Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Принцип минимума для перемещений

Заметим, что установленный выше результат о минимуме функционала есть известный в теории упругости принцип минимума потенциальной энергии, состоящий в том, что из всех перемещений, удовлетворяющих граничным условиям в перемещениях, в действительности реализуются те из них, для которых потенциальная энергия минимальна.  [c.622]

Изложенное свидетельствует о том, что принцип минимума кинетической энергии, определяющий единственно возможное значение радиуса Xi, при условии, что n(x,) - неизвестная величина, является следствием теоремы 7 и принципа виртуальных перемещений классической механики. Его доказательство совершенно не зависит от того, является поле скоростей в потоке вихревым или потенциальным, и он будет справедлив как в том, так и в другом случае, лишь бы для потока удовлетворялось условие 3 теоремы 7. Теорема 7 является как обоснованием принципа минимума кинетической энергии, так и его ограничением.  [c.99]


Принцип минимума полной энергии (2.3.4) является основой для разработки метода перемещений, в котором варьируются перемещения, а принцип минимума дополнительной работы (2.3.10) является основой метода сил, в котором варьируются усилия. Решение задачи этими методами дает возможность установить верхнюю и нижнюю границы решения, т.е. получить дополнительную информацию о свойствах получаемых решений.  [c.96]

Известны три вариационные принципа теории упругости. Принцип минимума потенциальной энергии (принцип возможных перемещений) потенциальная энергия упругого тела, рассматриваемая как функционал произвольной системы перемещений, удовлетворяющей кинематическим граничным условиям, принимает минимальное значение для системы перемещений, фактически реализуемой в упругом теле. Принцип минимума дополнительной работы Кастильяно (понятие о дополнительной работе дано в конце этого параграфа) дополнительная работа упругого тела, рассматриваемая как функционал произвольной системы напряжений, удовлетворяющей уравнениям равновесия внутри тела и на его поверхности, принимает минимальное значение для системы напряжений, фактически реализуемой в упругом теле. Наконец, в вариационном принципе Рейсснера варьируются независимо друг от друга и перемещения, и тензор напряжений.  [c.308]

Для них можно сформулировать принцип минимума потенциальной энергии среди всех возможных перемещений действительные перемещения сообщают полной потенциальной энергии П  [c.51]

Для доказательства принципа минимума потенциальной энергии допустим, что компоненты действительных и произвольно выбранных возможных перемещений обозначены через и, v, w и и, V, W соответственно, и положим и = и + 8и, v = v - --f bw, w = w - bw. Тогда  [c.51]

Теперь из принципа минимума потенциальной энергии получим формулу для верхней границы. Пусть ш, 0 и П представляют собой перемещение, угол закручивания на единицу длины и полную потенциальную энергию, соответствующие точному решению, и пусть W , Q и П — соответствующие величины для некоторой допустимой функции. Тогда из принципа минимума потенциальной энергии следует  [c.172]

Оказалось, что принцип виртуальной работы и связанные с ним вариационные принципы являются очень эффективными для анализа таких упрощенных конструкций. Подход, основанный на принципе минимума потенциальной энергии, обычно называется методом перемещений, а подход, использующий принцип минимума дополнительной энергии, называется методом сил ). Эти два метода являются главными методами анализа конструкций. Из-за недостатка места мы в основном остановимся на анализе ферм и рам, выдвигая на первый план вариационные формулировки. Для более подробного ознакомления с численными примерами и другими видами конструкций читатель отсылается к работам П—14],  [c.290]


Это соотношение означает, что связи между этими панелями остаются неразрывными после деформации. Однако в общем случае условия такого типа не выполняются. Таким образом, если нужно вычислить компоненты перемещений элементов независимо друг от друга, используя величины внутренних сил, полученных с помощью метода сил, то следует найти величины разрывов перемещений на границах между элементами. Для увеличения точности приближенного решения надо вместо состояния равномерного чистого сдвига ввести более сложный закон распределения внутренних сил. Очевидно, что эффективным средством такого увеличения точности является принцип минимума дополнительной энергии.  [c.308]

Режим нулевых полос в голографической интерферометрии в реальном времени более сложен, чем исследования с применением голографии двух экспозиций или с усреднением во времени, главным образом потому, что в первом случае трудно избежать изменений положения голографической пластинки относительно механического устройства, на котором укреплены оптические элементы и объект. В этом случае улучшить экспериментальные результаты поможет разработка устойчивой кинематической схемы для держателей пластинки, а также монтажа оптических элементов и держателей объекта [45]. Основной принцип состоит в том, чтобы в конструкции содержался минимум ограничивающих деталей, достаточный для исключения любой конкретной степени свободы движения объекта. Например, все держатели голограммных пластинок вне зависимости от того, используются они в интерферометрии или нет, должны содержать кинематический узел, сводящий к минимуму деформацию пластинки во время экспозиции. Чтобы ориентировать прямоугольную пластинку в плоскости как по положению, так и по углу, вполне достаточно использовать только три штифта. Аналогично требуются лишь три точки, чтобы установить положение этой плоскости следовательно, чтобы обеспечить точную ориентацию голограммной пластинки, держатель должен иметь только шесть опорных точек. Для поддержки пластинки относительно подкладок и для обеспечения сил трения, удерживающих пластинку относительно ориентирующих штифтов, приходится применять дополнительные штифты, однако эти силы трения не должны быть очень велики. Держатель пластинки, сконструированный с учетом кинематических принципов, не будет коробить пластинку и может быть использован для перемещения голограммы после экспозиции, но с достаточной степенью аккуратности, чтобы больше ничего в схеме не изменилось при этом условие нулевых полос будет соблюдаться по всему полю голограммы.  [c.544]

Итак, уравнения (11.63) можно рассматривать как математическую формулировку принципа стационарности потенциальной энергии. Этот принцип гласит, что если потенциальная энергия упругой конструкции (линейной или нелинейной) представляется функцией от неизвестных перемещений узлов, то конструкция будет находиться в состоянии равновесия, когда перемещения имеют такие значения, при которых полная потенциальная энергия принимает стационарное значение. Обычно конструкция находится в состоянии устойчивого равновесия, и тогда полная потенциальная энергия минимальна. При этих условиях уравнения (11.63) представляют собой запись принципа минимума потенциальной энергии. Для неустойчивых конструкций потенциальная энергия может иметь либо максимальное, либо нейтральное значение. При линейном поведении конструкции уравнения (11.63) соответствуют уравнениям равновесия метода жесткостей, который можно считать частным вариантом метода перемещений ).  [c.503]

Т. е. представляют собой условия, при которых энергия деформации достигает стационарного значения, причем в случае конструкции, находящейся в состоянии устойчивого равновесия, это стационарное значение будет минимумом. Таким образом, мы получили принцип минимума энергии деформации, который утверждает следующее. Если в заданной системе перемещения, соответствующие лишним неизвестным, равны нулю, то для конструкции с линейным поведением лишние неизвестные величины Хь Хг,. . Х имеют такие значения, при которых энергия деформации минимальна. Принцип минимума энергии деформации является частным вариантом (относящимся к конструкциям с линейным поведением) более общего принципа минимума дополнительной энергии (см. уравнения  [c.533]


Для приближенного удовлетворения уравнений равновесия может быть использован принцип минимума полной потенциальной энергии (см. 4.4), и вновь получены общие соотношения между усилиями и перемещениями для рассматриваемой среды.  [c.139]

Дальнейшее развитие метода конечных элементов связано с так называемым гибридным методом напряжений. Для каждого элемента применяются формулы для напряжений, которые удовлетворяют уравнениям равновесия элемента. Независимо от этого выбираются формулы для перемещений, обеспечивающие совместность перемещений на границах элементов, причем распределение перемещений на границах должно однозначно устанавливаться по перемещениям узловых точек. При вариационной формулировке оперируют принципами минимума потенциальной энергии и минимума дополнительной энергии деформации или расширенным вариационным принципом (привлекается модифицированный принцип дополнительной энергии Пиана [44, 45]).  [c.140]

Вспомним, что, согласно строгой формулировке принципа минимума потенциальной энергии разд. 6.2, граничные условия для перемещений удовлетворяются точно и составляют главные граничные  [c.182]

Принцип минимума дополнительной энергии дает возможность на базе вариационного подхода непосредственно построить соотношения податливости элемента, т. е. выражения для параметров перемещения элемента в терминах силовых параметров. Дополнительная энергия Пд конструкции равна сумме дополнительной энергии деформации и тл. потенциала граничных сил V, соответствующего заданным смещениям, т. е.  [c.187]

Чтобы убедиться в справедливости высказанного утверждения, можно провести те же рассуждения, что н в разд. 6.4 при доказательстве принципа минимума потенциальной энергии. В нашем случае виртуальные перемещения следует заменить на виртуальное поле напряжений, накладываемое на действительное поле перемещений. Замечая, что граничные условия для напряжений должны удовлетворяться и при выбранном виртуальном поле напряжений, приходим к (6.69), т. е. к соотношению 0Пс=0, где дополнительная энергия равна  [c.187]

Гибридный метод напряжений является подходом к построению матриц жесткости элементов, основанный на обобщении принципа минимума дополнительной энергии. Как и при обсуждении гибридных методов перемещений, ограничимся изложением процедуры построения элемента, окруженного полностью другими элементами. Кроме того, предполагается, что на поверхности элемента и вдоль его границ между узлами силы не действуют. Чтобы получить искомый модифицированный функционал Пс для нашего случая, необходимо лишь видоизменить интеграл по границе в выражении (6.68а) для П .  [c.191]

В гибридных методах, основанных на концепции мультиполей в принципах минимума модифицированной потенциальной и дополнительной энергии, внутри элемента используется одно поле, а на границах элемента — другое независимое поле или два независимых поля. Можно, однако, использовать вариационный принцип, которому внутренне присуще понятие мультиполей. При этом подходе соответствующие поля перемещений и напряжений одновременно задаются для всего элемента.  [c.194]

По этой причине нередко построение соотношений для элемента пластины при изгибе осуществляется выбором поля перемещений, которое непрерывно внутри элемента, а не при переходе через границу соседних элементов. Принцип минимума потенциальной энергии справедлив при формулировке соотношений для отдельного элемента, однако решение в случае глобального представления не соответствует строгому применению принципа минимума потенциальной энергии из-за разрывности перемещений вдоль границ смежных элементов.  [c.198]

Альтернативой к формулировкам на базе принципов минимума потенциальной и дополнительной энергии с непрерывными и разрывными полями на границе соседних элементов служат подходы, вытекающие из принципов минимума обобщенной потенциальной и дополнительной энергии, применение гибридных подходов и функционала со многими полями. Метод, опирающийся на принцип минимума обобщенной потенциальной энергии, используемый при построении соотношений для отдельного элемента, дает корректирующую матрицу жесткости элемента. В гл. 7 показано, что уравнения, соответствующие этой матрице, можно использовать и в глобальном конечно-элементном представлении, полученном на базе принципа минимума потенциальной энергии с разрывными вдоль границ элементов полями перемещений.  [c.199]

Выпишите матрицу жесткости прямоугольного элемента для плоского напряженного состояния, введенного в задаче 5.2, используя приведенное там же поле перемещений и принцип минимума потенциальной энергии. Сравните полученные результаты с результатами, приведенными на рис. 9.13.  [c.203]

Смешанные и гибридные формулировки не обладают свойствами нижней или верхней границ. Однако можно доказать, что они приводят к решениям, лежащим в промежутке между указанными пределами Предположим, например, что в гибридном методе напряжений поле напряжений удовлетворяет условиям равновесия не только внутри элемента, но и при переходе через границу элементов. Тогда традиционная формулировка на основе принципа минимума дополнительной энергии для этого поля приведет к решению, соответствующему верхней грани ( высоко податливое решение). Выбор поля перемещений на границе в гибридной формулировке накладывает некоторые ограничения на конечно-элементное представление, уменьшает податливость и смещает получаемые решения в сторону точного решения. При этом, конечно, имеется возможность перегрузить ограничениями аналитическое представление и проскочить точное решение в сторону нижней границы , соответствующей перемещениям, обусловленным граничным полем перемещений.  [c.224]


Решение, строго соответствующее принципу минимума потенциальной энергии, при построении Пр требует рассмотрения полей перемещений, обладающих межэлементной совместимостью. Если ищется решение, отвечающее принципу минимума дополнительной энергии, то при построении необходимо использовать функции, задающие равновесные поля напряжений, удовлетворяющие условиям равновесия на границах, разделяющих элементы. Как было показано в разд. 7.2 и 7.6, указанные решения обладают тем преимуществом, что для них могут быть установлены границы изменения определенных параметров решения. Кроме того, можно доказать монотонную сходимость этих параметров при измельчении сетки разбиения [8.1, 8.2].  [c.229]

Изопараметрические элементы — это элементы, в которых функции, используемые для представления поведения при деформировании, используются также и для описания геометрических характеристик элемента. Построение изопараметрического элемента представляет собой преобразование безразмерного прямоугольного элемента с заданным числом узлов в реальный криволинейный элемент с тем же числом узлов. Так, если функции, задающие поле перемещений в формулировке, основанной на принципе минимума потен-  [c.258]

Формулировки треугольных элементов плоского напряженного состояния в принципе основаны на задании предполагаемых полей перемещений и интеграла потенциальной энергии. В данной главе предложено несколько альтернативных формулировок различной степени сложности для треугольных элементов. Здесь обсуждаются также аспекты практического построения треугольных элементов и, в частности, вопросы интерпретации результатов расчета полей напряжений. Представлены численные решения в зависимости от измельчения сетки разбиения для двух задач, для которых имеются аналитические решения. Приводятся замечания относительно роли смешанных вариационных принципов и принципа минимума дополнительной энергии при построении треугольных конечных элементов.  [c.266]

Существующие формулировки трехмерных элементов почти всецело основываются на предполагаемых полях перемещений и принципе минимума потенциальной энергии. Формулировкам на базе дополнительной энергии и смешанным формулировкам еще предстоит продемонстрировать свои преимущества для задач данного класса. Так, в задачах трехмерной упругости, если функционал дополнительной энергии выражен в терминах функции напряжений, то нужно преодолеть трудности, обусловленные операциями с функциями, которые непрерывны вместе с частью своих производных при переходе через границу элемента. Поэтому в данной главе рассматриваются лишь формулировки, основанные на предполагаемых перемещениях.  [c.305]

С физической точки зрения очевидно, что поле перемещений конечного элемента при изгибе, как этого требует принцип минимума потенциальной энергии, должно быть непрерывно вместе со своими первыми производными при переходе границ элементов. Те же условия получают математически, анализируя выражение для функционала потенциальной энергии Пр, включающее вторые производные от да, что и обусловливает необходимость непрерывности первых производных. Этому требованию удовлетворить трудно. Поэтому при формулировке изгибаемых пластинчатых элементов оказались весьма привлекательными альтернативные вариационные принципы, требующие непрерывности лишь самой функции ш.  [c.348]

В качестве заключительного замечания, касающегося потенциальной энергии, отметим, что для изотропного материала уравнение (12.6) является уравнением Эйлера для функционала потенциальной энергии. Значение этого обстоятельства заключается в том, что то же уравнение (с функцией напряжений Эри Ф в качестве неизвестной переменной) определяет растяжение пластины при применении формулировок, базирующихся на принципе минимума дополнительной работы. Следовательно, рассуждения, касающиеся выбора полей перемещений, непосредственно справедливы и для формулировок, соответствующих плоской задаче.  [c.349]

Принцип минимума потенциальной энергии системы (принцип минимума для смещений). Из всех кинематически возможных систем перемещений, прини.чающих заданные значения на поверхности тела.  [c.30]

Устанавливаемое В. н. м. свойство движения сводится во многих случаях (но не всегда) к тому, что для истинного движения системы нек-рая физ. величина, являющаяся ф-цией кинематич. и динамич. характеристик зтой системы, имеет экстремум (минимум или максимум). При этом В. II. м, могут отличаться друг от друга видом той физ. величины (той ф-]1ии), к-рая для истинного движения является экстремальной, а также особенностями механич. систем и классами тех движений. для к-рых это экстремальное свойство имеет место. По форме В. н, м. можно разделить на дифференциальные, устанавливающие, чем истинное движение системы отличается от кинематически возможных в каждый данны) момент времени, и интегральные, устанавливающие это различие для перемещений, совершаемых системой за конечный промежуток времени. В рамках механики дифференц. принципы имеют более общий характер, т. к. они приложимы к системам с любыми голономными и неголономными связями (см. Голочом-пая система Пеголопомная система). Интегральные принципы в их наиб, компактной форме приложимы только к голономным и даже только к консервативным системам. Однако выражение их через энергию и инвариантность по отношению к преобразованиям координат системы делает ати принципы приложимыми далеко за пределами классич. механики.  [c.246]

Для краевой задачи связанной теории термоупругости в [115] предложены вариационные формулировки, соответствующие принципам минимума потенциальной энергии системы, Кастильяно, Хеллингера-Рейсснера и Ху-Вашицу, причем в функционалы с помощью свертки явно включены начальные условия. Наиболее удобно для решения краевых задач использовать принцип минимума потенциальной энергии системы или принцип Лагранжа для полей перемещений и температуры, который состоит в следующем [21].  [c.193]

Аберсон и др. [26, 27] сделали одну из ранних попыток применения сингулярного элемента для описания движущейся трещины. Они воспользовались сингулярным элементом, приведенным на рис. 3(a), который включал в себя первые 13 членов собственных функций Уилльямса [28], определенных для стационарной трещины, находящейся в линейно-упругом теле. Собственные функции, использованные в [26,27], учитывают движения тела как твердого целого. Внутри сингулярного элемента вершина трещины перемещается между узлами А и В, как показано на рис. 3(a). После того как вершина доходит до узла В, происходит резкая смена схемы сетки, как это видно из рисунка. Для соблюдения условий совместности по перемещениям на границах между сингулярным и обычными треугольными элементами применяется модифицированный принцип минимума дополнительной энергии. Однако, как сообщается в [62], применение описанного подхода не привело к получению осмысленных результатов.  [c.284]

С учетом этих предварительных замечаний анализ полумоно-коковой конструкции с использованием метода матрицы жесткости проводится следующим образом прежде всего от координат, связанных с элементами, переходят к абсолютным координатам для того, чтобы выразить матрицы жесткости в абсолютных координатах. Затем с использованием этих матриц условия равновесия всех узлов выражаются через компоненты перемещений узлов. Поскольку в силу линейной зависимости перемещений узлов условия непрерывности перемещений смежных элементов выполняются, полученные таким образом уравнения равновесия эквивалентны уравнениям, полученным из принципа минимума потенциальной энергии. Решая эти уравнения, определяют перемещения всех узлов. Тогда можно вычислить напряжения  [c.310]


И нaзoвe каждое из них функцией перемещений. Тогда совокупность этих функций перемещений может быть выбрана в качестве класса допустимых функций для функционала в принципе минимума потенциальной энергии, если они удовлетворяют следующим требованиям  [c.351]

Первой темой будет теория пластин типа Тимошенко—Минд-лина, в которой распределение перемещений по толщине принимается в виде (17.78). Теория пластин Тимошенко—Миндлина представляет интерес потому, что в этой теории в отличие от теории Кирхгофа для формулировки конечно-элементных моделей, основанных на принципах минимума потенциальной энергии, достаточно только непрерывности (С -гладкости) базисных функций (см. уравнение (17.83)).  [c.416]

Захс, пренебрегая в своих расчетах тем, что принятые им модели зерен могут отделяться друг от друга или внедряться друг в друга вследствие поворота, получил значение нижней границы для т= = 2,238. Тэйлор в 1938 г., введя 12 систем скольжения для гране-центрированной кубической решетки материала, из которых только 5 были независимыми, и предполагая однородность деформаций, однообразный характер деформации зерна и непрерывность перемещений на 1 раницах зерен, провел вычисления, основанные на принципе минимума энергии, и получил т=3,06. Дж. Ф. В. Бишоп и Родней Хилл (Bishop and Hill 11951, 1, 2l) в 1951 г. подвергли проверке и развили теорию Тэйлора, выражая решение задачи в терминах касательных напряжений и проводя вычисления на основании принципа максимума виртуальной работы. Они также получили значение т=3,06, ранее найденное Тэйлором, и смогли на основании дополнительных вычислений установить, что применительно к кручению поликристалла п=1,б5.  [c.297]

Обычная процедура нахождения матриц жесткости для отдельных элементов, на которые разделена конструкция, основана на предположении, что перемещения можно представить в виде степенных рядов (по координатам). В этом случае деформации находятся путем дифференцирования, а матрица жесткости получается из условия равенства виртуальных работ для внутренних и внешних сил. Если используют принцип минимума полной потенциальной энергии, то приходят к известному методу перемещений. Другой известный метод — метод сил — основан на принципе минимума дополнительной энергии. В каждом из этих подходов могут возникать трудности, связанные с возможным появлением разрывов исследуемых величин в узловых точках. Нагрузка от распределенного по поверхности элемента давления должна быть сведена к сосредоточенным силам, приложенным в узлах при этом вычисление внутренней энергии элементов может быть сложным. Если с большой математической строгостью подойти к вопросам обобщения метода, проверки его основных положений, исследования сходимости и т. д., то его еще не сразу можно применить к расчетам реальных консг-рукций.  [c.106]

Принцип Торричелли. Для случая тяжёлых систем можно ещё применить следующий способ разыскания положений равновесия, являющийся частным случаем общего принципа статики, установленного Лагранжем, — принципа возможных перемещений. Если система — тяжёлая, то очевидно, что она будет в положении устойчивого равновесия, если её центр тяжести занимает самое низкое положение, так что при всех малых вынужденных отклонениях системы от этого положения он может только подниматься. Если при всех малых отклонениях системы центр тяжести не поднимается и не опускается, то рассматриваемое положение есть положение безразличного равновесия, каков, например, случай однородного тяжёлого шара на горизонтальной плоскости. Наконец, если центр тяжести занимает самое высокое положение, так что при вынужденном выведении системы из этого положения центр тяжести может только опускаться, то положение равновесия хотя ещё и возможно, но оно будет неустойчивым, как показывает пример прямого круглого конуса, поставленного вертикально на остриё. Обозначим через С вертикальную координату центра тяжести системы. Положение безразличного равновесия характеризуется тем, что С— onst. Положение устойчивого равновесия характеризуется тем, что в этом положении будет С минимум, если  [c.169]

В этом случае проще всего было бы вывести диференциальные уравнения в перемещениях с помощью минимальных принципов, а следовательно, для случая равновесия, которым мы здесь ограничимся, с помощью принципа минимума потен циальной энергии (принципа возможных перемещений), который во всяком случае остается в силе.  [c.165]

Здесь уравнение выписано для случая степенного закона и подобия кривых ползучести. Так как уравнения теории старения совпадают по существу с уравнениями теории упругв-пластических деформаций, то имеет место второй принцип — принцип минимума полной энергии [7], характеризующий минимальные свойства перемещений.  [c.99]

Как стержневой, так и треугольный элемент с линейным распределением перемещений дает неправильное представление об особенностях построения конечных элементов с использованием принципа минимума потенциальной энергии (или виртуальной работы). Это происходит из-за характера предполагаемых полей перемещений, которые соответствуют полям напряжений, удовлетворяющим дифференциальным уравнениям равновесия. Например, для треугольного элемента оказывается, что дифференциальное уравнение равновесия дах/дх+дхху1ду=0 тождественно удовлетворяется, если в него подставить выражение (5.7а) для напряжений  [c.174]

Как для верхней границы решения, обсуждавшейся выше, так и для нижней границы (минимум потенциальной энергии) можно дать физическое объяснение. Приближенное решение, основанное на принципе минимума дополнительной энергии, характеризуется разрывными полями перемещений, и поэтому оно более податливо по сравнению с точным решением. На решение, получаемое при помощи принцийа минимума потенциальной энергии и характеризующееся непрерывным, но приближенным полем перемещений, накладываются ограничения. Поэтому оно жестче точного решения.  [c.224]

Как было указано, для функционала дополнительной энергии, выраженного в терминах функции напряжений Саусвелла, требуются те же поля, что и при описании перемещений, если анализировать плоско-напряженное состояние на основе подхода, использующего принцип минимума потенциальной энергии. Поэтому рассуждения, касающиеся последней темы из разд. 9.3, справедливы и в данном случае. Результаты подсчетов с использованием указанного подхода приведены в [12.23].  [c.358]

На рис. 12.7 приведены результаты для различных формулировок прямоугольных элементов. Заметим, что двенадцатичленный полином стремится к точному решению сверху, так как условия межэлементной непрерывности перемещений нарушаются, характеристика, соответствующая нижней границе , которая получается с использованием принципа минимума потенциальной энергии, не достигается. Наоборот, формулировка с использованием шестнадцатичленного полинома и разбиения элемента на подобласти, предложенная в работе [12.14], обусловливает сходимость и обеспечивает достижение нижней границы для получающихся решений. На этом же рисунке приведены результаты для двух формулировок  [c.360]


Смотреть страницы где упоминается термин Принцип минимума для перемещений : [c.117]    [c.155]    [c.305]    [c.526]    [c.179]    [c.288]   
Курс теории упругости Изд2 (1947) -- [ c.317 ]



ПОИСК



Минимум

Принцип минимума

Принцип минимума потенциальной энергии (принцип возможных перемещений)

Тела Перемещения — Принцип минимума



© 2025 Mash-xxl.info Реклама на сайте