Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обработка абразивная - Подача СОТ

Обрабатываемость сплавов при ЭХО 541 Обработка абразивная - Подача СОТС 475- 479  [c.933]

ОБРАБОТКА АБРАЗИВНЫМИ БРУСКАМИ 45. Радиальная подача абразивных брусков при хонинговании  [c.671]

Электрохимическая обработка абразивным инструментом с принудительной подачей электролита, металлическим инструментом с принудительной подачей электролита Обработка наплавленных поверхностей с высокой твердостью  [c.89]


Оптимальное давление инструмента, соответствующее наибольшей скорости обработки при подаче абразивной суспензии поливом, составляет при обработке стекла 0,1 МПа, а для твердого сплава 0,2 МПа.  [c.745]

Суперфиниширование - отделочный метод обработки абразивными брусками. Для него характерны колебательные (осциллирующие) движения (рис. 276) и продольные подачи абразивных брусков или детали, постоянная сила прижатия бруска к детали и малое давление в зоне обработки. Обработка происходит без существенного изменения размеров и макрогеометрии поверхности. По мере снятия вершин гребешков увеличивается контактная поверхность, уменьшается давление брусков, стружка заполняет поры брусков, режущая способность брусков снижается, процесс обработки прекращается.  [c.639]

Суперфиниширование — отделочная обработка абразивными брусками с целью уменьшения шероховатости поверхности. Здесь характерны колебательные (осциллирующие) движения и продольные подачи абразивных брусков или детали, постоянное усилие прижатия бруска к детали и малое удельное давление в зоне обработки (рис. 30).  [c.91]

Рис. 2. Схемы обработки абразивным бруском поверхностей а — гладкого вала с продольной подачей инструмента 6 — конической врезанием в — плоской кольцевой Рис. 2. <a href="/info/94953">Схемы обработки</a> абразивным бруском поверхностей а — <a href="/info/221418">гладкого вала</a> с <a href="/info/186989">продольной подачей</a> инструмента 6 — конической врезанием в — плоской кольцевой
Для тонкого растачивания необходимы специальные станки, отличающиеся точностью и жесткостью. Примерные режимы резания при тонком растачивании скорость резания 120—250 м/мин для заготовок из чугуна, 300—400 м/мин для заготовок из бронзы, 400—1000 м/мин для заготовок из баббита, 500—1500 м/мин для заготовок из алюминиевых сплавов глубина резания около 0,05— 0,15 мм подача 0,01—0,08 мм/об. Тонкое растачивание имеет следующие достоинства 1) но сравнению с обработкой абразивным инструментом (шлифование и хонингование) отсутствие на обработанной поверхности абразивных зерен 2) легко достижимая точность размера 2-го класса при овальности и конусообразности отверстий не более 0,01 мм 3) простая конструкция режущего инструмента (из твердого сплава) 4) возможность получения поверхности шероховатостью На = 0,08 -г- 0,32 мкм.  [c.142]


Для восстановления режущих свойств абразивные инструменты подвергают правке. Чаще всего правку производят алмазом ппи обильном охлаждении. Алмаз, укрепленный в специальной державке, перемещается вручную или автоматически с подачей 5пр относительно вращающегося круга. Толщина удаляемого слоя шлифовального круга обычно не превышает 0,01—0,03 мм. Время непрерывной работы инструмента между двумя правками. характеризует период его стойкости. В зависимости от требований к качеству обработки и режимов резания стойкость инструмента ориентировочно составляет 5—40 мин.  [c.364]

Рабочие движения для указанных видов обработки скорость резания v (движение абразивных зерен в направлении обрабатываемой поверхности) и движение подачи s при обработке отверстий, полостей s p при разрезании заготовок и Snp при разрезании заготовок по сложной траектории.  [c.412]

Надрез на высокопрочных материалах следует изготавливать после термической обработки, при постепенном уменьшении подачи резания и окончательной доводкой поверхности надреза полированием абразивным порошком. К такому выводу приводят данные табл. 24 [3].  [c.139]

Набор из 18 профилей поверхностей, полученных распространенными технологическими методами окончательной обработки — точением, шлифованием, хонингованием, шабрением и полированием и записанных при вертикальных увеличениях от 1000 до 40 000 и горизонтальных увеличениях У 160 и 400, показан на рис. 3. Из этого рисунка следует, что неровности всех представленных на нем профилей повторяются с той или иной степенью регулярности на каждом из 18 профилей даже при их сравнительно небольшой длине можно проследить повторение близких по форме отдельных выступов и впадин через некоторые более или менее одинаковые отрезки длины. Сравнивая между собой 8 профилей (записанных при увеличениях вертикальном 4000 и горизонтальном 160) — /, 2, 3, 6, 7, 11, 14, 16, замечаем, что 16-й профиль поверхности бронзового вкладыша подшипника скольжения, полученной растачиванием с помощью лезвийного инструмента на станке токарного типа, более регулярен, чем профили остальных поверхностей, полученных абразивным инструментом при шлифовании и хонинговании. На этом профиле вершины неровностей периодически повторяются через отрезки длины, примерно равные подаче (осевому перемещению) резца за один оборот изделия. Однако и на шлифованных поверхностях наблюдается некая регулярность. Так, например, на профиле № 2 (рис. 3) заметны повторения характерного выступа, имеющего с правой боковой стороны 4 мелких зазубрины , которые затем обрываются, а потом опять восста-  [c.7]

Глубина, степень и градиент упрочнения поверхностного слоя зависят от метода и условий обработки резанием. Глубина наклепанного слоя относительно невелика от нескольких микрометров (доводка, полирование, тонкое шлифование) до 200—250 мкм (черновое точение, строгание, фрезерование). При особо тяжелых условиях резания (большая подача и глубина резания, малые скорости резания, отрицательные передние углы) глубина поверхностного наклепа может достигать 1 мм и более. Степень наклепа обычно находится в пределах от 120 до 160%. Градиент наклепа у жаропрочных сплавов после шлифования абразивной лентой с шероховатостью поверхности от V5 до V10 равен соответственно от 2700 до 4000 кгс/мм .  [c.53]

Глубина наклепа поверхностного слоя после обработки резанием металлическим и абразивным инструментом возрастает с увеличением подачи, глубины резания, скорости детали, радиуса скругления и износа режущего лезвия. Глубина резания при фрезеровании не оказывает заметного влияния на наклеп поверхностного слоя.  [c.129]

Форма отверстия выправляется более интенсивно, если при обработке конструкция инструмента обеспечивает постоянную подачу брусков за каждый двойной ход хонинговальной головки. Этим алмазное хонингование существенно отличается от обычного абразивного. Для последнего более характерен постоянный поджим брусков, фактическая подача при котором является неопределенной,  [c.70]

Уменьшилась также огранка и волнистость. Режим алмазного шлифования был следующ,ий скорость резания 20 м/с, скорость враш,ения детали 54 м/мин, продольная подача 0,5 мм/об, СОЖ —2%-ный содовый раствор. Расход алмазов при длине обработки 1420 мм составил 1,35 карата. Производительность труда по сравнению с доводкой шкуркой и абразивной пастой возросла в 12 раз [97].  [c.81]


Электроконтактные датчики могут работать с высокой точностью, если для этого имеются определенные условия. Так, при стационарном контроле (после обработки детали) предельная погрешность обычных электроконтактных датчиков не превышает 1 мкм, а у датчиков повышенной точности 0,3— 0,5 мкм. При контроле размеров деталей в процессе обработки датчик не должен реагировать на случайные кратковременные перемещения измерительного органа, вызванные попаданием под измерительный наконечник частиц стружки, абразивной пыли и вибрациями. Если датчик не улавливает этих случайных перемещений, а фиксирует действительное изменение контролируемого размера, то датчик обладает свойством усреднения результатов измерения. Электроконтактные датчики такими свойствами не обладают, так как любое кратковременное перемещение штока может привести к замыканию или размыканию контактов и подаче ложных управляющих команд.  [c.100]

Шлифование на проход (фиг. 2, а) применяется при обработке деталей длиной 80 мм, а врезное шлифование (фиг. 2, б) — при длине шлифования I < 80 мм для обработки цилиндрических и конических шеек (в специальных наладках I достигает 200 мм) при врезном шлифовании абразивные круги берут на один-два знака тверже, чем для шлифования с продольной подачей. На врезных полуавтоматах с активным контролем шлифуемого размера обеспечивается обработка по 1—2-му классу точности, а при шлифовании без измерения, с автоматической подачей круга до жесткого упора, — 3-й класс точности.  [c.603]

В основе обдирочного шлифования лежит увеличение минутной поперечной или продольной подачи за один оборот шлифовального круга. Оно эффективно при обдирке отливок, поковок, абразивной отрезке, снятии обезуглероженного слоя на прутках перед калиброванием, обработке плоских поверхностей  [c.398]

Доводка абразивными суспензиями на притирах осуществляется при непрерывной подаче суспензии в зону обработки или с периодической дозированной подачей.  [c.444]

Доводка с непрерывной подачей абразивной суспензии обеспечивает высокую производительность и применяется для предварительной обработки.  [c.444]

Подача В 24 (абразивных материалов при пескоструйной обработке изделий С 7/00 шлифовальных, полировальных или притирочных материалов В 57/00) водяного пара и охлаждающей воды к конденсаторам общего назначения F 28 В 9/02 воздуха [в водолазные костюмы В 63 С 11/(18-24) в топки (камеры сгорания) F 23 L в устройствах (для  [c.139]

Механизация и автоматизация. В абразивном производстве используют средства малой механизации, кантователи, пневматические устройства для прижима при обработке кругов на сверлильных станках и зажима на токарных, устройства для подачи тяжелых кругов на станки, гидравлические выталкиватели отпрессованных кругов и автоматические подпрессовки кругов.  [c.141]

Следует отметить, что насадки, изображенные на рис. 18.4, а... г, направляют струю в ограниченную зону. Насадки, представленные на рис. 18.4, д, е, обеспечивают подачу жидкости в значительные по величине зоны резания, что важно при шлифовании и других видах абразивной обработки.  [c.260]

Покрытия обрабатывают лезвийным или абразивным инструментом. Лезвийную черновую обработку выполняют резцом из гексанита-Р при скорости резания 22...30 м/мин, подаче 0,15...0,20 мм/об, глубине резания 0,5.,.0,9 мм. Чистовую обработку таким инструментом ведут при скорости резания 60...80 м/мин, подаче 0,02...0,20 мм/об, глубине резания 0,1...0,5 мм.  [c.334]

Процесс обработки заключается в том, что инструмент, колеблющийся с ультразвуковой частотой, ударяет но зернам абразива, лежащим на обрабатываемой поверхности, которые скалывают частицы материала заготовки (рис. 7.12). Заготовку 3 помещают в ваниу / под инструментом-пуансоном 4. Инструмент установлен на солно-воде 5, который закреплен в магнитострикционном сердечнике 7, смонтированном в кожухе 6, сквозь который прокачивают воду для охлаждения сердечника. Для возбуждения колебаний сердечника магнитострикционного преобразователя служит генератор 8 ультразвуковой частоты и источника постоянного тока 9. Абразивную суспензию 2 подают под давлением по патрубку 10 насосом II, забирающим суспензию из резервуара 12. Прокачивание суспензии насосом исключает оседание абразивного порошка на дне ваниы и обеспечивает подачу в зону обработки абразивного материала.  [c.411]

Цилиндрические и плоские поверхности притираются как на специальных станках, так и вручную, на малых скоростях подачи при переменном направлении движения заготовки относительно притира. Притир должен самоустанавливаться относительно доводимой поверхности. При станочной обработке притир имеет, как правило, вращательное движение, а заготовка — возвратно-поступательное. Поверхность обрабатываемой детали в результате обработки абразивными зернами получается гладкой с частой сеткой мельчайших штрихов. В начале притирки удельное давление составляет 1—2 кГ/сд , в конце— 0,1—0,2 кГ/см [2]. Большой практический интерес представляют притиры с пнев-могидравлическим регулированием диаметра [8]. Съем металла в единицу времени пропорционален удельному давлению в диапазоне 0,1—0,5 kFJ m . Материал притиров  [c.132]

При обработке поверхности небольшой длины, например шейки вала, применяют метод поперечной подачи. Шлифовальному кругу сообщается только поперечная подача, а продольная подача отсутствует. Шлифование в этом случае также разбивается на два этапа предварительное и окончательное. Для предварительного шлифования стали применяют подачи 0,01—0,06 и для чугуна 0,02—0,08 мм1об. Окончательное шлифование стали и чугуна производится при подачах 0,005—0,015 мм/об детали. После прекращения подачи шлифование продолжают до полного прекращения искрения, так как фактическая подача при обработке меньше из-за упругой деформации круга. Для повышения стойкости абразивные круги выбирают несколько тверже, чем при шлифовании продольными проходами. Хорошие результаты при обработке поперечной подачей можно иметь только на жестких станках. Метод поперечной подачи применяется также и для шлифования длинных валов, когда длина шейки больше ширины круга. В этом случае вал шлифуется уступами, по всей длине цилиндрической шейки, методом врезания до упора ширина уступа принимается равной ширине круга. Затем делается несколько продольных проходов для выравниван1ия следов уступов до исчезновения искр.  [c.102]


При электроабразивной и электроалмазной обработке инстру-ментом-электродом служит шлифовальный круг, выполненный из абразивного материала на электропроводяш,ей связке (бакелитовая связка с графитовым наполнителем). Между анодом-заготовкой и катодом-шлифовальным кругом имеется межэлектродный зазор, образованный зернами, выступаюш,ими из связки. В зазор подается электролит. Продукты анодного растворения материала заготовки удаляются абразивными зернами шлифовальный круг имеет вращательное движение, а заготовки —движения подачи, т. е. движения, соответствующие процессу механического шлифования.  [c.407]

Исследование причин снижения усталостной прочности после абразивной шлифовки провели Л.А. Гликман и Л. М.Фейгин [171]. Испытания вели круговь)м изгибом гладких цилиндрических образцов сплава Т1—4,5 % А1 (типа ВТБ) диаметром рабочей части 7,5 мм. Часть образцов на конечной стадии изготовления шлифовали на воздухе или в аргоне кругом ЭБ60СМ1К при скорости 2000 об/мин и подаче 0,1 мм за проход, охлаждение было минимальнь)м (для исключения коробления образцов). Другую часть образцов изготавливали точением с тщательной полировкой наждачной бумагой да 8-го класса шероховатости. Шлифованна)е образцы по партиям подвергали дополнительной обработке с целью снятия остаточных напряжений или тонкого поверхностного слоя. В каждом варианте испытывали по несколько партий образцов с целью проверки однозначности получаемых данных. Результаты исследования представлены на рис. 114. Видно, что усталостная прочность шлифованных образцов на 25 % ниже, чем точеных и полированных. Защита зоны шлифовки аргоном не оказала положительного влияния, следовательно, основная причина снижения усталостной прочности после шлифовки сос-  [c.178]

Заметного снижения себестоимости алмазного шлифования можно добиться уменьшением снимаемого припуска, особенно применением комбинированной абразивно-алмазной обработки, когда основная часть припуска снимается крупнозернистыми кругами из зеленого карбида кремния. Чистовое шлифование в этом случае целесообразно проводить алмазными кругами на металлической связке, которые имеют большую размерную стойкость, или более производительными кругами на органической связке. Экономически целесообразный припуск при этом равен 0,25—0,35 мм. Заточку резца с пластинкой из твердого сплава Т15К6 с сечением державки 25 X16 мм можно, например, производить алмазным кругом АЧК 150—АС010М5— 100% при скорости круга 20—30 м/с, глубине шлифования 0,02— 0,05 мм/дв. ход и при продольной подаче 1,0—1,5 м/мин. Интенсивность съема при этом составляет 130—170 мм /мин при удельном расходе алмаза 1,25 мгс/гс.  [c.65]

Электроалмазная обработка хорошо себя зарекомендовала при изготовлении деталей из магнитотвердых сплавов типа ЮНДК, отличаюш,ихся большой хрупкостью. Благодаря наложению электрического тока съем металла при обработке указанных сплавов возрастает в 5—20 раз, причем, как и при обработке твердых сцлавов, 95% его приходится на анодное растворение, что предопределяет малый расход алмазов. Уменьшая образование сколов и выкрашиваний на кромках, процесс обеспечивает шероховатость поверхности в пределах 9—10-го класса чистоты. Если при абразивном плоском шлифовании из-за нагрева, выкрашиваний и сколов глубину резания редко назначают более 0,05 мм, то при электроалмазном она может быть увеличена до 1,5—2 мм, а поперечную подачу принимают максимальной для данной ширины алмазного круга. Продольную подачу нужно ограничивать, иначе электрохимические процессы не будут успевать охватывать большие плош,ади среза, нагрузки на инструмент и деталь возрастут, удельный съем металла за счет электрохимических процессов снизится.  [c.85]

Применение ультразвуковой размерной обработки ограничено из-за того, что производительность процесса в значительной степени зависит от величины углубления инструмента в обрабатываемую деталь на глубине 10—15 мм она практически равна нулю. Чтобы увеличить производительность, нужно решить проблему обмена абразива в зоне обработки. Самое простое решение — периодический подъем инструмента он позволяет повысить скорость перемещения инструмента на 20—40%. Однако зависимость производительности от величины углубления инструмента остается. Более радикальным средством является отсос абразивной суспензии из зоны обработки через центральное отверстие в инструменте. Для этого станок оснащают вакуумным насосом. Производительность возрастает в 2—3 раза и не зависит от величины углубления. Еще более эффективный метод — подача суспензии в зону обработки под давлением (рис. 102), что позволяет увеличить производительность в 5—6 раз и сделать ее малозависящей от величины углубления. При этом примерно в 2 раза удается снизить концентрацию абразива в суспензии, что упрощает подачу ее в зону обработки. В 1,5—2 раза повышается также точность обработки [50]. Для успешного протекания процесса в этом случае необходимо несколько увеличить силу прижима  [c.169]

Дорожку качения шлифуют на вну-тришлифовальных автоматах методом врезания с базированием детали на жестких опорах скорость 60 м/с, радиальная подача до 6 мм/мин. Обработка наружных колец завершается доводкой дорожки качения. Для колец подшипников класса точности О производится полирование дорожки качения абразивной лентой со скоростью 25 м/с. Для колец подшипников класса точности 6 и выше производится суперфиниширование поверхности роликовой дорожки со скоростью около 5 м/с.  [c.263]

Устройства, контролирующие размеры деталей в процессе обработки на металлорежущих станках, должны отвечать следующим требованиям 1) возможность измерения деталей, совершающих быстрое технологическое движение, а иногда и несколько движений 2) независимость точности измерений от направления и скорости технологического движения 3) возможность компенсации влияния на точность обработки технологических факторов износа режущего инструмента, силовых и температурных деформаций и вибраций 4) наличие показывающего прибора, позволяющего следить за изменением контролируемого параметра 5) дистанционность измерений размещение показывающего прибора в месте, удобном для наблюдения и исключающем возможность его повреждения 6) в устройствах автоматического активного контроля — наличие датчика, обеспечивающего подачу команд на управление станком 7) усреднение результатов измерения (независимость показаний прибора или момента срабатывания датчика от случайных факторов попадания частиц стружки, абразивной пыли и др. под измерительные наконечники, кратковременного перемещения измерительных наконечников под влиянием инерционных и других сил и т. д.) 8) надежная работа контрольных устройств в присутствии охлаждающей жидкости, абразивной пыли и стружки 9) возможность механизированного и автоматизированного подвода и отвода измерительных наконечников (или всего прибора) от контролируемой поверхности без потери настроечного размера при установке и снятии обрабатываемой детали со станка 10) унификация и нормализация конструкций датчиков и элементов контрольных устройств, обеспечивающая возможности их серийного изготовления и применения в различных случаях измерения, на разных станках, высокую надежность и долговечность, экономичность, простоту наладки, обслуживания и ремонта.  [c.92]


Чистовые операции при обработке крупных деталей представляют наибольшие трудности. Так, на продольно-строгальных станках обычно достигается пятый класс чистоты поверхности. Только внедрение широких резцов с поворотом режущей кромки на 65° дает возможность за счет применения малых глубин резания и больших подач получать 6 класс чистоты поверхности. Для повышения производительности этого вида оборудования надо внедря гь новую марку твердого сплава ТТ7К12, применение которого при работе на продольно-строгальных станках увеличивает режим . резания на 40%. Для повышения чистоты поверхности, получаемой при работе на продольно-строгальных станках, применяют шлифовальные или полировальные приспособления, которые обыкновенно бывают малопроизводительными и требуют больших работ для предохранения направляюш,их станка от попадания абразивной пыли.  [c.389]

Повышение скорости резания при сохранении неизменными подач и глубины резания улучшает чистоту обработанной поверхности, уменьшает количество снимаемого металла каждым работающим абразивным зерном в единицу времени и, следовательно, уменмиает износ круга. Повышение скорости резания при одновременном изменении остальных параметров режима резания увеличивает производительность обработки.  [c.294]

Активный контроль или контроль изделий в процессе обработки позволяет немедленно воздействовать на технологический процесс. Этот вид контроля целесообразно применять на финишных операциях (шлифование, хонингование), где размер меняется от изделия к изделию из-за износа и правки абразивного инструмента, Эти устройства обеспечивают, в зависимости от конструкции, отсчет по шкале, сигнал, команду на переключение подачи, правку крхга, смену детали, остановку или подналадку станка. Автоматические подналадчики, реагирующие на колебание среднего арифметического размера нескольких изделий текущей выборки, иногда называют статистическими.  [c.76]

При работе манжеты в агрегате или узле трения на нее воздействуют масло, повышенная температура агрегата или узла трения, частицы абразивного материала, окружающая среда, материал деталей. В результате манжета теряет эластичность, твердость, растрескивается и начинает пропускать смазочный материал. Кроме того, при замене уплотнения следует обращать внимание на состояние сопряженных с ним деталей вала и корпуса. Так, герметичность уплотнения узла трения во многом зависит от качества обработки по-верхпости и формы вала. Поверхность вала, с которой сопряжена манжета, должна быть обработана шлифованием (без продольной подачи). Такое шлифование дает возможность устранить различного рода наклонные или винтовые риски на поверхности, которые при вращении вала могут вызывать утечку масла в месте контакта манжеты с валом.  [c.219]

Зубохонингование применяют для чистовой отделки зубьев закаленных цилиндрических колес внешнего и внутреннего зацепления. Хонингование зубьев осуществляют на специальных станках. Закаленное обрабатываемое колесо вращается в плотном зацеплении с абразивным зубчатым хоном при угле скрещивания осей 10—15°. Поджим детали,к хону осуществляется пружиной с силой 150 — 450 Н. Зубчатое колесо, кроме вращения, совершает возвратно-поступательное движение вдоль оси. Направление вращения инструмента меняется при каждом ходе стола. Хонингование позволяет уменьшить параметр шероховатости поверхности до Яа = 0,32 мкм, удалить забоины и заусенцы размером до 0,25 мм, снизить уровень звукового давления на 2 — 4 дБ и повысить долговечность зубчатой передачи. В процессе хонингования погрешности в элементах зацепления устраняются незначительно при съеме металла порядка 0,01—0,03 мм на толщину зуба. Припуск под хонингование не оставляют. Частота вращения хона 180 — 200 об/мин, подача стола 180 — 210 мм/мин, число ходов стола четыре — шесть. Время хонингования зубчатого колеса автомобиля 30 — 60 с. Срок службы монокорундовых хонов при обработке зубчатых колес коробки передач автомобиля — 1500 — 3000 деталей. Зубчатые колеса, имеющие забоины и заусенцы перед хонингованием, целесообразно обкатывать на специальном станке или приспособлении между тремя накатниками под нагрузкой для устранения погрешностей профиля зубьев. Забоины и заусенцы на зубьях обрабатываемого колеса сокращают срок службы и вызывают преждевременную поломку зубьев хона.  [c.353]

Правку алмазных кругов на металлических связках можно осуществлять в процессе заточки инструмента путем подачи смазки, содержащей абразивный микропорошок. Смазка (автол или машинное масло), содержащая микропорошки (ЭБМ5, ЭБМ14, КЗМ14), подается в зону обработки капельным способом. Расход смазки 2—4 капли в секунду.  [c.358]

Обстоятельное исследование причин понижения усталостной прочности после абразивной шлифовки произведено Л. А. Глик-маном и Л. М. Фейгиным [21 ]. Для исследования был взят титановый сплав с 4,5А1 (типа ВТ5), усталостные испытания проводились круговым изгибом гладких цилиндрических образцов диаметром рабочей части 7,5 мм. Часть образцов на конечной стадии изготовления шлифовалась на воздухе или в аргоне кругом ЭБ60СМ1К при частоте вращения круга 2000 об/мин и подаче 0,1 мм, охлаждение давалось минимальным (для исключения коробления образцов) другая часть образцов изготавливалась точением с тщательной полировкой наждачной бумагой до шероховатости поверхности V 8. Шлифованные образцы по партиям подвергались дополнительной обработке с целью снятия остаточных напряжений или тонкого поверхностного слоя. На каждый вариант испытывали по нескольку партий образцов с целью  [c.170]

Шлифование. Шлифование используется для окончательной обработки поверхности изделий или перед склеиванием деталей из углепластиков. В большинстве случаев, применяя такие же цилиндрические или плоские шлифовальные инструменты, как и при шлифовании металлов, можно получить высококачественную шлифованную поверхность изделий из углепластиков. В качестве жидкости, используемой при шлифовании, применяют 2 — 2,5%-ную водно-парафиновую эмульсию. При длительном шлифовании в охлаждающей жидкости накаш1ивается много порошка углепластика, что приводит к необходимости ее замены. Обычно используют шлифовальные круги с абразивными частицами на основе карборунда или оксида алюминия. Для грубой отделки поверхности используют абразивные частицы № 30 — 60, а для окончательной отделки N" 80 — 180. Чаще всего в качестве связки используют термореактивные полимеры. Условия шлифования линейная скорость при вращении круга 1400 — 2000 м/мин, скорость подачи 10 — 15 м/мин, глубина шлифования при грубой отделке поверхности составляет 0,02 - 0,05 мм, а при чистовой отделке - около 0,003 - 0,01 мм. Для чистовой отделки используют ременные шлифовальные станки, мелкозернистую шкурку и т. д. Для удаления порошка углепластика, образующегося при шлифовании, необходимо использовать отсасывающие устройства.  [c.117]


Смотреть страницы где упоминается термин Обработка абразивная - Подача СОТ : [c.48]    [c.453]    [c.351]    [c.181]    [c.29]    [c.151]   
Справочник технолога-машиностроителя Т1 (2003) -- [ c.475 , c.476 , c.477 , c.478 ]



ПОИСК



958 — Обработка 963966 — Подачи

Абразивная обработка

Абразивность

Изн абразивное

Обработка абразивная - Подача СОТ покрытий



© 2025 Mash-xxl.info Реклама на сайте