Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Минимума энергии деформации принцип

Для рассматриваемой задачи виртуальная работа нагрузки имеет заданное значение С. Поэтому принцип минимума потенциальной энергии становится принципом минимума энергии деформаций. Применительно к проекту с, этот принцип приводит к неравенству  [c.21]

Закон минимума потенциальной энергии деформации (принцип наименьшей работы)  [c.67]

Выражение (7.6ж) для энергии деформации содержит величины UR/h, г/ ги и пять неизвестных параметров а, Ь, с, К ж к. Простейший способ использования принципа возможной работы для определения этих пяти неизвестных состоит в задании отношения е/бс как постоянной величины, что соответствует случаю, когда цилиндрическая оболочка нагружается сжимающей силой в жесткой испытательной машине. Тогда для данной цилиндрической оболочки оказываются заданными оба параметра в/гы и UR/h, а отсюда, так как длина оболочки остается неизменной, следует, что внешняя осевая сжимающая сила не будет совершать работу на возможных перемещениях таких, которые обусловлены малыми изменениями пяти неизвестных. Отсюда, согласно принципу возможной работы, частные производные от выражения д т энергии деформации и, следовательно, от правой части выражения П.вщ . по каждой из неизвестных а, Ь, с, К и к можно положить равными нулю, что дает пять уравнений, из совместного решения которых определяются пять неизвестных (сказанное, разумеется, эквивалентно выбору таких значений этих неизвестных, которые доставляли бы минимум энергии деформации).  [c.505]


Следовательно, надо говорить о минимуме энергии деформации в положении равновесия, что позволяет трактовать начало Лагранжа как принцип минимума для обобщенных смешений.  [c.84]

ГИИ, которые тесно связаны с методами сил и податливостей расчета конструкций. Кроме того, для линейно деформируемых конструкций теоремы о дополнительной энергии сведены ко второй теореме Кастилиано и принципу минимума энергии деформации.  [c.418]

Т. е. представляют собой условия, при которых энергия деформации достигает стационарного значения, причем в случае конструкции, находящейся в состоянии устойчивого равновесия, это стационарное значение будет минимумом. Таким образом, мы получили принцип минимума энергии деформации, который утверждает следующее. Если в заданной системе перемещения, соответствующие лишним неизвестным, равны нулю, то для конструкции с линейным поведением лишние неизвестные величины Хь Хг,. . Х имеют такие значения, при которых энергия деформации минимальна. Принцип минимума энергии деформации является частным вариантом (относящимся к конструкциям с линейным поведением) более общего принципа минимума дополнительной энергии (см. уравнения  [c.533]

Разумеется, уравнения, полученные согласно принципу минимума энергии деформации, совпадают с уравнениями, полученными выше для метода податливостей ).  [c.533]

Определение тепловых напряжений и перемещений в теле непосредственным интегрированием соответствующих дифференциальных уравнений при произвольных граничных условиях является сложной задачей. Поэтому большой интерес представляют вариационные принципы термоупругости ( 2.4), с помощью которых могут быть разработаны приближенные методы решения задач термоупругости, аналогичные известным вариационным методам решения задач изотермической теории упругости [34] методы, основанные на обобщенном на случай задачи термоупругости вариационном уравнении Лагранжа и выражениях, аппроксимирующих возможные перемещения, и методы, основанные на обобщенном на случай задачи термоупругости принципе минимума энергии деформации и выражениях, аппроксимирующих возможные напряжения.  [c.38]

В частном случае получается принцип стационарности или минимума энергии деформации, если отсутствуют объемные силы и на всей поверхности тела заданы перемещения и,. Тогда поверхностный интеграл в (4.33) обращается в нуль, так как Л = Ои (4.35) примет вид  [c.92]


При решении конкретных технических задач в большинстве случаев не удается получить точного решения, поэтому приходится использовать различные приближенные методы анализа. В теории оболочек наибольшее распространение получили вариационные методы, основанные на принципе минимума энергии деформации. Если анизотропная пластинка изгибается нормальной нагрузкой р, то потенциальная энергия изгиба определится известным выражением  [c.51]

Определение давления металла на валки. Использование вариационных принципов механики пластических сред позволяет произвести анализ деформированного состояния при горячей пилигримовой прокатке труб и определить возможное при этом удельное давление металла на валки. Согласно принципу минимума полной энергии деформации (принцип Лагранжа), основное вариационное уравнение имеет вид  [c.192]

Принцип минимума потенциальной энергии для упругой среды состоит в том, что действительная энергия деформаций в композите не превышает значения энергии, соответствующей какому-либо фиктивному деформированному состоянию, удовлетворяющему кинематическим граничным условиям. Таким образом, для любого при однородном деформированном состоянии (когда гарантировано выполнение кинематических граничных условий) этот вариационный принцип утверждает, что  [c.82]

Для исследования гармонических упругих волн в композиционной среде Кон с соавторами [37] использовали методы, основанные на теории Флоке и Блоха. Этот подход весьма подробно рассмотрен также в статье Ли [40]. Основная идея всех этих работ состоит в применении вариационных принципов в интегральной форме к отдельной ячейке композита. Эти вариационные принципы дают способ определения фазовых скоростей и распределения напряжений в волнах Флоке, распространяющихся в композиционной среде без изменения формы при переходе от ячейки к ячейке. Различные авторы использовали как принцип минимума потенциальной энергии деформации, так и принцип максимума дополнительной работы.  [c.382]

Перейдем теперь к определению нижней границы модуля упругости. С этой целью воспользуемся принципом минимума дополнительной энергии. Согласно этому принципу, в каждой точке рассматриваемого тела удовлетворяются условия равновесия. При этом энергия деформации, полученная из распределения напряжений, уравновешивающих внешние силы, и соответствующая истинному распределению напряжений, является минимальной. Для составляющих напряжений а°, ... и энергии деформации для одноосного напряженного состояния можно положить, что =а, а другие составляющие равны нулю. Для этого случая можно записать следующее  [c.37]

Существует также теорема [3], которую часто называют принципом минимума полной потенциальной энергии или теоремой Лагранжа в состоянии равновесия консервативной системы ее полная потенциальная энергия принимает стационарное значение, причем в устойчивом состоянии равновесия это стационарное значение — минимум. Подчеркнем, что принцип минимума полной потенциальной энергии охватывает все консервативные системы — как линейные, так и нелинейные. Нелинейность консервативной системы может быть обусловлена двумя причинами геометрическими и физическими. Геометрические нелинейности обычно связаны с большими перемещениями гибких тонкостенных систем типа стержней, мембран или оболочек. Физическая нелинейность — это нелинейность зависимости между напряжениями и деформациями в упругом твердом теле.  [c.77]

В этом капитальном труде ставится цель построить единую, основанную на минимуме исходных предпосылок (принципы инвариантности, детерминизма, локального действия), теорию поведения сплошной среды. Выделен класс простых материалов , для них тензор напряжений зависит от истории изменения градиента вектора перемещения (но не от градиентов более высокого порядка). К числу таких материалов относятся упругое и гиперупругое тела. Дан исчерпывающий обзор решений частных задач, большое место уделено установлению приемлемых форм задания законов состояния и критериям выбора зависимости удельной потенциальной энергии деформации гиперупругого тела от инвариантов деформации. Книга снабжена исчерпывающей библиографией по нелинейной теории упругости доведенной до 1965 г.  [c.926]


ИЗ п различных материалов, а функция энергии деформации г-го материала обозначена через At, то принцип минимума потенциальной энергии можно переформулировать, заменив j Л dV на  [c.61]

В теории упругости- большое значение имеют энергетические методы, основанные на использовании принципа минимума потенциальной энергии и принципа Кастильяно. В настоящем параграфе устанавливаются аналогичные теоремы в теории упруго-пластических деформаций.  [c.64]

Этот принцип является в известной степени аналогом принципа минимума потенциальной энергии деформаций, широко используемого в теории упругости. Принцип Гельмгольца в гидродинамике вязкой жидкости, так же как принцип минимума потенциальной энергии в теории упругости, может быть положен в основу применения прямых методов вариационного исчисления для решения задач о медленном движении, в частности для задач гидродинамической теории смазки.  [c.430]

При формулировке принципа минимума потенциальной энергии системы исходят из выражения для удельной энергии деформации в терминах реформации и смещений (1.3). Если же пользоваться представлением и через напряжения (1.4), то придем к принципу минимума дополнительной работы.  [c.95]

Поясним на примере первой краевой задачи [в условиях (1.1), (1.2) З" =5,5 = 0], как с помощью принципов минимума потенциальной энергии системы и дополнительной работы выводятся неравенства для энергии деформации I/ [192].  [c.96]

Обобщение принципа минимума потенциальной энергии деформации на случай задачи термоупругости.  [c.44]

Эта формула обобщает известный принцип минимума потенциальной энергии деформации.  [c.45]

Минимальные принципы в теории упругопластических деформаций аналогичны принципу минимума потенциальной энергии и принципу Кастильяно в теории упругости [6, 69, 77, 101, 132, 200].  [c.124]

Что касается вариационного принципа в теории старения в задачах неустановившейся ползучести, то в силу того что уравнения теории старения, содержащие время t в качестве параметра, совпадают по существу с уравнениями теории упругопластических деформаций, вариационные принципы минимума полной энергии и принципы минимума дополнительной работы полностью справедливы. Принцип минимума дополнительной работы для решения рассматриваемых задач с учетом уравнений (17.7), а также того факта, что для подобных кривых ползучести справедливо равенство  [c.448]

Дальнейшее развитие метода конечных элементов связано с так называемым гибридным методом напряжений. Для каждого элемента применяются формулы для напряжений, которые удовлетворяют уравнениям равновесия элемента. Независимо от этого выбираются формулы для перемещений, обеспечивающие совместность перемещений на границах элементов, причем распределение перемещений на границах должно однозначно устанавливаться по перемещениям узловых точек. При вариационной формулировке оперируют принципами минимума потенциальной энергии и минимума дополнительной энергии деформации или расширенным вариационным принципом (привлекается модифицированный принцип дополнительной энергии Пиана [44, 45]).  [c.140]

Так как по закону Гука напряжения можно выразить через деформации (а следовательно, через перемещения и, V, а/) и, обратно, деформации можно выразить через напряжения, то в теории упругости одну и ту же задачу можно решать либо в перемещениях, либо в напряжениях, рассматривая соответствующую систему дифференциальных уравнений. Этим двум подходам отвечают и различные вариационные принципы (принцип минимума потенциальной энергии и принцип Кастильяно). Заметим, что можно исходить из смешанной системы уравнений, но это не всегда удобно.  [c.26]

Чтобы применить принцип минимума энергии к расчету пластин, необходимо иметь выражение потенциальной энергии деформации пластины.  [c.254]

Г"ТС физической точки зрения вязкое разрушение кристалла следует рассматривать скорее как образование большого числа пустот, а не как разрыв материала в обычном смысле слова [178]. Указанные пустоты уменьшают несуш,ую площадь поперечного сечения, и при более высокой скорости их расширения по сравнению с упрочнением материала пластическая деформация тела становится неустойчивой. Пустоты увеличиваются независимо одна от другой, вытягиваются в направлении действующего напряжения, смежные пустоты сливаются в соответствии с принципом минимума энергии поверхностного натяжения и при достижении критического состояния объединяются, образуя поверхность излома. При этом окончательное сужение сечения у чистых металлов практически достигает 100%. У технических металлов сужение при разрыве меньше благодаря влиянию границ зерен и загрязнений.  [c.304]

Как указали Прагер и Тэйлор [6], процедура, с помощью которой были получены условия оптимальности (2.14) и (2.34), может быть использована всякий раз, когда ограничения относятся к величине, например податливости, которая характеризуется минимальным принципом (например, использованным выше принципом минимума энергии деформации). Условие, полученное таким путем, является необходимым и достаточным для глобальной оптимальности при условии, что минимальная характеризация каждой ограниченной величины имеет глобальный характер. Проиллюстрируем эти замечания следующими примерами.  [c.31]

Выражение в левой части (1.27) называется потенциальной энергией упругой конструкции, находящейся под действием заданных нагрузок Р , для кинематически допустимых смещений р и соответствующих деформаций q. Она получается путем вычитания из энергии деформаций для деформаций q виртуальной работы нагрузок на смещениях р. Неравенство (1.27) показывает, что смещения и деформации, дающие реще-ние нашей задачи для конструкции, минимизируют потенциальную энергию принцип минимума потенциальной энергии).  [c.16]


В принципе минимума дополнительной работы приравнивается нулю выражение разности вариаций потенциальной энергии деформации, выраженной через напряжения, и работы вариаций поверхностных сил J ubfj + vbfy + wbf do.  [c.437]

Вариационные методы наиболее плодотворно применяются в теории малых деформаций упругого тела. В случае когда существует функция энергии деформации и при вариациях перемещений внешние силы остаются неизменными, принцип виртуальной работы приводит к установлению принципа минимума потенциальной энергии. Этот вариационный принцип с помощью введения множителей Лагранжа дает семейство вариационных принципов, включающее принцип Хеллингера — Рейсснера, принцип минимума дополнительной энергии и т. д.  [c.18]

В этом параграфе будут рас смотрены обобщения принципа ми нимума потенциальной энергии Сначала напомним рассуждения которые привели к выводу прин ципа минимума потенциальной энергии из принципа виртуальной работы. Мы предполагали (1) можно вывести положительно определенную функцию состояния Л (е, ty, Уху) из соотношений между деформациями и напряжениями (2) компоненты деформаций удовлетворяют уравнениям совместности, т. е. их можно вычислить по формулам (1,5) из и, V, w (3) компоненты перемещений ы, v, w определены так, чтобы удовлетворялись геометрические граничные условия (1.14) (4) объемные и поверхностные нагрузки должны выводиться из потенциальных функций Ф и Ч по формулам (2.10) и (2.11). Если принять эти предположения, то, согласно принципу минимума потенциальной энергии, действительные деформации могут быть получены из условий минимума функционала П, определенного по формуле (2.12).  [c.54]

Захс, пренебрегая в своих расчетах тем, что принятые им модели зерен могут отделяться друг от друга или внедряться друг в друга вследствие поворота, получил значение нижней границы для т= = 2,238. Тэйлор в 1938 г., введя 12 систем скольжения для гране-центрированной кубической решетки материала, из которых только 5 были независимыми, и предполагая однородность деформаций, однообразный характер деформации зерна и непрерывность перемещений на 1 раницах зерен, провел вычисления, основанные на принципе минимума энергии, и получил т=3,06. Дж. Ф. В. Бишоп и Родней Хилл (Bishop and Hill 11951, 1, 2l) в 1951 г. подвергли проверке и развили теорию Тэйлора, выражая решение задачи в терминах касательных напряжений и проводя вычисления на основании принципа максимума виртуальной работы. Они также получили значение т=3,06, ранее найденное Тэйлором, и смогли на основании дополнительных вычислений установить, что применительно к кручению поликристалла п=1,б5.  [c.297]

К. Формула (4.7.20) впервые была получена в 1864 г. Д. Максвеллом, который широко известен как создатель уравнений электромагнитного поля. Она была получена из геометрических соображений. Работа Д. Максвелла, в которой был сформулирован метод расчета ферм, была написана в абстрактной форме без чертежей и примеров и, видимо, по этой причине, осталась незамеченной инженерами. Десять лет спустя эту формулу заново открыл О. Мор. В основу своих рассуждений О. Мор положил принцип возможных перемещении и на его основе пришел к равенству (4.7.24). Приведенный нами вывод формулы (4.7.20) близок к данному О. Мором. В нем также использовано понятие потенциальной энергии деформации фермы, которое стало широко применяться после работ Л. Менабреа и А. Касти-лиано. Последний в 1879 г. получил формулу (4.7.20) из условия минимума потенциальной энергии деформаций. Подробнее этот подход будет рассмотрен в гл. 9.  [c.106]

Таким образом, доказано существование энергии деформации как функции, зависяще(й только от состояния деформации применение принципа минимума потенциальной энергии является в этих случаях вполне закономерным. Выражение энергии деформации через составляющие тензора деформации может быть найдено разумеется только из данных эксперимента.  [c.166]


Смотреть страницы где упоминается термин Минимума энергии деформации принцип : [c.527]    [c.144]    [c.191]    [c.211]    [c.51]    [c.417]    [c.37]    [c.158]    [c.95]    [c.144]   
Механика материалов (1976) -- [ c.533 ]



ПОИСК



Минимум

Принцип возможных изменений минимума полной энергии 139141 — Потенциал деформации

Принцип минимума

Принцип минимума энергии

Принцип энергии

Энергий деформаций минимум

Энергия деформации



© 2025 Mash-xxl.info Реклама на сайте