Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Принцип минимума дополнительной

Принцип минимума дополнительной работы — принцип Кастильяно  [c.213]

В 71 и 72 нами были изложены два хорошо известных в теории упругости вариационных принципа принцип минимума потенциальной энергии, который также называется принципом возможных перемещений, и принцип минимума дополнительной работы, на который ссылаются как на принцип Кастильяно.  [c.219]

ПРИНЦИП МИНИМУМА ДОПОЛНИТЕЛЬНОЙ РАБОТЫ  [c.101]


В принципе минимума дополнительной работы рассматривается функционал, зависящий от компонент тензора напряжений, которые должны быть статически возможными, т. е. должны удовлетворять дифференциальным уравнениям равновесия в объеме V и граничным условиям на части Se поверхности тела о заданными поверхностными силами.  [c.105]

Один ИЗ способов вариационной постановки задачи кручения основан на применении принципа минимума дополнительной работы (см. гл. V, 6).  [c.177]

Согласно принципу минимума дополнительной работы, напряженное состояние, реализуемое в упругом теле, отличается от всех статически возможных напряженных состояний тем, что оно сообщает минимум функционалу . Поэтому функция напряжений Ф (х , Хг), определяющая действительное напряженное состояние скрученного бруса, должна удовлетворять вариационному уравнению (5.63), т. е.  [c.178]

Рассмотрим вариационную постановку задачи изгиба бруса, основанную на применении принципа минимума дополнительной работы (см. гл. V, 6), допускающего сравнение статически возможных напряг женных состояний.  [c.218]

Таким образом, вариационная постановка задачи изгиба, базирующаяся на принципе минимума дополнительной работы, сводится к определению подчиненной граничному условию (8.9) функции напряжений Ф (xi, лгг), минимизирующей функционал (8.84).  [c.220]

Вариационную постановку плоской задачи при заданных на контуре L поверхностных силах ti, рассмотрим, исходя из принципа минимума дополнительной работы (см. гл. V, 6).  [c.325]

Принцип минимума дополнительной работы деформации фиктивного тела характеризуется вариационным уравнением  [c.34]

Принцип минимума дополнительной мощности деформаций фиктивного тела при нагрузке характеризуется вариационным уравнением  [c.35]

Нормальность и выпуклость являются геометрическими терминами, в которых формулируется кинематически возможное совместное поведение материала. Грубо говоря, в рамках кинематических ограничений количество энергии, накапливаемое в упругом материале или рассеиваемое в неупругом материале (независимо от того, пластический он или вязкий), должно быть максимальным. Для устойчивого поведения упругих тел это формулируется гораздо более точно при помощи принципов минимума дополнительной  [c.24]

Перейдем теперь к определению нижней границы модуля упругости. С этой целью воспользуемся принципом минимума дополнительной энергии. Согласно этому принципу, в каждой точке рассматриваемого тела удовлетворяются условия равновесия. При этом энергия деформации, полученная из распределения напряжений, уравновешивающих внешние силы, и соответствующая истинному распределению напряжений, является минимальной. Для составляющих напряжений а°, ... и энергии деформации для одноосного напряженного состояния можно положить, что =а, а другие составляющие равны нулю. Для этого случая можно записать следующее  [c.37]


Принцип минимума полной энергии (2.3.4) является основой для разработки метода перемещений, в котором варьируются перемещения, а принцип минимума дополнительной работы (2.3.10) является основой метода сил, в котором варьируются усилия. Решение задачи этими методами дает возможность установить верхнюю и нижнюю границы решения, т.е. получить дополнительную информацию о свойствах получаемых решений.  [c.96]

Метод сил, в котором варьируются напряжения, следует из принципа минимума дополнительного рассеяния [27]  [c.124]

Условия (3.24) и (3.25) можно считать уравнениями Эйлера — Лагранжа, связанными с принципом минимума дополнительной энергии. Хотя (3.26) можно рассматривать в качестве естественных граничных условий модифицированного принципа минимума дополнительной энергии, опыт показывает, что точность определения коэффициента К ухудшится, если условия (3.26) не будут удовлетворены точно априори. [С другой стороны, заметим, что усилия, приложенные к поверхности трещины, можно сохранить в качестве естественных граничных условий модифицированного принципа минимума потенциальной энергии (3.9) при этом точность определения К не ухудшится.] Итак, если (3.26) удовлетворяются априори, функционал, представляющий дополнительную энергию, условия стационарности которого обеспечивают (3.24) и (3.25), может быть записан таким образом  [c.201]

Известны три вариационные принципа теории упругости. Принцип минимума потенциальной энергии (принцип возможных перемещений) потенциальная энергия упругого тела, рассматриваемая как функционал произвольной системы перемещений, удовлетворяющей кинематическим граничным условиям, принимает минимальное значение для системы перемещений, фактически реализуемой в упругом теле. Принцип минимума дополнительной работы Кастильяно (понятие о дополнительной работе дано в конце этого параграфа) дополнительная работа упругого тела, рассматриваемая как функционал произвольной системы напряжений, удовлетворяющей уравнениям равновесия внутри тела и на его поверхности, принимает минимальное значение для системы напряжений, фактически реализуемой в упругом теле. Наконец, в вариационном принципе Рейсснера варьируются независимо друг от друга и перемещения, и тензор напряжений.  [c.308]

В заключение заметим, что интеграл по объему V в формуле (XIV.60) называется дополнительной мощностью, а в (XIV.61) — дополнительной работой. Если напряжения на поверхности и не варьируются, в (XIV.60) и (XIV.61) выпадают поверхностные интегралы. Получаем функционалы принципа минимума дополнительной мощности и дополнительной работы Кастильяно.  [c.321]

Из этого равенства можно получить три отличающихся друг от друга энергетических принципа в зависимости от того, через какие переменные выражена удельная потенциальная энергия Л. Задавая ее квадратичной формой А е) [см. (3.2.3) гл. III] компонент деформации, придем к принципу минимума потенциальной энергии системы исходя же из квадратичной формы Л (а) компонент тензора напряжений [(3.2.8) гл. III], получим принцип минимума дополнительной работы. В первом принципе варьируются перемещения, во втором — компоненты напряжения. Наконец, в смешанном принципе стационарности удельная  [c.148]

Принцип минимума дополнительной работы. Принцип минимума потенциальной энергии системы был получен путем сравнения полей перемещений упругого тела в состоянии равновесия и в бесконечно близком к нему допускаемом связями состоянии. В принципе минимума дополнительной работы сравнению подвергаются два статически возможных напряженных состояния — истинное, задаваемое тензором напряжения Т, и бесконечно близкое к нему, с тензором напряжения Т -f бГ. Оба состояния рассматриваются, конечно, при одном и том же задании внешних сил — объемных рК и поверхностных, распределенных на части О2, ограничивающей тело поверхности О. Итак, в объеме V  [c.156]


Первое показывает, что тензор, обозначенный е, есть деформация лагранжева вектора X на Oi последний должен быть равен заданному здесь вектору перемещения, и ничто не препятствует, отождествив К с вектором перемещения и в объеме V, вернуться к определению тензора е как к величине, задаваемой полем перемещений. В самом принципе минимума дополнительной работы понятие о тензоре деформации отсутствует, поэтому отождествление векторов % н и должно быть привнесено нами, так как принцип об этом не знает .  [c.159]

Аналогом функционала в принципе минимума дополнительной работы служит функционал  [c.163]

С истинным состоянием равновесия, когда силами Р создается напряженное состояние, даюш,ее в сечении 5 систему сил / 12, сравнивается состояние, в котором эта система (при тех же Р) заменена пропорционально измененной системой сил (1 + e)Ri2- Отметим, что система уравнений статики, описывающих поведение тела Лг, нагруженного по S статически эквивалентной нулю системой R12, линейна поэтому и система (14-е)/ 12 создается статически возможной системой напряжений, что делает допустимым применение принципа минимума дополнительной работы.  [c.165]

По принципу минимума дополнительной работы (п. 2.5 гл. IV) напрял<енное состояние, реализуемое в упругом теле, отличается от всех статически возможных напряженных состояний (удовлетворяющих уравнениям статики в объеме и на поверхности) тем, что оно сообщает минимум функционалу — дополнительной работе. В задаче кручения по Сен-Венану отличны от нуля только касательные напряжения Ххх, Туг. поэтому F представляется в виде  [c.412]

Принцип минимума дополнительной энергии  [c.52]

Далее рассмотрим принцип минимума дополнительной энергии применительно к двумерной задаче 1.7. Заметим, что напряжения, выраженные соотношениями (1.61), образуют систему допустимых функций. Подставим их в функционал  [c.61]

В теории упругости рассматриваются преимущественно два вариационных принципа — принцип минимума потенциальной энергин и принцип минимума дополнительной работы (принцип Кастильяно).  [c.98]

Так как б Л (а,у) = Л (бст у) > О, приходим к следующему выводу, называемому принципом минимума дополнительной работы или вариационным принципом Каетильяно из всех статически возможных напряженных состояний тела при заданных внешних силах в действительности реали-вуется та напряженное состояние, для которого функционал Ч над тензором напряжений (о ), называемый дополнительной работой, имеет минимум.  [c.103]

Ставски 1152] сформулировал другую уточненную теорию, в которой наряду с деформацией сдвига по толш ине учитываются соответствующие нормальные напряжения. Основные уравнения, аналогичные по форме уравнениям классической теории трехслойных пластин, получены на основании принципа минимума дополнительной энергии. К сожалению, в этой работе рассмотрены только задачи статики с симметрично расположенными изотропными слоями.  [c.193]

В то же время следует отметить работу Рыбицки [31], который при решении задач о плоском напряженном состоянии и об обобщенной плоской деформации на каждом шаге нагружения использовал принцип минимума дополнительной энергии. Метод Рыбицки аналогичен методу конечных элементов и, следовательно, обладает всеми положительными качествами последнего аналогия состоит в том, что структура в целом или ее локальная область исследуется путем разбиения на дискретные элементы. Рыбицки рассмотрел два типа элементов  [c.227]

Аберсон и др. [26, 27] сделали одну из ранних попыток применения сингулярного элемента для описания движущейся трещины. Они воспользовались сингулярным элементом, приведенным на рис. 3(a), который включал в себя первые 13 членов собственных функций Уилльямса [28], определенных для стационарной трещины, находящейся в линейно-упругом теле. Собственные функции, использованные в [26,27], учитывают движения тела как твердого целого. Внутри сингулярного элемента вершина трещины перемещается между узлами А и В, как показано на рис. 3(a). После того как вершина доходит до узла В, происходит резкая смена схемы сетки, как это видно из рисунка. Для соблюдения условий совместности по перемещениям на границах между сингулярным и обычными треугольными элементами применяется модифицированный принцип минимума дополнительной энергии. Однако, как сообщается в [62], применение описанного подхода не привело к получению осмысленных результатов.  [c.284]

В принципе минимума дополнительной работы приравнивается нулю выражение разности вариаций потенциальной энергии деформации, выраженной через напряжения, и работы вариаций поверхностных сил J ubfj + vbfy + wbf do.  [c.437]

Вариационные методы наиболее плодотворно применяются в теории малых деформаций упругого тела. В случае когда существует функция энергии деформации и при вариациях перемещений внешние силы остаются неизменными, принцип виртуальной работы приводит к установлению принципа минимума потенциальной энергии. Этот вариационный принцип с помощью введения множителей Лагранжа дает семейство вариационных принципов, включающее принцип Хеллингера — Рейсснера, принцип минимума дополнительной энергии и т. д.  [c.18]

С Другой стороны, принцип дополнительной виртуальной работы приводит к установлению принципа минимума дополнительной энергии в случае, когда соотношения напряжения — деформации таковы, что существует функция дополнительной энергии и предполагается, что при вариации напряжений граничные условия в перемещениях остаются неизменными. Принцип минимума дополнительной энергии с помощью введения множителей Лагранжа приводит к принципу Хеллингера — Рейсснера, принципу минимума потенциальной энергии и т. д. Показано, что в рамках теории малых деформаций упругого тела эти два подхода к формулированию вариационных принципов являются взаимными и эквивалентными друг другу.  [c.19]


Полагая, что величины и, v, w не изменяются при варьировании, из уравнения (2.22) можно вывести вариационный принцип минимума дополнительной энергии среди всех систем возможных напряжений а , Оу,. .., которые удовлетворяют уравнениям равнодесия и заданным краевым механическим условиям на действительные напряжения сообщают полной дополнительной энергии Пс  [c.53]

Для доказательства обозначим компоненты действительных и произвольно выбранных возможных напряжений через а, Оу,. ... .., Тху и а х, Оу,. .., т ху соответственно и положим = Ох -j-+ Ьоу, al = Оу + Ьоу,. .., Тху Тху + Ьтху. Рассуждая так же, как и в предыдущем параграфе, получим, что первая вариация полной дополнительной энергии для действительного решения равна нулю, и поскольку В — положительно определенная квадратичная функция, то вторая вариация полной дополнительной энергии неотрицательна. Это и доказывает справедливость принципа минимума дополнительной энергии ).  [c.53]

В этом параграфе будет показано, что принцип Хеллингера — Рейсснера и принцип минимума дополнительной энергии можно рассматривать как частные случаи обобщенного вариационного  [c.57]

Таким образом, было показано, что поскольку принцип минимума потенциальной энергии выводится из принципа виртуальной работы, он может быть обобщен путем введения множителей Лагранжа и дает ряд вариационных принципов-, включающих принцип Хеллингера — Рейсснера, принцип минимума дополнительной энергии и т. п. Это показано в виде диаграммы на табл. 2.1.  [c.59]

Принцип минимума дополнительной энергии был выведен в 2.2 из принципа Дополнительной виртуальной работы. Легко проверить, что принцип минимума потенциальной энергии можно вывести из принципа минимума дополнительной энергии, проводя в обратном порядке рассуждения этого и предыдущего параграфов. Эквивалентноегь этих двух подходов очевидна, так как речь идет о теории упругости при малых перемещениях. Однако особо отметим тот путь, который ведет от принципа виртуальной работы к принципу минимума потенциальной энергии и другим связанным с ним вариационным принципам, потому что этот метод имеет больше преимуществ при систематическом решении задач в механике твердого тела.  [c.59]


Смотреть страницы где упоминается термин Принцип минимума дополнительной : [c.16]    [c.82]    [c.96]    [c.124]    [c.189]    [c.386]    [c.158]    [c.160]    [c.437]    [c.438]    [c.59]   
Введение в метод конечных элементов (1981) -- [ c.0 ]



ПОИСК



Вариационный принцип дополнительный минимума потенциальной энергии

Минимум

Минимума дополнительной энергии принцип

Принцип возможных изменений минимума дополнительной мощности

Принцип возможных изменений минимума дополнительной работы

Принцип возможных изменений напряженного состояния Принцип минимума дополнительной работы

Принцип возможных работ. Принцип минимума дополнительной энергии

Принцип дополнительност

Принцип минимума

Принцип минимума дополнительного рассеяния

Принцип минимума дополнительной мощности

Принцип минимума дополнительной работы

Принцип минимума дополнительной работы полной энергии

Принцип минимума дополнительной работы — принцип КастильМетод Рэлея — Ритца

Принцип минимума дополнительной энерги

Свойство верхней грани для решения, получаемого с помощью принципа минимума дополнительной энергии



© 2025 Mash-xxl.info Реклама на сайте