Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Самоорганизация диссипативных структур

Достижение точки бифуркации, отвечающей самоорганизации диссипативных структур в виде ячеек Бенара (рисунок 1.23, а), сопровождается появлением нового механизма переноса тепла, обусловленного возникновением конвективных потоков. При этом жидкость (рисунок 1.23, б) спонтанно разделяется на гексагональные ячейки, напоминающие соты, в результате кооперативного движения молекул жидкости при достижении критической точки, отвечающей ДТ. Общий поток энтропии через жидкость выразится как кр.  [c.64]


Синергетика -теория самоорганизации диссипативных структур в живой и неживой природе  [c.231]

Таким образом, самоорганизация диссипативных структур вблизи неравновесного фазового перехода позволяет создать новую структуру, которая становится устойчивой после перехода через кризис, но при другом контролирующем механизме диссипации энергии.  [c.265]

В этих условиях физико-химические процессы являются самоорганизующимися и контролируются принципом минимума производства энтропии [i] и принципом подчинении [2]. Они реализуются вблизи неравновесных фазовых переходов и проявляются в самоорганизации диссипативных структур.  [c.173]

Основы теории самоорганизации заложены в 30-40 годах прошлого века применительно к живой природе. Развитие кибернетики, а затем синергетики как теории самоорганизующихся структур предопределило универсальность механизма самоорганизации, являющегося общим как в живой, так и в неживой природе. В основе этой теории лежит принцип минимума производства энтропии, объясняющий процессы самоорганизации диссипативных структур с реализацией обратной внутренней связи. Роль этих связей играют структурные элементы, контроль за которыми позволяет управлять свойствами материала.  [c.542]

Монография посвящена новому научному направлению в материаловедении — управлению структурообразованием в расплавах и сплавах с использованием свойств открытых систем, находящихся вдали от термодинамического равновесия и связанных с самоорганизацией диссипативных структур. Теорией этого вопроса занимается синергетика. Другая особенность монографии — объединение подходов синергетики с теорией фрактальных ст )уктур, количественной мерой которых является фрактальная размерность.  [c.3]

Синергетика занимается изучением процессов самоорганизации, устойчивости и распада структур различной природы, формирующихся в системах, далеких от равновесия. Они являются общими для живой и неживой природы. Общность заключается в том, что и биологическим, и химическим, и физическим, и другим неравновесным процессам свойственны неравновесные фазовые переходы, отвечающие особым точкам — точкам бифуркаций, по достижении которых спонтанно изменяются свойства среды, обусловленные самоорганизацией диссипативных структур [5]. Движущей силой самоорганизации диссипативных структур является стремление открытых систем при нестационарных процессах к снижению производства энтропии.  [c.6]

В силу сказанного реальной представляется возможность установления связи между составом, фрактальной структурой и свойствами материала [И, 12]. Это ставит задачу развития фрактального материаловедения, учитывающего самоорганизацию диссипативных структур, отражающую способность системы приспосабливаться к внешним условиям воздействия путем реализации обратных связей. Согласно В.Е. Панину и др. [13, 14], в электронной структуре металла и сплава уже заложен генетический код, осуществляющий приспособление системы к внешнему воздействию. Задача управления свойствами сплавов и получение материалов с заданными свойствами сводится к отысканию способов целенаправленного усиления обратных связей. Указанная проблема сама по себе достаточно сложна и требует объединения физиков, химиков, механиков, материаловедов и технологов.  [c.8]


Самоорганизация диссипативных структур  [c.22]

Одним из типичных примеров самоорганизации диссипативных структур является переход ламинарного течения жидкости в турбулентное. До недавнего времени он отождествлялся с переходом к хаосу. В действительности же обнаружено, что в точке перехода путем самоорганизации диссипативных структур происходит упорядочение, при котором часть энергии системы переходит в макроскопически организованное вихревое движение, схематически представленное на рис. 3. Таким образом, гидродинамическая неустойчивость при переходе ламинарного течения в турбулентное связана с образованием динамических диссипативных структур в виде вихрей.  [c.23]

Одним из следствий существования самоорганизации диссипативных структур в человеческом организме является феномен высокой несущей способности его позвоночника [30]. Известно, что позвоночник, обеспе-  [c.26]

Рассмотрим теперь примеры самоорганизации диссипативных структур при пластической деформации и разрушении. Здесь, как и при структурных изменениях движущейся жидкости (или газа), можно говорить о бифуркациях структур.  [c.30]

Деформируемое твердое тело является самоорганизующейся системой, в процессе эволюции которой происходит (так же как и в других синергетических системах) самоорганизация диссипативных структур со спонтанной их перестройкой вблизи точек бифуркаций. Эти перестройки можно рассматривать как последовательность кинетических переходов, при которой случайность, неравновесность и необратимость являются источниками порядка в системе.  [c.30]

Рис. 58. Периодическая смена устойчивости и неустойчивости в процессе самоорганизации диссипативной структуры (а) [126] и фрактальная модель высокодисперсных дендритных частиц железа (б) [50] Рис. 58. Периодическая <a href="/info/14036">смена устойчивости</a> и неустойчивости в процессе самоорганизации диссипативной структуры (а) [126] и фрактальная модель высокодисперсных дендритных частиц железа (б) [50]
Самоорганизация диссипативных структур происходит на границе перехода от ламинарного течения процесса к турбулентному. В этих условиях возникают ветвления поверхности порошковых частиц при быстром затвердевании или поверхности — при лазерной обработке.  [c.82]

В связи с этим параметр X может служить своего рода показателем "предрасположенности" к самоорганизации диссипативных структур дефектов при ПД материала. Обозначим через Л(Х,, а) набор параметров, принятых в [19, 178] в качестве управляющих, и выделим два состояния А = Aq и А = Aq + АА. Процессу самоорганизации отвечают положительные изменения ДЛ О [178], поэтому условие для более упорядоченного состояния записывают в следующем виде  [c.103]

Рассмотрение поведения деформируемого твердого тела с позиций физики и механики неравновесных состояний выдвигает на первый план определение диссипативных свойств материала в точках неустойчивости системы, отвечающих самоорганизации диссипативных структур. Параметры, контролирующие точки перехода "устойчивость—неустойчивость— устойчивость" при деформировании материалов несут фундаментальную информацию о его диссипативных свойствах и фрактальной природе пластической деформации и разрушения.  [c.159]

Рассмотрение разрушения металлов как процесса, связанного с неравновесными фазовыми переходами [11], позволяет ввести обобщенные критерии разрушения, отражающие коллективные эффекты при пластической деформации и разрушении твердых тел, и самоорганизацию диссипативных структур. Из анализа разрушения с позиций синергетики следует, что сопротивление разрушению твердых тел определяется диссипативными свойствами. Показателем диссипативных свойств материала при самоподобном разрушении является фрактальная размерность, учитывающая вклад в диссипацию энергии двух основных механизмов пластической деформации и образования несплошностей. В этой связи критерии фрактальной механики разрушения являются комплексами — двух- или трехпараметрическими. В линейной и нелинейной механике разрушения, как известно, уже давно используются двухпараметрические критерии. Отличие двухпараметрических критериев фрактальной механики разрушения от критериев линейной механики заключается в том, что они определяют условия перехода разрушения на стадию самоподобного разрушения, контролируемого критической плотностью внутренней энергии и ее эволюцией в процессе роста трещины. Так как самоподобное  [c.169]


Рассмотрение деформируемого твердого тела как открытой системы, обменивающейся энергией и веществом с окружающей средой, позволяет связать критическую температуру хрупкости с переходами системы устойчивость—неустойчивость—устойчивость, сопровождающимися самоорганизацией диссипативных структур и спонтанным изменением их фрактальной размерности.  [c.183]

Эффективная энергия активации как управляющий параметр. В выражении (256) разность Уэф = щ — уа характеризует эффективную энергию активации, а так как ее величина связана с напряжением, то ее можно принять за управляющий параметр. Его критические значения в точке бифуркации определяет параметр порядка, отвечающий Уэф = О. Тогда uq-уа = 0. Это равенство является условием автомодельности разрушения и самоорганизации диссипативных структур. При таком подходе удается выделить пороговые напряжения, соответствующие фрактальные объекты и интервал изменения их фрактальной размерности.  [c.206]

С позиций синергетики самоорганизация диссипативных структур, как уже отмечалось, связана с достижением точек бифуркаций, переход через которые приводит к самоорганизации структуры, обеспечивающей упорядочение более высокого ранга. Отсюда можно сделать вывод, что оптимизация конструкций промежуточных разливных устройств и режимов разливки стали непосредственно связана с обеспечением условий для формирования потока жидкости при режимах, отвечающих переходу от ламинарного течения к турбулентному. Числовые значения технологических параметров могут быть получены на базе диаграмм трехмерного течения расплава, разработанных в [341].  [c.222]

Образование кавитационных пузырьков при УЗО подобно процессам газожидкостного плюмажа или инжекционной обработки расплава порошками, рассмотренным выше. Однако в отличие от них при УЗО происходит более интенсивная дегазация расплавов. Она включает зарождение кавитационных газовых пузырьков, их рост в результате направленной диффузии из расплава в полость, коалесценцию мелких пузырьков в результате развития акустических потоков и их вынос на поверхность расплава [346]. Однако определяющая роль кавитации в улучшении структуры расплава и твердого металла заключается отнюдь не в дегазации, а в эффектах самоорганизации диссипативных структур, обусловленной возникновением нелинейной динамики на границе твердая—жидкая фазы. При критических условиях она приводит к неустойчивости движения и бифуркациям, при которых рост кристаллов и затвердевание сплавов связано со сложными кооперативными процессами массо- и теплопереноса, течением жидкости, химическими реак-  [c.226]

Уже давно поставлена задача получения материалов, структурно и функционально подобных живым организмам или природным органическим материалам, однако до сих пор она остается нерешенной. Это связано с тем, что сама по себе эта задача является комплексной и требует для своего решения междисциплинарного подхода с объединением усилий специалистов различного профиля для интеграции достижений в смежных науках, в том числе и в биологии. Синергетика, являющаяся теорией самоорганизации диссипативных структур в живой и неживой природе, объединила методологией и единым математическим аппаратом различные научные направления, изучающие эволюцию систем, находящихся вдали от термодинамического равновесия. Такие системы обладают общим (универсальным) свойством самоорганизации диссипативных структур в процессе обмена энергией и веществом с окружающей средой [26]. При этом в системе происходят неравновесные фазовые переходы, наблюдаются динамическая нелинейность и резонансные возбуждения. Все эти свойства характерны для системы с обратными связями. Это означает, что создание конструкционных материалов, функционально подобных живым организмам, требует разработки теории управления обратными связями, заложенными в электронном спектре сплава [13]. Обратные связи в металлах, как и в живой природе, функционируют при постоянной подаче в систему энергии.  [c.237]

Основным фактором в эволюции живой природы всегда считалось стремление системы сохранить свою стабильность, что обеспечивается с помощью отрицательных обратных связей. Моисеев [7] отмечает противоречивое взаимодействие двух различных типов с одной стороны, система стремится к стабильности, контролируемой действием отрицательных обратных связей, а с другой — к поиску новых, более рациональных способов диссипации энергии, что контролируется положительными обратными связями. В деформируемом металле отрицательные обратные связи определяют организацию структуры на квазиравновесной стадии, а положительные — самоорганизацию диссипативных структур в точках неустойчивости системы (точках бифуркаций).  [c.238]

Самоорганизация диссипативных структур сопровождается спонтанным нарушением симметрии исходного состояния. С другой стороны, увеличение неравновесности приводит к чередованиям неравновесностей, связанным с чередованием действия отрицательных и положительных обратных связей. В точках бифуркаций происходит снижение степени неравновесности в результате действия положительных обратных связей, затем степень неравновесности с течением времени снова увеличивается и т.д. вплоть до разрушения системы [9]. Поэтому при анализе неравновесных систем следует рассматривать не временную эволюцию, а последовательности стационарных неравновесных состояний.  [c.239]

Другим направлением, стремительно развивающимся в последние годы, является синергетика, изучающая закономерности самоорганизации структур. Подходы синергетики также позволяют описывать сложное поведение открытых систем, не вступая в противоречие со вторым законом термодинамики. Как показал И. Пригожин с сотрудниками [3-5] открытые системы способны к са-мооптимизации путем самоорганизации диссипативных структур. Стабилизация открытой системы достигается при этом ценой компенсирующего произ-  [c.3]


В настоящей г лаве даются понятия о термодинамической, статистической и информационной энтропии, рассматриваются типы термодинамических систем, а также основные принципы макродинамики и синергетики, контролирующие самоорганизацию диссипативных структур в квазизакрытых и открытых системах. Приводятся примеры самоорганизации таких структур применительно к процессам, протекающим вдали от термодинамического равновесия в различных системах.  [c.6]

Процесс разрушения, как показано в [10], является неравновесным фазовым переходом. Поэтому можно считать, что процесс самоорганизации диссипативных структур носит циклический характер, подчиняющийся закономерности удвоения периода, а система в виде деформируемого твердого тела является сис емой с обратной связью. Это означает, что циклический характер процесса разрушения, связанный с неравновесными фазовыми переходами в точках бифуркации, самовоспроизводится. При переходах устойчивость-пеустойчивость-устойчивость значение предыдущей итерации является начальным значением для следующей.  [c.72]

В ]очке бифуркации Уэфф О Тогда ио-уст=0. Это равенство является условием автомодельности разрушения и самоорганизации диссипативных структур. При таком подходе удается выделить пороговые напряжения, соответствующие фрактальные объекты и интервал изменения их фрактальной размерности.  [c.315]

Рассмотрение явления разрушения мегаллов как процесса, связанного с неравновесными фазовыми переходами, гюзволяет ввести обобщенные критерии разрушения, отражающие коллективные эффекты при пластической деформации и разрушении твердых тел при самоорганизации диссипативных структур. Из анализа разрушения о позиций синергетики следует, что устойчивость процессов деформации и разрушения твердых тел определяется диссипативными свойствами среды вб]щзи точек неустойчивости. Показателем этих свойств вблизи неравновесных фазовых переходов являются двух- и трехпараметрические критерии, учитывающие кооперативное взаимодействие пластической деформации и разрушения. В этой связи критерии фрактальной механики разрушения являются комплексами - двух- или трехпараметрическими. Отличие двухпараметрических критериев фрактальной механики разрушения от используемых в линейной механике заключается в том, что они включают только критерии, контролирующие неравновесные фазовые переходы и охра-  [c.340]

Принято, что движущей силой самоорганизация диссипативных структур является стремление открытых систем при нестационарных, далеких от термодинамического равновесия процессах, к которым относится н сппрка, к снижению производства энтропии.  [c.110]

В условиях соединения металлов с приложением различных видов и концентраций энергий в термодинамически открытой системе энергия — металл — внешняя среда определение характеристических параметров (критических точек), при которых реализуется спон-тонное изменение свсйстиа системы, обусловленное самоорганизацией диссипативных структур, возможно на основе создания адекватных физико-математических моделей процессов, протекающих при сварке, и исследования их с помощью компьютерного эксперимента — наиболее тонкого ииструмепта.  [c.110]

В то же время окружающий мир является высокоупорядоченным. Из теории Дарвина следует, что в основе принципа отбора лежит повышение организованности биологических систем. Это противоречит второму закону термодинамики, согласно которому энтропия системы с течением времени увеличивается. Это противоречие было снято с введением в кибернетике представлений об эволюции системы как связанной с самоорганизующимися и саморегулирующимися процессами и с развитием синергетики [2, 4], рассматривающей закономерности самоорганизации диссипативных структур в неравновесных условиях [5]. Стало очевидным, что неравновесные состояния более высокоорганизованные, чем равновесные, так как в них движущей силой процесса является не минимум свободной энергии, как это характерно для равновесных процессов, а минимум производства энтропии.  [c.11]

Другим примером самоорганизации диссипативных структур в человеческом организме является образование в мозгу упорядоченных структур при восприятии мысли. С точки зрения Ю.Л. Климонтовича, это состояние отвечает переходу от менее удррядоченного состояния мозга к более упорядоченному.  [c.28]

Из представленного анализа можно сделать вывод, что закономерности образования в процессе ПД низкоэнергетических субструктур следует рассматривать как с позиций их организации при достижении критической плотности дислокаций, так и с точки зрения самоорганизации диссипативных структур в точках бифуркационной неустойчивости системы. В первом случае движущей сщюй процесса является стремление системы в виде пластически деформируемого твердого тела к локальному минимуму свободной энергии. При этом для большого числа сплавов, независимо от внутреннего строения их кристаллической решетки и внешних условий нагружения [137, 139], последовательность образующихся субструктур дефектов практически детерминирована (см. рис. 68). Во втором случае процесс образования той или иной доминирующей диссипативной структуры контролируется стремлением системы к минимуму производства энтропии. При этом особо важную роль в областях бифуркационной неустойчивости системы приобретают внутренние термодинамические флуктуации и внешние шумы, обусловливающие стохастические эффекты [16].  [c.101]

Таким образом, дискретность пластической деформации, проявляющаяся на микроуровне, обусловлена развитием процессов самоорганизации на мезоскопическом уровне. Характерным примером является феномен шейкообразования при деформации пластичных металлов и сплавов — пластическая нестабильность А-типа. На мезоуровне процессы, предопределяющие шейкообразование, связаны с включением доминантных ротационных мод деформации. Локализация деформации носит многоуровневый характер на микро-, мез9- и макроуровнях. При этом самоорганизация диссипативных структур контролируется не только коллективным взаимодействием дефектов, но и изменением вида напряженного состояния в зоне концентрации процессов диссипации энергии.  [c.129]

В настоящей главе дается анализ неравновесных технологий, создаваемых путем обеспечения градиентов температур, напряжений и химического состава в системе, приближающих ее к точке бифуркационной неустойчивости элементов структуры. В этих условиях аномально возрастают коэффициенты диффузии и самодиффузии, формирующие потоки вещества, обеспечивающие самоорганизацию диссипативных структур. Комплексное легирование в сочетании с термомеханическими условиями воздействия на металл, позволяет получать необходимую степень нерав-новесности сплава в твердом состоянии.  [c.216]

Исследования различных авторов показывают, что существует определенный интервал времени задержки от инициирования волны горения до приложения давления компактирования, при котором пористость минимальна. Материал с минимальной пористостью отвечает условиям неравновесности системы, при которых в процессе деформации самоорганизуются диссипативные структуры, обладающие фрактальностью. Поэтому в процессе получения беспористых материалов управляющими параметрами являются давление и температура компактирования, определяющие бифуркационную неустойчивость предыдущего состояния системы по отношению к последующему в результате образования сдвигонеустойчивых фаз. При этом переходе движущей силой процесса является стремление системы к минимизации энтропии при самоорганизации диссипативных структур. Здесь полностью применима S-теорема Климонто-вича о минимуме производства энтропии при самоорганизации структур. Именно самоорганизация обеспечивает оптимизацию структуры и минимальную пористость заготовки. Обеспечение режимов турбулизации в СВС связано с управлением кинетикой реакции горения.  [c.228]


Вольфрамовая плющенка обладала свойствами, отличными от свойств исходной проволоки. Возможность обработки давлением хрупких металлов и сплавов путем наложения внешних импульсов энергии непосредственно связаны с усилением неравновесности системы и ее нелинейным поведением в очаге деформации. Оно обусловлено образованием промежуточного слоя (мезофазы) между обрабатываемым металлом и инструментом, обладающего свойствами, резко отличными от свойств самого деформируемого металла. Этот слой отвечает за самоорганизацию диссипативных структур, обеспечивающих минимизацию производства энтропии.  [c.236]

При взаимодействии близких мод энергетически более выгоден процесс плавной перестройки периода решетки в большей части пространства, сопровождающийся возникновением локального нарушения симметрии — дефекта. Переход от регулярных структур к пространственному хаосу сопровождается последовательностью пространственных бифуркаций, приводящих к самоорганизации диссипативных структур с квазикрис-таллической симметрией, при этом возможны оси симметрии 5-го, 7-го, 10-го, 11-го и даже более высокого порядка [9].  [c.239]

Таким образом, эволюция структуры деформируемого металла включает переходы организация-самоорганизация-организация. Традиционно внимание исследователей было связано с изучением организации структур без учета наличия точек бифуркаций, вблизи которых происходит самоорганизация диссипативных структур и смена лидирующего де-фекта-организатора. Изучение процессов организации структур при деформации хотя и является очень важным, но не несет полной информации об эволюции деформируемого тела в целом. Высокая информативность параметров, контролрфующих точки бифуркаций, в силу их инвариантности к внешним условиям дает максимальную информацию о контролирующих механизмах деформации и свойствах той среды, в которой происходит самоорганизация диссипативных структур.  [c.241]


Смотреть страницы где упоминается термин Самоорганизация диссипативных структур : [c.71]    [c.221]    [c.110]    [c.180]    [c.7]    [c.25]    [c.32]    [c.226]    [c.235]   
Смотреть главы в:

Синергетика и фракталы в материаловедении  -> Самоорганизация диссипативных структур



ПОИСК



Диссипативные структуры

Самоорганизация



© 2025 Mash-xxl.info Реклама на сайте