Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства твердых тел плотность

Поскольку на поверхности происходит скачкообразное изменение плотности материала, кристаллической структуры или локальной ориентации, поверхности оказывают сильное влияние на многие механические, электрические и оптические свойства твердого тела.  [c.12]

Будем предполагать, что механические свойства твердых тел носят изотропный характер, т. е. девиаторные составляющие тензоров напряжений и деформаций равны нулю, и фазовые превращения отсутствуют. Изменение плотности, следовательно, является результатом всестороннего сжатия вещества, и его упругие свойства характеризуются одной величиной — сжимаемостью.  [c.108]


Система уравнений, описывающая течение смазки в УГД контакте, выводится с учетом ряда допущений (их обсуждение см., например, в [5, 7, 32]) из уравнений гидродинамики, теплопереноса и теории упругости. Основные допущения заключаются в следующем толщина слоя смазки существенно меньше радиусов контактирующих тел, силы вязкого трения значительно больше инерционных, локально контактирующие тела заменяются полупространствами. Связь между тензором скоростей деформации и тензором напряжений, т.е. реологическая модель среды, является заданной. Зависимости свойств смазки — вязкости, плотности, теплопроводности, теплоемкости — от давления и температуры полагаются известными. Известными являются физические свойства твердых тел. При исследовании микро-УГД смазки задается топография поверхности. Система УГД уравнений замыкается начально-краевыми условиями.  [c.499]

Ряд параграфов этой главы был посвящен изучению термодинамических свойств твердых тел при высоких давлениях и температурах и описанию методов экспериментального исследования этих свойств при помощи измерений параметров ударного сжатия вещества. Общая особенность этих методов состоит в том, что таким путем можно найти только механические параметры вещества давление, плотность и полную внутреннюю энергию. Измерение кинематических параметров ударной волны — скорости распространения фронта и массовой скорости вместе с использованием соотношений на фронте ударной волны — не дает возможности непосредственно определить такие важные термодинамические характеристики, как температуру и энтропию. Для нахождения температуры и энтропии по данным механических измерений необходимо задаваться теми или иными теоретическими схемами для описания термодинамических функций. Выше было использовано трехчленное представление давления и энергии, причем некоторые параметры, такие, как теплоемкость атомной решетки, коэффициенты электронной теплоемкости и электронного давления приходилось определять теоретическим путем.  [c.599]

В настоящее время удается получать кристаллы кремния, большие участки которых совсем не содержат дислокаций. Однако такая ситуация совершенно необычна почти во всех кристаллах присутствует значительное количество дислокаций — как правило, порядка 10 дислокационных линий на 1 см. Ясно, что они играют решающую роль, которая и определяет пластические свойства твердых тел. Благодаря этим же дислокациям могут существенно понижаться и. модули упругости. Дислокационные линии представляют собой также туннели , облегчающие диффузию в твердое тело и сток внедренных атомов и вакансий. (Заметим, что вакансия может поглотиться краевой дислокацией, в результате чего на последней образуется небольшой перегиб.) Дислокации оказывают также важное влияние на электрические свойства сильно холоднокатаных материалов. В данном случае высокая плотность возникших дислокаций оказывает существенное влияние на рассеяние электронов, приводя к соответствующему повышению электросопротивления.  [c.509]


Следует подчеркнуть, что полностью микроскопический подход к исследованию энергетического спектра электронов в твердом теле связан с чрезвычайными математическими трудностями обш,его характера, не специфичными именно для многоэлектронной задачи. Эти трудности возникают и в обычной одноэлектронной теории и связаны с необходимостью решения задачи о движении одного электрона в периодическом поле идеальной решетки. Дело в том, что обычно в коллектив электронов, определяющих электрические, магнитные и др. свойства твердого тела, естественно включать электроны не всех вообще, а лишь одной-двух внешних атомных оболочек. Конкретное разделение на коллектив электронов и атомные остовы зависит, естественно, от природы вещества и характера задачи (см. ниже). Однако вид электронной плотности даже в изолированном атоме обычно не удается представить в простой аналитической форме. В результате приходится либо апеллировать к более или менее грубым приближенным методам, либо иметь дело с уравнением неизвестного вида. По этой причине представляется целесообразным вообще отказаться от полного вычисления энергетического спектра электронов в идеальной решетке, определяя его параметры из опыта. В полупроводниках для этой цели удобно использовать, например, явление циклотронного (диамагнитного) резонанса [2], [3] в металлах успех сулит использование гальваномагнитных данных [1] и исследование поглощения ультразвука в магнитном поле [4]. Динамическая теория при этом должна давать ответ на следующие вопросы  [c.158]

Влияние поверхности на электрические свойства твердых тел проявляется в изменении плотности заряда или явлениях рассея-, ния на поверхности. В свою очередь поверхностные явления  [c.366]

Колебательные свойства твердого тела зависят от плотности р, модулей Юнга Е и сдвига О, коэффициента Пуассона .I, удельного волнового сопротивления рс и коэффициента затухания р. В табл. 2 приведены зависимости для определения скорости распространения волн различных типов в изотропных твердых телах.  [c.15]

Некоторые предосторожности следует соблюдать при опре делении величины с по таблицам. Таблицы для скорости в жидкостях можно часто применять без опасения получить значи-тельные отклонения однако для твердых тел следует учитывать, что при различных условиях волны могут распространяться в одном и том же твердом теле с различной скоростью. При применении прибора для обнаружения дефектов мы имеем Дело главным образом с продольными колебаниями в сплошной массе твердого тела. Они распространяются с максимальной скоростью, и поэтому эхо, вызываемое волнами этого типа, приходит первым и может быть легко определено. Скорость распространен ния продольных волн определяется упругими свойствами твердого тела и его плотностью по уравнению  [c.259]

Однако отклонения от равномерного распределения молекул газа могут наблюдаться в любой ясный день. В верхних слоях атмосферы число молекул в единице объема достаточно мало, и могут осуществляться мгновенные местные отклонения от средней плотности, что вызывает рассеивание солнечного света, обуславливающее голубой цвет неба. Квантованные уровни энергии будут относиться к частицам. В идеальном газе энергетические уровни являются свойством молекулы, в твердом теле — свойствами кристалла.  [c.91]

В твердом теле возможно распространение продольных (7) и поперечных (t) волн, скорость которых определяется только свойствами среды плотностью (р) и модулями Е и G  [c.199]

Фазовым переходом называется изменение состояния вещества. В школьно.м курсе изучаются три основных агрегатных состояния твердое, жидкое и газообразное. При более близком рассмотрении обнаруживается множество других состояний (фаз). Так, например, многие твердые тела способны изменять свою кристаллическую струк-гуру при изменении температуры или давления. При очень больших температурах или малых плотностях вещество ионизируется и становится плазмой - четвертым агрегатным состоянием вещества - и обладает свойствами, редкими на Земле, но обычными в космосе.  [c.83]


В теории молекулярного рассеяния Эйнштейн рассматривал флуктуации плотности в жидкостях или кристаллах в виде наложения периодических колебаний плотности. Пользуясь таким математическим приемом, позволившим построить количественную теорию рассеяния в жидкостях и твердых телах, Эйнштейн нс приписывал этим периодическим колебаниям какого-либо реального значения и никак, не связывал их с другими свойствами жидкостей и кристаллов. В дальнейшем, благодаря идеям Мандельштама, оказалось возможным связать теорию рассеяния с теорией теплоемкости твер-  [c.121]

Период крутильных колебаний зависит от массы диска и его размеров, но не зависит от его упругих свойств поэтому, рассматривая диск как твердое тело, мы сможем правильно отразить те свойства реального диска, которые играют роль в рассматриваемом движении. Наконец, период звуковых колебаний зависит не только от размеров диска, но и от упругих свойств и плотности материа- г ис. 1.  [c.13]

Даже для газов, свойства которых изучены наиболее полно, по сравнению с жидким и твердым телом, вопрос построения уравнения состояния окончательно не решен. Теория уравнения состояния в настоящее время хорошо разработана лишь для идеального газа, разреженных газов, имеющих небольшую плотность, и в меньшей степени для плотных газов.  [c.18]

Проведено теоретическое описание адгезионных свойств системы твердое тело—покрытие. Применительно к определенному рельефу поверхности и ее дислокационной структуре с использованием метода функционала плотности найдено выражение для межфазной энергии как функции расстояния между взаимодействующими фазами и произведен ее расчет. Получено выражение для энергии адгезии в ряде систем металл—покрытие и рассчитана сила сцепления покрытия с основой.  [c.235]

Вещество в разных агрегатных состояниях имеет различные физические свойства, и в частности плотность. Это различие объясняется характером межмолекулярного взаимодействия. Мы ограничимся здесь лишь упрощенной трактовкой, основанной на явлении ассоциации, т. е. образования комплексов из большего или меньшего числа молекул. При переходе вещества из жидкой фазы в газообразную теплота фазового перехода тратится как на работу расширения, так и на преодоление сил межмолекулярного взаимодействия, выражающееся в разрушении ассоциированных комплексов. При этом уменьшается и плотность вещества. При плавлении или сублимации теплота фазового перехода затрачивается на разрушение кристаллической решетки твердого тела.  [c.135]

Действительно, на всех стадиях деформационного упрочнения общее количество произведенных в процессе деформации дислокаций существенно превышает то их количество, которое необходимо для поддержания самой пластической деформации. Излишек дислокаций запасается в материале и препятствует свободному скольжению. Для дальнейшей деформации необходимо увеличение прикладываемых напряжений, приводящее к росту внутренней энергии системы. Коллективные эффекты, развивающиеся в ансамбле дислокаций, направлены на ликвидацию их избыточной плотности. Стенки ячеек служат местами, благоприятными для аннигиляции дислокаций. В тот момент, когда на микроуровне образуется достаточное количество стенок ячеек для обеспечения эффективной аннигиляции избыточных дислокаций, на макроуровне наблюдается переход к стационарной стадии деформации. Последний характеризуется снижением общего уровня напряжений, а следовательно и прекращением роста внутренней энергии. По мере развития пластического течения эволюция системы в виде деформируемого твердого тела контролируется не индивидуальными свойствами единичных дислокаций, а сложной совокупностью взаимосвязанных множественных элементарных дислокационных механизмов. Существенную роль играют также дальнодействующие внутренние напряжения, источником которых служит каждая отдельная дислокация [135].  [c.110]

Рассмотрение разрушения металлов как процесса, связанного с неравновесными фазовыми переходами [11], позволяет ввести обобщенные критерии разрушения, отражающие коллективные эффекты при пластической деформации и разрушении твердых тел, и самоорганизацию диссипативных структур. Из анализа разрушения с позиций синергетики следует, что сопротивление разрушению твердых тел определяется диссипативными свойствами. Показателем диссипативных свойств материала при самоподобном разрушении является фрактальная размерность, учитывающая вклад в диссипацию энергии двух основных механизмов пластической деформации и образования несплошностей. В этой связи критерии фрактальной механики разрушения являются комплексами — двух- или трехпараметрическими. В линейной и нелинейной механике разрушения, как известно, уже давно используются двухпараметрические критерии. Отличие двухпараметрических критериев фрактальной механики разрушения от критериев линейной механики заключается в том, что они определяют условия перехода разрушения на стадию самоподобного разрушения, контролируемого критической плотностью внутренней энергии и ее эволюцией в процессе роста трещины. Так как самоподобное  [c.169]

В этом же разделе рассматриваются важнейшие методы определения наиболее часто используемых в теплотехнических расчетах свойств плотности твердых тел коэффициента поверхностного натяжения энтальпии и теплоемкости вещества термодинамических свойств на линии фазового перехода теплопроводности вязкости.  [c.9]


ПИНЧ-ЭФФЕКТ есть свойство канала электрического разряда в электропроводящей среде уменьшать свое сечение под действием собственного магнитного поля тока ПИРОЭЛЕКТРИК— кристаллический диэлектрик, обладающий самопроизвольной поляризацией ПИРОЭЛЕКТРИЧЕСТВО — возникновение электрических зарядов на поверхости некоторых кристаллов диэлектриков при их нагревании или охлаждении ПЛАЗМА (есть частично или полностью ионизированный газ, в котором объемные плотности положительных и отрицательных электрических зарядов практически одинаковы высокотемпературная имеет температуру ионов выше 10 К газоразрядная находится в газовом разряде кварк-глюонная возникает в результате соударения тяжелых ядер при высоких энергиях ядерного вещества низкотемпературная имеет температуру ионов менее 10" К твердых тел — условный термин, обозначающий совокупность подвижных заряженных частиц в твердых проводниках, когда их свойства близки к свойствам газоразрядной плазмы) ПЛАСТИНКА вырезанная из двоя-копреломляющего кристалла параллельно его оптической оси, толщина которой соответствует оптической разности хода обыкновенного и необыкновенного лучей, кратной [длине волны для пластинки в целую волну нечетному числу (половин для волн для пластинки в полволны четвертей длин волн для пластинки в четверть волны)] зонная — прозрачная плоскость, на которой четные или нечетные зоны Френеля для данного точечного источника света сделаны непрозрачными нлоскопараллельная — ограниченный параллельными плоскостями слой среды, прозрачной в некотором интервале длин волн оптического излучения ПЛАСТИЧНОСТЬ — свойство твердых тел необратимо изменять свои размеры и форму под действием механических нагрузок ПЛОТНОСТЬ тела — одна из основных характеристик тела (вещества), равная отношению массы элемента тела к его объему  [c.259]

Например, в случае когда ядра образуют периодическую решетку, зная соответствующие электронные состояния, можно было бы рассчитывать тепловые, оптические и магнитные свойства твердого тела, уравцение состояния, распределение электронной плотности (рис. 1) и энергию сцепления—величины и зависимости, которые можно сравнивать с экспериментальными данными. Если ввести небольшую деформацию решетки, соответствующую наличию фонона, то решение названной задачи позволило бы предсказывать спектр колебаний решетки. Если же учесть и электронные, и фононнъш евойства металла, то можно было бы рассчитать температуру его перехода в сверхпроводящее состояние- Кроме того, хотя мы и оставляем за рамками нашей темы те свойства систем, которые связаны с их возбужденными состояниями (например, теплопередачу), решение той же  [c.179]

О свойствах твердого тела вблизи подобного фазового перехода в этих системах известно еще меньше, если иметь в виду точность результатов. Строго говоря, ни один из полученных результатов не является точным из-за существования различных гнезд конфигурационного пространства, которые в вычислительном слшсле не связаны между собой. Здесь снова во многих случаях можно сделать удачные предположения о роли некоторых из них. Однако при этом, особенно вблизи точки плавления, остается нерешенным общий вопрос о том, насколько велика должна быть система, чтобы при любой заданной плотности в ней могло существовать соответствующее количество дефектов кристаллический структуры. Все результаты, полученные для трехмерных систем, не являются точными, если говорить о роли г.ц.к. структуры по сравнению с гексагональной.  [c.390]

МЕХАНИЧЕСКИЕ СВОЙСТВА твердых тел при высоком давлении. Высокое гидростатич. давление, помимо увеличения плотности твердых тел, приводит к изменению условий деформирования (течения) и нарушению сплошности тел под действием внешних негидростатич. сил. Изменение плотности тел с давлением — объемная упругость — изучено более полно (см. Сжимаемость), чем влияние давления на механические (в обычном понимании) характеристики твердых тел, такие как упругость, пластичность, прочность, твердость. Н связи с тем, что в этой относительно молодой области знаний происходит в основном накопление опытных фактов и выяснение основных закономерностей, ниже рассматриваются гл. обр. фактич. данные и качественная сторона явлений. Изменения М. с. вследствие происходящих под давлением фазовых превращений не описываются.  [c.224]

Одним из характерных свойств твердого тела, отличающим его от жидкости, является устойчивость формы твердого тела, сопротивляемость по отношению к сдвигу. В жидкости 0тс5т ствует сопротивление по отношению к сдвигу, жидкость с легкостью принимает любую форму, лишь бы при этом не менялся ее объем (плотность). Касательные, сдвиговые напряжения в жидкости отсутствуют в статическом состоянии ).  [c.574]

Действие излучения на материалы. При оценке действия радиации на твердое тело констатируется изменение какого-либо свойства или ряда свойств тела, соответствующее определенной степени воздействия излучения, которую характеризуют дозой облучения. Доза — количество энергии, полученное единицей массы вещества в результате облучения. Взаимодействие излучений с твердым телом представляет собой сложное явление, которое в общем случае сводится к следующему возбуждение электронов, возбуждение атомов и молекул, ионизация атомов и молекул, смещение атомов и молекул с образованием парных дефектов Френкеля. Кроме того, в результате воздействия излучений возможны ядерные и химические превращения, а также протекание фотолити-ческих реакций. Все это приводит к уменьшению плотности, изменению размеров, увеличению твердости, повышению предела текучести, уменьшению электросопротивления, изменению оптических характеристик тела. Знание изменений свойств под действием облучений особенно важно при создании ядерно-энергетических установок, ряда устройств космических аппаратов [52]. Покрытия в космическом пространстве испытывают воздействие радиации, состоящей из электромагнитного излучения и потока частиц. Каждое  [c.181]

Расчет энергии связи в кристаллах — безусловно, квантово-механическая задача. Тем не менее установлено, что для некоторых типов твердых тел в достаточно хорошем приближении энергия связи может быть определена и на основе классического рассмотрения. К таким относятся кристаллы, распределение зарядов в которых может быть представлено в виде совокупности периодически расположенных точечных зарядов (ионов) или диполей. Возникающие в этих случаях типы связи называют соответственно ионной или ван-дер-ваальсовой (иногда — дипольной). В то же время сведение квантовомеханической задачи к классической оказалось невозможным в случае, когда плотность электронов в межионном пространстве достаточно велика, и электроны нельзя рассматривать как включенные в точечные (или почти точечные) ионы. Методы определения характеристик связи и физических свойств кристаллов с таким распределением электронов основываются непосредственно на квантовой теории (включая квантовую статистику). Анализ показал, что основными типами связи в этих случаях являются металлическая, характеризующаяся в первую очередь отсутствием направленности, и ковалентная, важным признаком которой является направленность. Помимо этого в последние годы выделяют в особый YHn водородную связь, имеющую важное значение при рассмотрении биологических соет динений.  [c.20]


Уравнения состояния кондеисироваипых тел и их фаз. Уравнения для внутренней энергии и давления твердых тел или жидкостей соответствуют двухпараметрпческой среде, когда внутренняя энергия н давление зависят от двух переменных — истинной плотности вещества р° и температуры. Прп этом внутреннюю энергию и давление при температурах, меньших 10 К, представляют в виде суммы двух составляющих, которые соответственно описывают упругие свойства холодного тела прп гидростатическом сжатии up, Рр) и эффекты гармопичсскпх колебаний атомов в решетке (ut,Pt), характеризуемых температурой  [c.242]

Применение электронно-лучевой обработки для модификации триботехнических свойств материалов имеет определенные преимущества по сравнению с другими видами обработки концентрированными потоками энергии. Главным образом это связано с достижением больщего сечения пучка, возможностью изменения глубины проникновения электронов, независимостью от оптических свойств поверхности обрабатываемого материала. Использование интенсивных импульсных электронных пучков [146-154] позволяет путем изменения параметров облучения энергии электронов , плотности энергии пучка 5, длительности импульса t- влиять на пространственное распределение выделенной энергии и динамику тепловых полей в приповерхностных слоях твердых тел. При этом формирование структуры и фазового состава материалов определяется совокупностью протекающих микро- и макропроцессов, отражающих соответственно прохождение электронов в веществе и рассеяние энергии.  [c.252]

Вода обладает многими специфическими свойствами, имеющими ярко выраженный аномальный характер. Все они - следствие особенностей структуры воды и развитости в ней водородных связей. Плавление твердой воды - льда - сопровождается не расширением, а сжатием, а при замерзании воды объем льда значительно увеличивается. Как известно, подавляющее большинство веществ при плавлении расширяется, а при затвердевании, наоборот, уменьшает свой объем. Аномально также влияние температуры на изменение плотности воды при росте температуры от 273 до 277 К плотность увеличивается, при 277 К она достигает максимальной величины, и только при дальнейшем повышении температуры плотность воды начинает уменьшаться. Зависимость теплоемкости воды от температуры имеет экстремальный характер. Минимальная теплоемкость достигается при температуре 308,5 К и вдвое превышает теплоемкость льда, а при плавлении других твердых тел тегаюемкость изменяется незначительно. Удельная теплоемкость воды аномально велика, она равна 4,2 Дж/(г К). Вязкость воды в отличие от вязкости других веществ растет с повьцнением давления в интервале температур от 273 до 303 К. Вода имеет температуру плавления и кипения, значитель-  [c.186]

Жидкости по своим свойствам ближе к твердым телам, чем к газообразным, так как I) плотность жидкостей при затвердевангн близка к плотности твердых тел 2) увеличение объема при плавлении крайне незначительно (до 10%) 3) теплоемкость при плавлении несколько уменьшается 4) в расположении частиц жидкости дальний порядок , характеризующийся строгой периодичностью, отсутствует. При незначительном увеличении расстояний частиц друг от друга происходит полное нарушение порядка.  [c.52]

Изложенная выше разработанная авторами [32] физическая модель, призванная объяснить влияние теплофизических свойств и толщины греющей стенки на теплоотдачу при кипении, на практике реализуется только в определенных условиях и в основном при кипении криогенных жидкостей. Как известно, криогенные жидкости отличаются от обычных жидкостей чрезвычайно высокой способностью смачивать твердые тела (для них краевой угол 6- -0). Обладая почти абсолютной смачиваемостью, они легко заполняют микровпадины даже очень малых размеров, в результате чего такие впадины теряют способность генерировать паровую фазу н поверхность обедняется активными центрами парообразования. Под влиянием этого фактора в переходной области от естественной конвекции в однофазной среде к развитому пузырьковому кипению зависимость коэффициента теплоотдачи от плотности теплового потока становится болеа значительной (показатель степени п. в уравнении достигает значений  [c.201]

Огюстен Жан Френель (Freanel) родился в Нормандии в 1788 г., умер в Париже в 1827 г. Вместе с английским физиком Томасом Юнгом он дал экспериментальные основы волновой теории света. Выдающимися являются его опыты с явлением диффракции и интерференции поляризованного света. Согласно его теоретической концепции световые явления порождаются поперечными колебаниями некоторой среды (эфира), которую, для того чтобы иметь бесконечно малую плотность, наделяют свойством упругих твердых тел. При помощи волновой теории света ему удалось в удивительном согласии с опытом объяснить не только классические явления геометрической оптики  [c.378]

Известно, что при деформации твердых тел поверхностные слои в силу особого термодинамического состояния ведут себя иначе, чем основная масса материала. При этом, несмотря на их сравнительно малый объем по сравнению с объемом всего тела, свойства кристалла в значительной мере зависят от свойств поверхности [1]. На поверхности деформированных тел имеется тонкий слой (10—70 мкм) с повышенной плотностью дислокаций, который, по терминологии Гилмана [2], называется дебри -слоем. По-видимому, его существование должно влиять на термо-  [c.116]

ВОСПРИИМЧИВОСТЬ — характеристика (диэлектрика, показывающая его способность поляризоваться в электрическом поле магнетика, показывающая его способность намагничиваться в магнитном поле) ВЯЗКОСТЬ [—свойство жидкостей и газов оказывать сопротивление перемещению одной их части относительно другой динамическая — количественная характеристика сопротивления жидкости или газа смещению одного слоя относительно другого кинематическая— отнощение динамической вязкости к плотности жидкости или газа магнитная — отставание во времени изменения магнитных характеристик ферром нетика от изменения напряженности внешнего магнитного поля объемная — величина, характеризующая процесс перехода внутренней энергии в тепловую при объемных деформациях среды (вторая вязкость) структурная — вязкость, связанная с возникновением структуры в дисперсных системах ударная — поглощение механической энергии твердыми телами в процессе деформации и разрущения под действием ударной нагрузки]  [c.228]

Широкое распространение применительно к полимерным системам получила фононная теория теплоперенога Л. 35—38]. В ряде работ ТЛ. 39, 40] экспериментально установлена согласованность температурной зависимости теплопроводности полимеров с основными положениями фононной теории теплопереноса. С другой стороны, результаты экспериментов при низких температурах Л. 41], а также теоретический расчет теплофизичеоких параметров по скорости распространения упругих волн в растворах и твердых телах [Л. 42] не подтверждают правомерность применения фононной теории теплопр-реноса для таких сложных веществ, как полимеры. Альтернативный характер носят и другие положения фононной теории теплопереноса применительно к полимерным системам. Так, если руководствоваться результатами работы (Л. 43], то длина свободного пробега фононов в широком интервале температур для аморфных полимеров равняется среднему межатомному расстоянию и не зависит от температуры. Однако из приведенного выше обзора по физико-химическим свойствам полимеров видно, что за счет гибкости макромолекул (Л. 22] плотность упаковки структурных элементов полимера может претерпеть существенные изменения. Таким образом, специфика структуры полимерных систем накладывает неопределенность на понятие длины  [c.32]

Назначение ПАВ соответствует их названию — это вещества, повышающие поверхностную энергию частиц твердых тел, в результате чего улучшается их смачивание органическими веществами. ПАВ — полярные жидкости. Их действие основано на том, что их молекулы, смачивая поверхность твердых частиц, ориентируются полярными группами (карбоксильными) к поверхности частиц, понижая тем самым их поверхностную энергию. Неполярные радикалы ПАВ (углеводородные) обращены во внешнюю сторону и взаимодействуют с неполярными молекулами органической связки. Наиболее распространена в технологии технической керамики ПАВ олеиновая кислота (С тНзз—СООН). Это густая маслообразная жидкость с плотностью 0,898 г/см и температурой плавления 16°С. Хорошими поверхностноактивными свойствами обладает воск. Иногда его применяют в смеси с олеиновой кислотой и реже самост  [c.48]


Си [173] разработал математические основы для анализа термомеханических процессов в твердых телах на основе введения ряда теорем для функции плотности изоэнергии с ) етом необратимости и неравновесности процессов пластической деформации. Их проявление при деформации твердых тел обусловливает зависимость механических свойств от времени. Отмечено [173], что даже если создать условия псевдоизоляции системы и минимизировать ступеньки в увеличении механической нагрузки, то все равно элементы твердого тела будут взаимодействовать друг с другом и будет происходить обмен энергией, что вызывает локальный экспорт энтропии.  [c.120]


Смотреть страницы где упоминается термин Свойства твердых тел плотность : [c.206]    [c.242]    [c.309]    [c.15]    [c.12]    [c.21]    [c.6]    [c.93]    [c.41]    [c.90]    [c.277]    [c.16]    [c.259]   
Тепловые трубы Теория и практика (1981) -- [ c.19 , c.197 ]



ПОИСК



Плотность твердых тел



© 2025 Mash-xxl.info Реклама на сайте