Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Твердые Магнитные свойства

Специальные магнитные сплавы — малоуглеродистые сплавы Ре—N1—А1 с добавками Си (или Си и Со) — обладают весьма высокими магнитными свойствами, что позволяет изготовлять из них магниты большой мощности (рис. 15.14). Магнитные свойства этих сплавов усиливаются при старении после закалки. Магнитные сплавы весьма тверды, хрупки и не поддаются обработке резанием. Магниты из этих сплавов изготовляют литьем или спеканием из порошка.  [c.277]


Со образует с N1 непрерывный ряд твердых растворов и повышает магнитные свойства сплавов, которые обладают высокой (см. рис. 15.14).  [c.278]

МАГНИТНЫЕ СВОЙСТВА ТВЕРДЫХ ТЕЛ  [c.319]

Перейдем теперь к обсуждению природы диа-, пара- и ферромагнетизма. При этом отметим еще раз тот факт, что магнитную активность проявляют все тела без исключения. Следовательно, за магнитные свойства вещества ответственны элементарные частицы, входящие в состав любого атОма. Такими частицами являются протоны, нейтроны и электроны. Опыт показывает, что магнитный момент ядра, состоящего из протонов и нейтронов, примерно на три порядка меньше магнитного момента электрона. Поэтому при обсуждении магнитных свойств твердых тел магнитными моментами ядер обычно пренебрегают. Не следует думать, однако, что ядерный магнетизм вообще не играет никакой роли. Имеется ряд явлений (например, ядерный магнитный резонанс), в которых, эта роль чрезвычайно существенна.  [c.321]

ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА ТВЕРДЫХ ТЕЛ  [c.127]

Диамагнитными и парамагнитными свойствами обладают вещества любых состояний (газ, жидкость, твердые тела). Только кристаллические вещества имеют магнитоупорядоченные структуры. В магнитном отношении кристаллы анизотропны, т. е. их свойства неодинаковы в различных кристаллографических направлениях, что определяет наличие осей легкого и трудного намагничивания. Степень анизотропии магнитных свойств зависит от совершенства кристаллической решетки. Кристаллы совершенной структуры (монокристаллы) отличаются большой анизотропией, а поликристал-лические материалы являются изотропными, т. е. их магнитные свойства одинаковы во всех направлениях.  [c.24]

Магнитные свойства пермаллоев сильно зависят от химического состава и наличия примесей в сплаве. Отрицательно на свойства пермаллоев влияют примеси, которые не образуют твердых растворов со сплавом, такие, как углерод, сера и кислород кроме того, свойства резко изменяются от режимов термообработки.  [c.95]

Ферриты, обладаюш,не наиболее интересными магнитными свойствами и нашедшие техническое применение, представляют собой, как правило, твердые растворы нескольких простейших соединений, в том числе и немагнитных. Так, например, общая формула широко распространенных никель-цинковых ферритов имеет следующий вид  [c.284]

Создание композиционных материалов стало объектом особого внимания только в последние пятнадцать лет, хотя идея применения двух или более исходных материалов в качестве компонентов, образующих композитное тело, существует с тех пор, как появились материалы вообще. С самого начала цель создания композитов состояла в том, чтобы достичь комбинации свойств, не присущей каждому из исходных материалов по отдельности. Таким образом, твердое тело может изготавливаться из компонентов, которые сами по себе не удовлетворяют расчетным требованиям. Поскольку при разработке композитов нужно изучать одновременно физические, химические, электрические и магнитные свойства, потребовался вклад исследователей разных специальностей.  [c.7]


Магнитные свойства феррита при увеличении температуры исчезают дважды в точке Кюри и в точке компенсации [Л. 63]. Наличие этой второй точки объясняется особенностями его кристаллической структуры. В подавляющем большинстве ферриты представляют собой твердые растворы окиси железа РегОз и окислов двухвалентных металлов. Феррит имеет две подрешетки с магнитными моментами, направленными антипараллельно. Компенсация происходит тогда, когда эти моменты будут равны. Намагниченность насыщения у ферритов меньше, чем у ферромагнетиков. Влияние температуры на начальную динамическую магнитную проницаемость увеличивается с ростом этой величины. Однако у никель-цинкового феррита (ц= 200) магнитная проницаемость 14  [c.14]

Такое заключение согласуется и с электронной структурой атомов элементов, обладающих ферромагнетизмом. Так как магнитные моменты заполненных оболочек равны нулю, а внешние валентные электроны обобществляются в металле, то ферромагнетизмом могут обладать лишь переходные элементы, характеризующиеся наличием недостроенных внутренних оболочек. Такими элементами являются переходные металлы группы железа, имеющие недостроенную 3 d-оболочку, и редкоземельные элементы с недостроенной 4 /-оболочкой. Так как, с другой стороны, орбитальные магнитные моменты электронов этих оболочек заморожены и их вклад в магнитные свойства твердых тед весьма мал, то ферромагнетизм элементов этих групп может быть обусловлен только спиновыми магнит-  [c.293]

В своем капитальном труде Н. С. Курнаков рассматривает измеримые физические свойства веществ, применяемые в физико-химическом анализе. Общее число таких свойств достигает 30. Среди них тепловые свойства — плавкость и растворимость, теплота образования, теплоемкость, теплопроводность электрические свойства — электрическое сопротивление, электродвижущая сила, термоэлектрическая сила, диэлектрическая проницаемость объемные свойства — удельный вес и удельный объем, объемное сжатие, коэффициент теплового расширения. При физико-химическом анализе измеряются также основные оптические свойства объектов исследования, свойства, основанные на молекулярном сцеплении (вязкость, твердость, давление истечения, поверхностное натяжение и др.)) магнитные свойства и многие другие. В физико-химическом анализе широко применяется изучение микроструктуры систем, позволяющее определить их фазовый состав. В последние десятилетия физико-химический анализ пополнился таким важным методом исследования, как рентгенография, который позволяет установить параметры и структуру кристаллографических решеток твердых фаз изучаемой системы  [c.159]

Магнитные свойства твердых сплавов  [c.339]

Уравнения (6.32), (6.33), (6.39), (6.41), (6.43) и (6.46) учитывают общее движение, силовые поля, теплообмен и распределении по размерам. Логически можно обобщить их и на случаи с массо-обменом, химическими реакциями и т. д. Л1ожно было бы добавить, что в соответствии с обобщенным понятием многофазной среды в смеси газа с твердыми частицами, состоящими из одного вещества, частицы разных размеров, форм и масс, с разными электрическими зарядами, дипольными моментами или магнитными свойствами образуют разные фазы , помимо газовой. Для несферических частиц постоянные времени F ш G можно определить экспериментально. Поскольку учитывается взаимодействие между частицами, а внутренним напряжением в частицах прене-брегается, то эти соотношения применимы для объемных концентраций частиц в псевдоожиженном слое вплоть до 90 %, но неприменимы для плотных слоев (разд. 9.7). При этом нижний предел среднего расстояния между частицами до.чжен составлять от 2 до 3 диаметров частиц при расстоянии между частицами более 10 диаметров Fp и Gp можно не учитывать и Цт Рч Р lira о, = 0.  [c.286]


Четвертая глава — Электрические и магнитные свойства твердых тел — представляет собой и самостоятельный интерес, и как иллюстрация использования моделей и результатов теории, излагавшейся в предыдущих двух главах. Сюда же вошла и магнетохимическая схема Я- Дорфмана, позво-  [c.3]

Ферриты, обладающие наиболее интересными магнитными свойствами, представляют собой, как правило, твердые растворы нескольких простейших соединений, в том числе и немагнитных. Так, общая формула широко распространенных никель-цинковых ферритов имеет вид ш N 0 РеаОз + п 2пО РезОз + р РеО Ре Оз (где коэффициенты т, п, р — количественные соотношения между компонентами). Для ферритов характерны следующие два обстоятельства.  [c.25]

В пермаллойных сплавах, легированных молибденом, при температурах 450—300° С и оптимальной скорости охлаждения создается определенная степень К-состояния (вероятно при этом и К близки к нулю). К-состоя-ние — это особое структурное состояние твердого раствора, характерное для многих сплавов, связанное с образованием малых областей с дальним порядком. Более подробно объяснить образование этого структурного состояния можно на следующем примере. Для пермаллой-ного сплава без молибдена медленное охлаждение в интервале температур 600—300° С приводило к образованию дальнего порядка, при этом удельное электросопротивление снижается (рис. 117), на рентгенограммах появляются сверхструктурные линии и магнитные свойства получаются низкими. При легировании сплава, содержащего 79% Ni молибденом (скорость охлаждения в ин-  [c.160]

Лучшие магнитные свойства имеют смешанные ферриты, представляющие собой твердые растворы ферромагнитных и неферромагнитных ферритов. Примерами смешанных ферритов являются твердые растворы феррита марганца или никеля с неферромагнитными ферритами цинка или кадмия. Такие твердые растворы можно представить формулой М].М Ре20 , гдеМ —двухвалентный ИОН металла, образующего ферромагнитный феррит, а М — неферромагнитный феррит, х — указывает долю М в сумме ионов В качестве неферромагнитного  [c.181]

Фактором, определяющим электрические и магнитные свойства ферритов, является наличие в них ионов двухвалентного железа. Во многих реальных ферритах в октаэдрических промежутках имеется определенное количество двухвалентных ионов Fe++. Ферриты, содержащие Fe++, можно представить как твердые растворы, в которых один из компонентов является магнетит или ферроферрит FeO-FeaOg. Такие ферриты можно представить формулой  [c.187]

Кобальтовые сплавы имеют следующие магнитные свойства Я, = 19 900 а/м (250 а) В, = 1,05 тл (10 500 гс) и (ВЯ) ах = 4,0--4,8-10 дж/м [(1,0- 1,2) 10 гс. э]. Эффективность введения кобальта в сплавы для постоянных магнитов, возможно, обусловлена тем, что железокобальтовые сплавы имеют высокую магнитострикцию, которая вызывает возрастание коэрцитивной силы. Кроме того, при повышении содержания кобальта в твердом растворе магнитное насыщение возрастает [при 35% Со величина 4n7s больше на 0,25 тл (2500 гс), чем 4n/s чистого железа). Таким образом, с увеличением содержания кобальта в сплаве В, такая же, как и у обычной стали, либо при большом содержании кобальта несколько возрастает, а Не резко возрастает.  [c.216]

Магнитные свойства железа (как и других ферромагнит ных материалов) зависят от следующих факторов 1) ориен тировки кристаллических осей отдельных кристаллов отно сительно направления намагничивания (так называемой тек стуры) 2) наличия примесей (особенно вредными являются примеси, не образующие твердых растворов) 3) размеров зерен (кристаллов) 4) искажений кристаллической решетки пластическими деформациями.  [c.302]

Сплавы называют изотропными, так как их магнитные свойства одинаковы, независимо от направления намагничивания. Основными материалами этой группы являются сплавы на основе алюминия, никеля, меди и железа. Эти сплавы отличаются высокой твердостью и хрупкостью, даже в горячем состоянии они не поддаются ковке и прокатке, магниты из них изготовляют литьем или прессованием из порошков. Получение высокой коэрцитивной силы связано с механизмом дисперсионного твердения. При определенных условиях охлаждения сплава появляются две фазы слабомагнптный твердый раствор железа и алюминия (Р -фаза) и однодоменные частицы почти  [c.264]

Классификация материалов с помощью зоиной теории твердого те.ча н по магнитным свойствам.  [c.15]

В процессе термической обработки в покрытиях протекают структурно-фазовые изменеиня, влекущие за собой изменение магнитных свойств На рис 19 представлено изменение магинтных характеристик Со—Р-покрытии различного состава от температуры отжига Увеличение магнитных характеристик в области температур 350—500 С связано с процессом распада а-твердого раствора, образования и выделения фазы фосфида Со Р  [c.60]

ТОЧНО хорошим магнитным свойствам. Они обладают высокой коэрцитивной силой, достаточно большой индукцией и обычно имеют большую площадь поперечного сечения и малую длину. Из-за большой линейной усадки в процессе прои.зводства они не могут быть изготовлены с большой точностью. Окончательная доводка этого твердого и хрупкого материала может быть проведена только шлифованием, причем процесс этот очень трудоемок и его следует по возможности избегать. К порошку барий — феррит добавляют резину для связки и прокатывают Д1атериал в листы, а затем сушат. В результате получают гибкий магнитный материал, который сохраняет высокую коэрцитивную силу, но имеет малую индукцию и малую величину произведения В X Н.  [c.445]

В системе Fe—N существуют четыре гомогенные фазы а-твердый раствор азота в а-железе (он обладает такими же магнитными свойствами, как обычное железо) Y -нитрид FeN, магнитная фаза у-твердый раствор азота в у-.железе (существует лишь выше 591 °С — температуры эвтектики при содержании азота менее 2% эта фаза немагнитна, но при закалке происходит распад ее на ферромагнитную смесь, подобную мартенситу) g-нитрид РегК (магнитная фаза, но чем больше азота в ней, тем меньше намагниченность).  [c.138]


Книга посвящена рассмотрению широкого круга физических явлений, определяющих принципы построения и работы РЭА и ЭВЛ и технологических процессов их изготовления — физической природе механических, тепловых,, алектрнческих и магнитных свойств твердых тел н пленок, адгезионной связа и механической стабильности и надежности пленочных структур, природе кои-тактных и поверхностных явлений, термоэлектрических, гальваномагнитных, оптических и фотоэлектрических эффектов и механизму переноса зарядов через топкие пленки.  [c.2]

Магнитные свойства твердых тел определяются магнитными свойствами атомов и характером их взаимодействия. Рассмотрим эти вопросы более под- робно, так как они помогут понять природу магнитных свойств тел и причину -различного поведения их в магнитном поле.  [c.289]

Книга посвящена рассмотрению физической природы механических, тепловых, электрических и магнитных свойств твердых тел и пленок, природы адгезионной связи и механической стабильности пленочных структур, природы контактных и поверхностных явлений, термоэлектгш-ческнх, тльваномагиитиых, оптических и фотоэлектрических эффектов и механизма переноса тока сквозь тонкие пленки.  [c.352]

Точки Чернова — точки остановки приращения температуры при непрекра-щающейся подаче тепла к сплаву им соответствуют перекристаллизация в связи с аллотропическим изменением начало и конец перехода из твердой фазы в жидкую изменение магнитных свойств и т. п.  [c.262]

Сплавы трудноде-формируемые Альни Литые. Твердые, хрупкие. Высокие магнитные свойства при магнитной и кристаллической текстуре. Удельная энергия до 40 кДж/м Крупные магниты всех назначений, магнитные системы измерительных приборов и дистанционных компасов, успокоители, статоры исполнительных двигателей, роторы тахогенераторов, генераторов, магниты поляризованных реле, магнитные сепараторы, магнитные муфты  [c.23]

Интерметаллические соединения Редкоземельные матери алы (соеди нени я редкоземельных элементов с кобальтом) Тверды и хрупки. Рекордно высокие магнитные свойства за счет высокой коэрцитивной силы. Удельная энергия до 72 кДж/м у серийной продукции Магнитные системы ламп бегущей волны, магнетронов и другой радиоэлектронной аппаратуры, магниты измерительных приборов и микромашин  [c.24]

Соединения на основе марганца Мп — В1 (бисманоль), Мп —А1, Мп — 0(3 Тверды и хрупки. Хорошие магнитные свойства за счет высокой коэрцитивной силы. Удельная энергия до 20 кДж/м (Мп — 0(3 можно обрабатывать резанием) Широкого применения не имеют могут применяться в магнитных сепараторах, муфтах и фиксаторах, магнитных линзах, поляризованных реле  [c.24]

Ферриты Бариевые ВаО (РегОз) Коб альтовые СоО-РбгОз Стронциевые 5гО (РегОз)в Тверды. Очень хрупки. Хорошие магнитные свойства за счет высокой коэрцитивной силы. Удельная энергия до 12 кДж/м . Относятся к классу полупроводников Электрические машины, электронные приборы, магнитные системы ламп бегущей волны, магнетронов и другой радиоэлектронной аппаратуры, магнитные линзы исполнительные двигатели, микрогенераторы, поляризованные реле, аппаратура сигнализации магнитные сепараторы, муфты и редукторы  [c.24]

Комоль Ре—Со—Мо Магнитно изотропен. Пластичен в нагретом состоянии, хрупок в холодном. Выпускается в виде горячекатаных прутков н листов. Изделия изготовляют горячими видами обработки (ковка, штамповка, резка, осадка и гибка), В холодном состоянии допускает только обработку резанием. Нуждается в отпуске для дисперсионного твердения, в результате которого улучшаются магнитные свойства. После отпуска тверд и хрупок  [c.111]

Вако (викаллой) Ке-У-Со При содержании до 12 % V изотропен. Пластичен в горячем и холодном состоянии. Изделия изготовляют методами холодной обработки (резание, штамповка, гибка и ковка). Окончательные магнитные свойства не зависят от степени деформации и достигаются в результате отпуска для дисперсионного твердения. После отпуска тверд н хрупок При содержании свыше 12 % V анизотропен. Пластичен в горячем и холодном состоянии. Выпускается в виде очень тонкой холоднокатаной ленты и холоднотянутой проволоки со степенью обжатия свыше 95 %. Окончательные магнитные свойства зависят от степени деформации и достигаются в результате отпуска для дисперсионного твердения. После отпуска тверд и хрупок, но механические свойства тонких лент и проволок такие же, как у высокопрочной стали. Магнитные свойства у проволок выше, чем у лент  [c.111]


Смотреть страницы где упоминается термин Твердые Магнитные свойства : [c.307]    [c.2]    [c.7]    [c.585]    [c.670]    [c.161]    [c.161]    [c.182]    [c.139]    [c.181]    [c.594]   
Материалы в машиностроении Выбор и применение Том 3 (1969) -- [ c.339 ]



ПОИСК



Глава одиннадцатая МАГНИТНЫЕ СВОЙСТВА ТВЕРДЫХ ТЕЛ

Основные электрические и магнитные свойства твердых тел

Электрические и магнитные свойства твердых тел



© 2025 Mash-xxl.info Реклама на сайте