Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Света волновая теория

Преломление света. Волновая теория света объяснила и явление преломления света. Наблюдения показывают, что при переходе света из одной среды в другую может происходить изменение направления распространения света — преломление света.  [c.265]

Фотоэффект. С установлением электромагнитной природы света волновая теория, казалось, победила окончательно. Однако мог ли автор ее экспериментального обоснования Г. Герц предполагать, что им енно ему будет суждено обнаружить явление, которое будет противоречить волновой теории Он заметил, что при освещении одного из шаров разрядника ультрафиолетовым излучением разряд между шарами возникает при значительно меньших напряжениях. Им было высказано предположение, что под действием излучения зазор между шарами становится более электропроводным. Полученное явление было названо фотоэффектом. Подробные исследования фотоэффекта по схеме, показанной на рис. 24, выполнил в 1888—1890 гг. профессор Московского университета А. Г. Столетов. Он показал, что ток в цепи  [c.117]


Другой проблемой XIX в. была природа светового излучения. Существовали две основные теории, подтвержденные надежными экспериментальными наблюдениями. Такое наблюдаемое свойство как дифракция, свидетельствовало о том, что свет подчиняется закону упругих волн и его почти полностью можно объяснить электромагнитной теорией Максвелла. Однако фотоэлектрический эффект чужд волновой теории света и мог быть объяснен только при условии допущения корпускулярной природы света.  [c.71]

НИИ решить такую задачу. Вопрос этот решается с помош,ью так называемого принципа Гюйгенса — Френеля. Последний позволяет также объяснить в рамках волновой теории прямолинейное распространение света в однородной среде.  [c.119]

Как было указано, Эйнштейн, развивая идею Планка, сделал второй шаг на пути развития квантовой теории, выдвинув новую гипотезу, согласно которой само электромагнитное излучение состоит из отдельных корпускул (квантов) — фотонов с энергией о = и импульсом р hv/ . Гипотеза Эйнштейна в дальнейшем была подтверждена многочисленными экспериментальными фактами и легла в основу объяснения ряда оптических явлений, с которыми не могла справиться волновая теория света.  [c.338]

Одно из таких явлений, которое, как ожидали, по-разному протекает в разных системах отсчета, — это распространение света. Согласно господствовавшей в то время волновой теории, световые волны должны распространяться с определенной скоростью по отношению к некоторой гипотетической среде ( светоносному эфиру ), о природе которой, правда, не было единого мнения. Но какова бы ни была природа этой среды, она не может, конечно, покоиться во всех инерциальных системах сразу. Тем самым выделяется одна из инерциальных систем— абсолютная — та самая, которая неподвижна относительно светоносного эфира . Полагали, что в  [c.174]

Электромагнитная природа света. Одним из наиболее трудных для волновой теории света  [c.263]

Распределение энергия в спектре излучения нагретых твердых тел. Изучение явлений дифракции, интерференции и поляризации света привело к утверждению электромагнитной волновой теории света.  [c.298]

Электромагнитная теория света, заменившая старую волновую теорию, позволила существенно упростить постановку задачи. Но при ее применении к проблеме интерференции возникают трудности, связанные с тем, что в оптике, как правило, имеют дело не с монохроматическими волнами, а с импульсами, или волновыми пакетами. "Синусоидальная идеализация", которая оказалась вполне пригодной для описания широкого класса явлений, рассмотренных в предыдущих разделах, требует видоизменения при истолковании более тонких интерференционных эффектов.  [c.175]


Но значение дифракции света отнюдь не исчерпывается исследованием таких переходных областей. В оптике неизбежно возникает проблема, как согласовать волновую теорию, прекрасно оправдавшую себя при объяснении широкого класса задач, с безусловной справедливостью положений геометрической оптики, оперирующей представлениями о прямолинейно распространяющихся лучах света. Казалось бы, во многих случаях повседневный опыт вступает в противоречие с данными теории. Мы увидим, что развитая Френелем, Кирхгофом и другими теория дифракции полностью объясняет эти парадоксы и в ней вскрывается предельный переход от волновой к геометрической оптике.  [c.255]

ГРАНИЦЫ ПРИМЕНИМОСТИ ВОЛНОВОЙ ТЕОРИИ СВЕТА И ЭЛЕМЕНТЫ КВАНТОВОЙ ОПТИКИ  [c.399]

Электромагнитная теория, дополненная электронными явлениями и учетом релятивистских эффектов, была в начале XX в. единственной теорией света. Проблемы, служившие непреодолимой преградой для развития старой волновой теории, были решены с удивительной простотой и ясностью. Результаты приложения электромагнитной теории к решению самых разнообразных физических задач являлись иллюстрацией, казалось бы, неограниченных возможностей новой волновой оптики.  [c.399]

Заканчивая это предельно краткое изучение свойств фотона, целесообразно сформулировать следующие общие соображения. Введение понятия фотона привело фактически к созданию новой корпускулярной теории света, хорошо объясняющей некоторые оптические явления, истолкование которых в рамках волновой теории было затруднительно, а иногда невозможно. В то же время при правильном описании явлений эта теория не приводит к противоречию с исходными положениями волновой оптики. В частности, можно описать явления на границе двух сред в терминах как волновой, так и корпускулярной оптики. Конечно, было бы грубой ошибкой отождествлять скорость электромагнитных волн и скорость корпускул и пытаться поставить какой-либо решающий опыт, позволяющий выбрать одну из двух дополняющих одна другую теорий для описания всех сложных оптических явлений. Следует учитывать, что волновая и корпускулярная картины — это классические крайности (пределы) квантово-ме-ханической сущности явления, полностью соответствующей дуализму материи.  [c.452]

Заметим также, что при создании методов и приборов современной оптики физики всегда объединяют в своем мышлении волновую теорию света и фотонную оптику.  [c.462]

Таким образом, широко распространенное мнение, что Гюйгенс является создателем разработанной волновой теории света, которая может быть противопоставлена корпускулярной теории Ньютона, представляется неточным. Во времена Гюйгенса — Ньютона волновая теория была намечена лишь очень схематично. При этом наиболее важный элемент ее представлений — периодичность световых явлений — гораздо отчетливее сознавал именно Ньютон,  [c.18]

Кратко очерченная нами картина развития руководящих оптических теорий показывает, как отразилась в истории оптики борьба двух (на первый взгляд взаимоисключающих) представлений на природу света — волновых и корпускулярных.  [c.24]

В 33 мы уже упоминали, что постулат Френеля, служащий для характеристики вторичных волн, интерференция которых объясняет все процессы распространения волн, являлся некоторой гипотезой, догадкой Френеля. Проведение расчетов по методу Френеля и сравнение их с опытом показывают, что гипотезу эту надо несколько изменить ввести дополнительный фактор, учитывающий наклон вспомогательной поверхности к направлению действия, обосновать добавочными рассуждениями отсутствие обратной волны и изменить начальную фазу вторичных волн на Если первые два дополнения привлекаются из соображений более или менее наглядных, то опережение фазы считается иногда чем-то таинственным , как выразился Рэлей в своей Волновой теории света . Конечно, поскольку постулат Френеля является не чем иным, как некоторым рецептом, дающим общий метод решения задач волновой оптики, то очевидно, что и видоизменение этого постулата не представляет ничего особенного просто более тщательный анализ показывает, что надо пользоваться несколько иным рецептом решения волновых задач, обеспечивающим лучшее согласие с опытом.  [c.170]


Явления интерференции и дифракции света показывают, что распространение света представляет собой волновой процесс. С помощью волновой теории мы можем решать задачи о распространении света как в однородной среде, так и через любую оптическую систему, т. е. через совокупность различных сред, ограниченных теми или иными поверхностями и диафрагмами. Однако в очень многих областях, имеющих важное практическое значение, в частности, в вопросе о формировании светового пучка (светотехника) и в вопросах об образовании изображения (оптотехника), решение можно получить гораздо более простым путем, с помощью представлений гео.мет-рической оптики.  [c.272]

Эта теорема, доказанная нами для волновой теории в том приближении, когда справедлива геометрическая оптика (А, 0), представляет в геометрической оптике аксиому, именуемую принципом кратчайшего оптического пути (или минимального времени распространения). Она была сформулирована Ферма как общий закон распространения света (принцип Ферма, около 1660 г.). Действительно, нетрудно видеть, что для однородной среды этот принцип приводит к закону прямолинейного распространения согласно геометрической аксиоме о том, что прямая есть  [c.275]

Лабораторные методы определения скорости света, позволяющие производить эти измерения на коротком базисе, дают возможность определять скорость света в различных средах и, следовательно, проверять соотношения теории преломления света. Как уже неоднократно упоминалось, показатель преломления света в теории Ньютона равен п — sin i/sin г = v /v , а в волновой теории п = sin i/sin т = где — скорость света в первой среде,  [c.427]

Теория Коши была создана задолго до открытия аномальной дисперсии. Ее историческое значение очень велико, ибо это была первая работа, показавшая, что волновая теория в состоянии объяснить дисперсию света,  [c.547]

К числу таких явлений можно отнести эффект Допплера, который был впервые объяснен на основе волновой теории и с этой точки зрения уже был рассмотрен в гл. XXI. Эффект Допплера — типичное волновое явление, и истолкование его на основе теории фотонов представляется на первый взгляд затруднительным. Однако удается показать возможность такой интерпретации путем рассуждений, очень близких к рассуждениям, служащим для объяснения явления Комптона. Для простоты ограничимся столь малыми скоростями движения источника и, при которых можно пренебречь членами второго порядка относительно и/с. Тогда по принципу Допплера изменение частоты излучаемого источником света выразится формулой  [c.657]

Возражения Франклина, имевшие принципиальное значение, поскольку волновая теория света развивалась как теория упругая, потеряли свою силу в качестве аргумента против корпускулярных представлений, когда Максвелл вывел необходимость светового давления с точки зрения электромагнитной волновой теории и даже вычислил его величину.  [c.660]

Экспериментальные законы, которым подчиняется фотоэффект, находятся в противоречии с основными представлениями волновой теории света. Электромагнитная световая волна, падая на поверхность вещества, содержащего электроны, должна вызывать их вынужденные колебания с амплитудой, пропорциональной амплитуде самих световых волн. Если силы, удерживающие электроны внутри вещества, не велики, то электроны могут вылетать наружу со скоростью, которая должна зависеть от амплитуды падающей световой волны. Так  [c.158]

Фуко с помощью своей установки впервые измерил скорость света в воде. Поместив между зеркалами М[ и М2 трубу, наполненную водой, Фуко обнаружил, что угол сдвига а возрос в 3/4 раза, а следовательно, рассчитанная по формуле (30.1) скорость а распространения света в воде оказалась равной (3/4)< , т. е. меньше, чем в вакууме. Вычисленный по формулам волновой теории показатель преломления света в воде получился равным  [c.202]

Рис. 21. Преломление света в волновой теория Рис. 21. <a href="/info/12664">Преломление света</a> в волновой теория
Создание волновой теории света и усовершествования технологии изготовления оптических линз, стекол и зеркал позволили создать целый ряд разнообразных оптических приборов. Была установлена принципиальная возможность фокусирования светового потока на относительно небольших поверхностях и создания удельных плотностей энергии, достаточных для разогрева и плав-  [c.114]

Спустя несколько лет после создания Ньютоном корпускулярной теории известн1,1й ученый X. Гюйгенс, опираясь на аналогию оптических и акустических явлений, выдвинул волновую теорию света.  [c.4]

С некоторыми, установленными еще с древних времен законами геометрической оптики (ирямол1П1ейного распространения, отражения и преломления света, суиернозиции) мы уже познакомились во введении. Законы отражения и преломления света были подробно проанализированы с точки зрения волновой теории (формулы Френеля). Рассмотрим теперь некоторые другие важнейшие законы геометрической оптики и их применения.  [c.166]

С помощью своего прибора Фуко определил также скорость света в воде и пришел к выводу, что скорость света в жидкой среде меньн]е, чем в воздухе. Этот вывод находится в согласии с соответствующим выводом волновой теории света.  [c.417]


И. Ньютон в 1672 г. высказал предположение о корпускулярной природе света. Против корпускулярной теории света выступали соаременники Ньютона — Р. Гук и X. Гюйгенс, разработавшие волновую теорию света.  [c.262]

Мы видим, что электромагнитная теория сразу привела к однозначному выяснению проблемы, представляющей чрезвычайные затруднения в старой волновой теории света. Действительно, опытами Френеля и Араго была экспериментально доказана по-перечность световых волн, но истолконание этих опытов в рамках представлений о распространении упругих волн в эфире было крайне трудно и потребовало введения искусственных предположений, чрезвычайно усложнивших теорию. Сейчас это совер-uieHHo не актуально, светоносный эфир неприемлем не только как конкретная среда, но и как абстрактная система отсчета (см. гл. 7), и отсутствие продольной составляющей свободной электромагнитной волны оказывается простым следствием уравнений Максвелла. Интересен вопрос о возможности экспериментального доказательства этого фундаментального свойства электромагнитных волн. На данном этапе имеет смысл указать на возможность эффектной иллюстрации их поперечности в опытах с современными источниками СВЧ (рис. 1.1).  [c.22]

Первая оценка скорости света в вакууме была проведена еще в конце XVn в. и базировалась на астрономических наблюдениях. Было замечено, что промежуток времени между затмениями ближайшего спутника Юпитера уменьшается при сближении с Землей и увеличивается при их расхождении. Анализируя эти наблюдения, Ремер предположил, что свет распространяется с конечной скоростью, равной 3,1см/с. Эта смелая идея находилась в противоречии с господствующими тогда взглядами школы Декарта, согласно которым свет должен распространяться мгновенно. В XIX в. усилиями Физо, Фуко и других физиков, развивавших волновую теорию света, были проведены тщательные измерения этой константы. При этом использовались различные лабораторные устройства. В частности, применялся метод вращающегося зеркала, который был в начале XX в. усовершенствован Майкельсоном, определившим скорость света с высокой точностью. Мы не будем подробно рассматривать эти тонкие и остроумные исследования. Укажем лишь, что во всех таких опытах фактически измеряется время, необходимое для прохождения импульсом света вполне определенного пути. Таким образом, в результате эксперимента измеряется скорость светового импульса, точнее, скорость некоторой его части. Например, можно вести измерения по переднему или заднему фронту сигнала, исследовать область максимальной энергии импульса и т. д.  [c.45]

Возрождение на новой основе корпускулярной теории света и то, что она не противостоит волновой теории, а дополняет ее, представляется совершенно естественным. В XX в. спор, который вели в свое время великие физики Ньютон и Гюйгенс, выгляде. бы совершенно нелепым. Хорошо известно, что наличие этих двух внешне противоречивь х теорий отражает сложную ду1иьную природу света, характерную для всей окружающей нас материи.  [c.461]

В течение всего XVIII века корпускулярная теория света (теория истечения) занимала господствующее положение в науке, однако острая борьба между этой и волновой теориями света не прекращалась. Убежденными противниками теории истечения были Эйлер ( Новая теория света и цветов , 1746 г.) и Ломоносов ( Слово о происхождении света, новую теорию о цветах представляющее , 1756 г.) они оба отстаивали и развивали представление о свете как о волнообразных колебаниях эфира.  [c.20]

Параллельно с развитием волновой теории света эволюционирует и понятие эфира. В представлениях Гюйгенса это понятие еще довольно расплывчато и неопределенно Ломоносов уже пытается уточнить и углубить его, рассматривая различные типы возможных движений эфира ( текущее, коловратное и зыблющееся ), причем свет он связывает с зыблющимся движением эфира (колебания). Чрезвычайно интересно отметить, что Ломоносов считал возможным связать с эфиром и объяснение электрических явлений. В Теории электричества — книге, начатой в 1756 г., но не оконченной, он писал Так как эти явления (электрические) имеют место в пространстве, лишенном воздуха, а свет и огонь происходят в пустоте и зависят от эфира, то кажется правдоподобным, что эта электрическая материя тождественна с эфиром . И далее Чтобы это выяснить, необходимо изучить природу эфира если она вполне  [c.22]

Дж. В. Стрэтт (Рэлей), Волновая теория света, Гостехиздат, 1940, 4. Изложение рассуждений Рэлея можно найти в книге Г. С. Г о р е л и к. Колебания и волны, Физматгиз, 1959, гл. X, 2.  [c.65]

В основе всех построений лучевой оптики лежат законы преломления и отражения света. Мы рассмотрели во Введении их содержание и показали, какой смысл вкладывает в них волновая теория. Здесь мы воспроизведем лишь математическую ( ормулировку  [c.278]

Изложенное простое объяснение аберрации света легко понять в рамках корпускулярных представлений о свете, которые принимал и сам Брадлей. С этой точки зрения свет представляет собой поток летящих частиц, скорость которых не зависит, конечно, от скорости трубы. Рассмотрение аберрации света в рамках волновой теории более сложно и связано с вопросом о влиянии движения Земли на распространение света. Мы вернемся к этому вопросу в 130.  [c.422]

Фуко в соответствии с первоначальным замыслом Aparo осуществил при помощи своего прибора также и определение скорости света в воде, ибо ему удалось уменьшить расстояние R до 4 м, сообщив зеркалу 800 оборотов в секунду. Измерения Фуко показали, что скорость света в воде меньше, чем в воздухе, в соответствии с представлениями волновой теории света.  [c.425]

Возникает вполне естественный вопрос а нельзя ли каким-либо способом зафиксировать всю информацию о предмете На этот вопрос в 1947 г. ответил Д. Сабор — изобретатель голографии. Он обратил внимание на то, что при фотографировании предмета всегда приходится осуществлять наводку на резкость, иначе изображение будет нечезким, а го и вовсе может отсутствовать. Между тем независимо от наводки на резкость лучи света, образующие изображение на фотопластинке, на участке между объективом и фотопластинкой нику/га не исчезают и к ним не добавляются новые. Разбираясь в этом парадоксе, Габор предположил, что изображение предмепа присутствует в скрытом от наблюдателя виде в любой плоскости между объективом и фотопластинкой. Иначе говоря, изображение в том или ином виде содержится в самой структуре световой волны, распространяющейся от предмета к объективу фотоаппарата. Это утверждение следует из хорошо известного принципа Гюйгенса—Френеля, согласно которому волна, излученная источником или отраженная от предмета, болыие не зависит от них и распространяется в пространстве как бы сама но себе. Так волновая теория света, впервые предложенная X. Гюйгенсом, привела английского, физика Д. Габора к открытию г олографии.  [c.5]

Волновая теория света привела к возниюювелшо в физике понятия о мировом эфире как о всепроникающей среде, в которой могут распространяться упругие возмущения и волны. Эта среда должна обладать ничтожно малой плотностью, чтобы не создавать заметного сопротивления движению небесных тел. Установленная  [c.203]

И корпускулярной теорий была, пожалуй, одной из наиболее интересных в истории физики. Голландский ученый X. Гюйгенс развивал волновую теорию света. Возражая ему, Ньютон указывал, что всякое волновое движение должно распространяться в какой-либо среде. Г юйгенс допускал существование этой, пока еще не проявившей себя явным образом среды, которую он назвал эфиром. Отношение Ньютона ко всякого рода эфирным теориям мы уже знаем (с. 54). Частищл света, утверждал он, не нуждаются в чем-либо для своего распространения. Опираясь на акт отсутствия взаимодействия пересекающихся световых пучков, Гюйгенс утверждал, что это трудно совместить с корпускулярной теорией. Ньютон же, обращая внимание на прямолинейность распространения света, видел в этом противоречие с волновой теорией (распространяющиеся по поверхности воды волны огибают расположенные на их пути препятствия).  [c.115]



Смотреть страницы где упоминается термин Света волновая теория : [c.116]    [c.4]    [c.6]    [c.365]    [c.427]    [c.203]    [c.114]   
Аналитическая динамика (1999) -- [ c.378 ]



ПОИСК



Границы применимости волновой теории света и элементы квантовой оптики -а-г. - Глава

Некоторые элементы волновой теории света

Теория света волновая корпускулярная

Теория света волновая электромагнитная

УЧЕНИЕ ОБ АБЕРРАЦИЯХ Общие сведения нз волновой теории света

Учение об аберрациях Некоторые общие сведения из волновой теории света Основные определения



© 2025 Mash-xxl.info Реклама на сайте