ПОИСК Статьи Чертежи Таблицы Устанавливаемое В. н. м. свойство движения сводится во многих случаях (но не всегда) к тому, что для истинного движения системы нек-рая физ. величина, являющаяся ф-цией кинематич. и динамич. характеристик зтой системы, имеет экстремум (минимум или максимум). При этом В. II. м, могут отличаться друг от друга видом той физ. величины (той ф-]1ии), к-рая для истинного движения является экстремальной, а также особенностями механич. систем и классами тех движений. для к-рых это экстремальное свойство имеет место. По форме В. н, м. можно разделить на дифференциальные, устанавливающие, чем истинное движение системы отличается от кинематически возможных в каждый данны)! момент времени, и интегральные, устанавливающие это различие для перемещений, совершаемых системой за конечный промежуток времени. В рамках механики дифференц. принципы имеют более общий характер, т. к. они приложимы к системам с любыми голономными и неголономными связями (см. Голочом-пая система Пеголопомная система). Интегральные принципы в их наиб, компактной форме приложимы только к голономным и даже только к консервативным системам. Однако выражение их через энергию и инвариантность по отношению к преобразованиям координат системы делает ати принципы приложимыми далеко за пределами классич. механики. [Выходные данные]