движения материальной системы материальных точек

Количество движения материальной точки

Количество движения системы

Количество движения системы материальных точек

Количество движения системы точки

Количество движения точки

Материальная

Момент кинетический

Момент кинетический (количества движения)

Момент кинетический системы

Момент количеств движения

Момент количеств движения материальной системы

Момент количества движени

Момент количества движения материальной точки

Момент количества движения системы

Момент количества движения точки

Момент количества движения точки системы

Момент системы сил

Момент системы точек

Система материальная

Система материальных точек

Система точек

Теорема об изменении момента количества движения материальной точки и об изменении кинетического момента механической системы

Точка материальная

Точка — Движение



© 2025 Mash-xxl.info Реклама на сайте