Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Жидкость пластическая

Сопротивляемость образованию кристаллизационных трещин зависит от физико-механических свойств кристаллитов, разделенных жидкостью, пластические свойства которых до момента полной кристаллизации резко падают. Таким образом, сопротивляемость образованию горячих трещин тем выше, чем более пластичны сварные соединения в этом интервале. Как показано многочисленными исследованиями, пластичность при высоких температурах никак не связана с пластичностью при комнатных и повышенных температурах. Таким образом, имеется ряд сплавов, например аустенитных, высокопластичных в широкой гамме температур, но малопластичных при температуре солидуса.  [c.130]


Оказывается, что движение гранулированных сред может успешно изучаться при помощи моделей идеальной жидкости ( сухая вода ), вязкой ньютоновской и неньютоновской жидкостей, пластических и упруго вязких сред и т. д. При этом применяются как методы феноменологической гидродинамики и теории упругости и пластичности, так и статистический подход, основанный на изучении законов взаимодействия отдельных гранул и получения при помощи функции распределения (обычно рассматривают равновесную функцию распределения) выражений для тензора напряжений, скорости, плотности и т. д.  [c.403]

В зависимости от условий износа (трения при скольжении, износа потоком жидкости или газа, абразивного износа, износа пластической деформацией и наклепом) различные стали обладают неодинаковой износоустойчивостью.  [c.272]

Одновременно с разработкой и совершенствованием аналитических и геометрических методов исследования движений материальных частиц и твердых тел в механике под влиянием запросов практики возникает и интенсивно развивается целый ряд новых областей и направлений, таких как механика жидкостей и газов (гидромеханика, аэромеханика, газовая динамика), механика упруго и пластически деформируемых тел (теория упругости и теория пластичности), общая теория устойчивости равновесия и движения механических систем, механика тел переменной массы и др.  [c.14]

Уравнения (IV. 56) и (IV. 59) определяют движение элемента сплошной среды независимо от ее конкретной физической природы. Они одинаково пригодны для идеальной и вязкой жидкости, для пластических и упругих тел.  [c.499]

Книга является введением в современную механику сплошных сред. В ней изложена общая теория определяющих уравнений и термодинамики сплошных сред. Рассмотрена общая теория деформаций (нелинейный случай), построены модели гиперупругой среды и рассмотрены частные случаи модели пластической среды, вязкоупругость и теория течения вязких жидкостей. В приложениях приведен весь необходимый математический и термодинамический аппарат.  [c.351]

Громадное большинство оптически изотропных тел обладает статистической изотропией изотропия таких тел есть результат усреднения, обусловленного хаотическим расположением составляющих их молекул. Отдельные молекулы или группы молекул могут быть анизотропны, но эта. микроскопическая анизотропия в среднем сглаживается случайным взаимным расположением отдельных групп, и макроскопически среда остается изотропной. Но если какое-либо внешнее воздействие дает достаточно ясно выраженное преимущественное направление, то возможна перегруппировка анизотропных элементов, приводящая к макроскопическому проявлению анизотропии. Не исключена возможность и того, что достаточно сильные внешние воздействия могут деформировать даже вначале изотропные элементы, создавая и микроскопическую анизотропию, первоначально отсутствующую. По-види-мому, подобный случай имеет место при одностороннем сжатии каменной соли или сильвина (см. 142.) Достаточные внешние воздействия могут проявляться и при механических деформациях, вызываемых обычным давлением или возникающих при неравномерном нагревании (тепловое расширение и закалка), или осуществляться электрическими и магнитными полями, налагаемыми извне. Известны даже случаи, когда очень слабые воздействия, проявляющиеся при течении жидкостей или пластических тел с сильно анизотропными элементами, оказываются достаточными для создания искусственной анизотропии.  [c.525]


При постоянном модуле упругости импульс напряжений может распространяться на значительное расстояние без изменения формы, изменение модуля упругости приводит к искажению импульса напряжений конечной амплитуды. Для большинства деформируемых тел уменьшается за пределом упругости и в материале при достаточно больших деформациях возникают пластические волны, распространяющиеся со скоростью, меньшей скорости распространения упругой волны. Однако существуют такие деформируемые тела (резины, полимерные материалы), в которых большие деформации приводят к ориентации длинных молекулярных цепочек, что вызывает возрастание модуля упругости . Поэтому при распространении возмущений в таких материалах зарождаются волны особой природы, называемые ударными волнами. В деформируемых телах ударные волны возникают и в том случае, когда распространяются волны расширения большой амплитуды. Как показано Бриджменом, зависимость между средней деформацией е и средним напряжением а в твердых телах может иметь вид е = (—аа + Ьо )/3, где а, Ь — постоянные величины. Модуль объемного сжатия К при малых давлениях стремится к постоянной 1/а, при высоких давлениях принимает значение 1/(а — 2Ьа) (т. е. при высоких давлениях К растет). Упругие волны расширения распространяются со скоростью а , но модуль К при высоких давлениях возрастает, это приводит к тому, что скорость волны большой амплитуды больше скорости волны малой амплитуды. В результате образуется ступенчатый фронт, характерный для ударной волны. Модуль сдвига G в этом случае играет незначительную роль, так как задолго до достижения достаточно высокого давления предел текучести будет пройден и материал ведет себя подобно жидкости.  [c.38]

Давление, возникающее при внедрении, вынуждает материал среды растекаться, в результате образуется кратер, в который входит внедряющееся тело. Кратер окаймлен пограничным слоем, где среда находится в пластическом состоянии или является вязкой жидкостью с коэффициентами вязкости Я, и р. Область внедрения включает кратер и пограничный слой, граница ее определяется формой внедряющегося тела, степенью деформации и его агрегатным состоянием, а также условиями встречи тела с преградой, т. е. скоростью Ус и углом встречи ф.  [c.159]

Здесь и далее (i — пластическая вязкость жидкости.  [c.292]

Совершенно аналогично изучаются стационарные движения ЖИДКОСТИ в координатах Эйлера, идеально-пластическое тело, подобно жидкости, совершенно лишено памяти о предшествующих воздействиях. В рассмотренном примере можно определить силу Р, необходимую для осуществления протяжки, можно определить давление на стенки фильеры.  [c.489]

Предыдущие главы (исключая предварительное изложение основ теории упругости в главе 1) касались двумерных задач. Настоящая глава, так же как и последующая, посвящена дальнейшим общим вопросам, которые важны для решения рассматриваемых далее задач. В данной главе анализ напряжений полностью отделен от анализа деформаций и не вводятся никакие зависимости между напряжениями и деформациями. Эти результаты приложимы к напряжениям, возникающим в любой (сплошной) среде, например в вязкой жидкости или в пластическом твердом теле, и то же самое справедливо в отношении деформаций.  [c.229]

Жидкости, вязкость которых не является константой, а зависит от времени действия и величины касательных напряжений, называются неньютоновскими. К ним, в частности, относятся растворы полимеров, резко снижающие сопротивление течению воды в трубах, пластические материалы, обладающие порогом текучести, ниже которого они ведут себя как твердые тела, а выше — как жидкости (глинистые и цементные растворы, коллоиды, консистентные смазки и пр.). Свойства пластических материалов и неньютоновских жидкостей изучает наука реология.  [c.17]


В теории течения пластическая деформация материала уподобляется течению вязкой жидкости. При этом возникает вопрос о том, как распределяются скорости течения при достижении состояния пластического течения.  [c.290]

Воду можно рассматривать также как упругое тело, в котором напряжения сводятся к давлению, связанному однозначным соотношением с плотностью и температурой. Однако в воде могут появляться несуш ест-венные с точки зрения механики жидкости остаточные деформации, и в этом смысле можно приписывать воде наличие пластических свойств.  [c.428]

По мере распространения ультразвуковой волны в сплошном объеме вещества происходят необратимые потери энергии, интенсивность волны падает. В жидкостях максимальные потери обусловлены внутренним трением (вязкостью), и менее — ее теплопроводностью. В газах влияние вязкости и теплопроводности одинаково. В твердых телах появляются потери энергии на упругий гистерезис и пластическую деформацию, а также рассеяние ее в пол и кристаллической структуре, зависящее от упругой анизотропии и величины зерна.  [c.21]

При давлениях, значительно превышающих сдвиговую прочность материала, сложное напряженное состояние близко к всестороннему сжатию, что позволяет рассматривать пластическое течение в твердых телах при таких давлениях методами гидродинамики. Для жидкости параметры по обе стороны от поверхности ударной волны связаны известными соотношениями Рэн-  [c.162]

Когда кривая сГг(ег) всюду выпуклая к оси Ъг, как в идеальной жидкости без фазовых переходов, ударный фронт всегда устойчив и включает всю фазу сжатия в ударной волне. Наличие на кривой сжатия выпуклого к оси Ог участка (области перегиба) нарушает устойчивость ударной волны. Вследствие этого переход от упругого к упруго-пластическому деформированию материала, нарушающий условие устойчивости ударной волны, приводит к разделению фронта волны на упругий предвестник и следующую за ним ударную пластическую волну, распространяющиеся со скоростями соответственно ао н D. При низкой интенсивности ударной волны сопротивление сдвигу оказывает существенное влияние на ее распространение и, следовательно, при выполнении расчетов необходим учет вязкопластического поведения материала при деформации в ударной волне. Пренебрежение эффектами, связанными со сдвиговой прочностью, может привести к значительности погрешности в расчетах [161, 245].  [c.163]

Адсорбционные эффекты в процессах деформации и разрушения металлов могут быть особенно велики. Применение активных смазочно-охлаждающих жидкостей при обработке резанием облегчает пластическую деформацию и способствует улучшению качества обработанной поверхности (снижение шероховатости и поверхностного наклепа).  [c.52]

Было обнаружено, что, вследствие обратимой адсорбции материалом поверхностно-активных веществ из окружающей среды, облегчается упругая и в особенности пластическая деформация и разрушение материала. Объясняется это явление так. При растяжении монокристалла металла образуются микрощели с радиусом кривизны в вершине порядка нескольких А если при этом деформируемый образец помещен в жидкость с поверхностно-активными веществами, происходит проникновение адсорбционных слоев молекул из жидкости в указанные микрощели. В упругой области микрощели при разгрузке смыкаются. Такое поведение материала проиллюстрировано на рис. 4.39, на котором изображены диаграммы напряжений для монокристалла олова. Малая добавка олеиновой кислоты к вазелиновому маслу снижает все механические характеристики в чистом вазелине свойства олова такие же, как и в воздушной среде. Существует оптимальный процент содержания по-  [c.274]

В полимерах наблюдается так называемое набухание, состоящее в проникновении в них газа или жидкости, находящихся в контакте с ними. В набухшем полимере возрастает объем, понижается прочность, но эластические и пластические деформации возрастают. При увеличении степени набухания происходит ослабление межмолекулярных связей и начинается растворение полимера в растворителе, ничем не ограниченное в случае, если полимер имеет аморфную структуру. Полимеры с высокой степенью кристалличности растворимостью обладают лишь при температуре, близкой к температуре плавления кристаллов.  [c.339]

Принцип- формирования поверхностного слоя в режиме ИП состоит в активации электрохимического процесса растворения анодных элементов сплава с высоконапряженным состоянием площадок контакта при трении. Напомним, что анодными являются не только участки, состоящие из компонентов сплава с более отрицательным потенциалом, но и участки металла, находящиеся под действием больших механических напряжений. Анодный компонент металла, растворяясь, образует ПАВ, которое адсорбируется на катодном компоненте, понижает его прочность и облегчает диспергирование (образование коллоидных частиц). ПАВ и коллоид являются хорошими смазками. Можно было бы ожидать, что по мере увеличения площадок фактического контакта и перехода от напряжений пластической деформации (2000—3000 МПа) к более низким напряжениям процесс увеличения площадок существенно замедлится, однако совместное влияние избирательного растворения структурных составляющих и адсорбционного понижения прочности на остающийся при растворении катодный компонент сплава приводит к образованию из последнего сплошной пленки, по консистенции близкой к жидкости [441. То обстоятельство, что эта пленка находится в особом структурном состоянии, обусловливает ее смазочную способность и возможность работать при площадях фактического контакта на полтора-два порядка больших, чем площади при граничном трении. Увеличение опорной поверхности фактического контакта и соответствующее снижение удельных давлений являются средством уменьшения износа и увеличения несущей способности поверхности опоры.  [c.8]


Типичными примерами дилатантных жидкостей являются концентрированные суспензии твердых частиц с другой стороны, полимерные расплавы и растворы почти всегда являются псевдо-пластическими.  [c.56]

В некоторых случаях многофазная смесь может быть описана в рамках одной из известных классических моделей, в которых неоднородность отражается в значениях модулей, коэффициентов сжимаемости, теплоемкостей и т. д. (заранее определяемых через физические свойства фаз), т. е. только в уравнениях состояния смеси (см. 5 гл. 1). Например, жидкость с пузырями может иногда описываться в рамках идеальной сжимаемой жидкости, а грунт — в рамках упругой или упруго-пластической модели. Но при более интенсивных нагрузках, скоростях движения или в ударных процессах эти классические модели обычно перестают работать и требуется введение новых моделей и новых параметров, в частности, последовательно учитывающих неоднофазность, а именно существенно различное поведение фаз (различие плотностей, скоростей, давлений, температур, деформаций и т. д.) и взаимодействие фаз между собой. При этом проблема математического моделирования без привлечения дополнительных эмпирических или феноменологических соотношений и коэффициентов достаточно строго и обоснованно (например, методом осреднения более элементарных уравнений) может быть решена только для очень частных классов гетерогенных смесей и процессов. Эти случаи тем не менее представляют большое методическое значение, так как соответствующие им уравнения могут рассматриваться в качестве предельных или эталонов, дающих опорные пункты при менее строгом моделировании сложных реальных смесей, с привлечением дополнительных гипотез и феноменологических соотношений. Два таких предельных случая подробно рассмотрены в 5, 6 гл. 3.  [c.6]

Прочность такого жидкотвердого агрегата близка к нулю, т. е. сопротивление деформированию практически отсутствует. Начиная с некоторой температуры, названной температурой верхней границы интервала хрупкости (Гаг), металл переходит в стадию твердожидкого состояния, характеризующегося таким увеличением количества твердой фазы, при котором возможность жидкости перетекать между затвердевшими зернами резко уменьшается. При деформировании происходит заклинивание зерен и дальнейший процесс становится возможным только в случае пластической деформации самих зерен либо смещения их друг относительно друга. Обычно оба эти процесса протекают одновременно. Деформация такого двухфазного агрегата при условии сохранения сплошности в направлении действия сил Р возможна только при смятии отдельных точек контакта зерен (рис. 12.40,6, I—2, 3—7 и т. д.), поворота прилегающих зерен и их деформации. В ранней стадии такого деформирования  [c.475]

С дальнейшим снижением температуры возрастает объемная прочность жидкости, уменьшается ее объем, увеличивается число контактов между зернами. Одновременно с этим повышается и прочность самих границ зерен. При некоторой температуре границы упрочняются настолько, что разрушение начинает проходить не по ним, а по телу самих зерен (точка А). Такая температура названа эквикохезивной. При этом пластические свойства материала возрастают, так как деформация уже не концентрируется по малым прослойкам между зерен, а воспринимается всем агрегатом в достаточной степени равномерно. Температура резкого возрастания пластических свойств находится ниже температуры равновесного солидуса и носит название нижней границы хрупкости (Т г.). Интервал температур, заключенный между верхней и нижней температурной границами хрупкого состояния металла, называется температурным интервалом хрупкости или сокращенно т.и.х.  [c.476]

Жидкости, подчиняющиеся реологическому закону (154.21), на- зывают ньютонианскими в отличие от неньютонианских жидкостей, для которых этот закон не выполняется (например, расплавы пластических материалов, масляные краски и т. п.). Помимо обобщенного закона Ньютона (154.21), примем дополнительный постулат второй коэффициент вязкости равен нулю (Я = 0).  [c.243]

Разнообразие волновых структур в активных средах проявляется и в сложных структурах конденсированных сред. Следует прежде всего рассмотреть аналогию волновой картины пластической деформации при упругопластическом переходе в вихреобразования в движущейся трубе жидкости при переходе от ламинарного течения к турбулентному. Этому неравновесному фазовому переходу отвечает критическое число Рейнольдса. С другой стороны, переход от упругой деформации (апало1- ламинарного течения) также является неравновесным фазовым переходом, возникающем в результате потери упругой устойчивости деформируемой конденсированной среды, проявляющаяся на различных масштабных уровнях. В обоих случаях переход структуры из одного устойчивого состояния в дру1ое сопровождается порождением aBTOBOjni, как способа диссипации энергии средой в критических точках (см. главу 1).  [c.254]

Достаточные внешние воздействия могут проявляться при механических деформациях, вызываемых, например, слсатием или растяжением, осуществляться электрическими и магнитными полями, налагаемыми извне. В некоторых случаях достаточно слабых воздействий, например при течении жидкостей пли пластических тел, чтобы создалась искусственная анизотропия.  [c.63]

Обраи1,аясь к диаграмме деформирования идеально пластического тела, мы видим, что свойства его в известной мере оказываются промежуточными между свойствами твердого тела и жидкости. До достижения пластического состояния тело упруго и, следовательно, должно безусловно рассматриваться как твердое. После достижения предела текучести оно деформируется неограниченно или течет подобно жидкости. Можно было бы сказать, что жидкость — это твердое тело с пределом текучести, равным нулю. В связи с такой двойственной природой пластического тела и теории пластичности оответственно делятся на две группы теории течения, уподобляющие пластическое тело жидкости, и теории деформационного типа, которые строятся по образу и подобию теории упругости. Слово теории употреблено здесь во множественном числе. Единой универсальной теории пластичности до сих пор не существует, разные авторы придерживаются разных точек зрения. Ответить на вопрос, какая именно из этих теорий ближе к истине, нелегко. При решении практических задач все они дают очень близкие результаты.  [c.59]

Поверхностное натяжение жидкостей измерено для многих чистых веществ и смесей (растворов, расплавов) в щироком интервале температур, давлений, составов жидкости и для различной природы граничной фазы. Для твердых тел измерения Стт и От сопряжены с большими трудностями. Одно из главных затруднений заключается в том, что работа образования новой поверхности твердого тела включает, как правило, дополнительные (необратимые) затраты на пластическую деформацию. Для измерения поверхностного натяжения жидкостей применяют различные методы [1, 2].  [c.331]

Гриффитс предполагал, что величина бГ есть поверхностная энергия твердого тела, имеющая ту же физическую природу, что и для жидкости. Однако впоследствии выяснилось, что затраты энергии при создании новых поверхностей при развитии трещины связаны главным образом с работой пластической деформации объемов материала, расположенных перед фронтом трещины. Если линейные размеры этих объемов малы сравнительно с длиной трещины, то поток упругой энергии по-прежнему можно вычислить, сообразуясь только с упругим решением, а затрату энергии на разрушение относить теперь к работе пластической деформации. В этом состоит концепция квазихрупкого разрушения, изложенная в [231]. Эта концепция позволила перейти от идеального материала в схеме Гриффитса к реальным материалам. Эффективность этой концепции состоит в том, что разрушение реальных конструкций практически всегда происходит по квазихрупкому механизму — макрохрупкий излом содержит значительные остаточные деформации вблизи поверхности разрушения. Таким образом, оказалось возможным распространить теорию разрушения Гриффитса на решение инженерных проблем. Энергия Г обеспечивает существование твердого тела как единого целого, а при образовании новых поверхностей (из начального разреза) принято считать, что энергия Г имеет поверхностную природу и поэтому может быть выражена соотношением  [c.328]


Механика твердого тела, будучи одной из глав общей механики, изучает движение реальных твердых тел. Различие между твердыми телами, с одной стороны, жидкостями — с другой, иногда кажется интуитивно ясным (нанример, сталь и вода), иногда отчетливую границу провести бывает трудно. Лед представляет собою твердое тело, однако ледники медленно сползают с гор в долины подобно жидкости. При прокатке раскаленного металлического листа между валками прокатного стана металл находится в состоянии пластического течения и термин твердое тело по отношению к нему носит довольно условный характер. Неясно также, следует ли отнести к жидким или твердым телам такие вещества, как вар, битум, консистентные смазки, морской и озерный ил и т. д. Поэтому дать определение того, что называется твердым телом затруднительно, да пожалуй и невозможно. В последние годы наблюдается определенная тенденция к аксиоматическому построению механики без всякой апелляции к интуиции и так называемому здравому смыслу . Таким образом, вводятся различные модели, иногда чисто гипотетические, иногда отражающие основные черты поведения тех или иных реальных тел и пренебрегающие второстепенными подробностями. Для таких моделей можно установить некоторый формальный принцип классификации, позволяющий отделить модели жидкостей от моделей твер1а.ых тел, но эта классификация отправляется от свойств уравнений, но не тел как таковых. Поэтому термин механика твердого тела будет относиться скорее к методу исследования, чем к его объекту.  [c.16]

Гриффитс предполагал, что величина бГ есть поверхностная энергия твердого тела, имеющая ту же физическую природу, что и для жидкости. Однако впоследствии выяснилось, что затраты энергии при создании новых поверхностей при развитии трещины связаны главным образом с работой пластической деформации объемов материала, расположенных перед фронтом трещины. Если линейные размеры этих объемов малы сравнительно с длиной трещины, то поток упругой энергии по-прежнему можно вычислить, сообразуясь только с упругим решением, а затрату энергии на разрушение относить теперь к работе пластической деформации. В этом состоит концепция квазихрункого разруше-  [c.28]

Отметим, что для идеально-пластического материала при пластическом деформировании с Г = onst, ц = onst напряжения не могут быть произвольными, они всегда лежат на фиксированной поверхности в пространстве напряжений, поэтому для пластических тел, так же как и для жидкости, равновесие оказывается возможным только при специальной системе внешних сил.  [c.427]

Пластические смазки, представляющие собой тонкую механическую смесь минерального масла и мыла, получили широкое применение в подшипниковых узлах вследствие меньшей способност вытекать из корпуса, что существенно облегчает конструкщ1Ю уплотнений. Полость подшипникового узла в этом случае должна быть отделена от внутренней части корпуса, для чего используют маслосбрасывающие кольца (рис. 301). В подшипниковый узел смазку набивают через крышку или подают под давлением через масленку под шприц. В дальнейшем обычно через каждые 3 мес. добавляют свежей смазки, а через год - меняют смазку с предварительной разборкой и промывкой узла. Подшипники качения для предохранения их от загрязнения извне и предотвращения вытекания из них смазки снабжают уплотняющими устройствами. На рис. 302 изображены контактное (манжетное) уплотнение (рис. 302, а), применяемое при невысоких скоростях, обеспечивающее защиту плотным контактом деталей в уплотнениях щелевое и лабиринтное (рис. 302,6), применяемое при любых скоростях и обеспечивающее защиту вследствие сопротивления протеканию жидкости через узкие щели. Применяют также подшипники со встроенными уплотнениями.  [c.327]

Результаты исследований, проведенных М. М. Тененбаумом [186—189], показывают, что гидроабразивное изнашивание является сложным, самонастраиваюхцимся процессом, зависящим прежде всего от угла атаки, скорости абразивных частиц в момент удара о поверхность детали, отношения значений твердости изнашиваемого материала и абразива (коэффициент твердости), концентрации абразивных частиц в жидкости. Гидроабразивное изнашивание определяется не только действием абразивных частиц, но и физико-химическими реакциями с жидкостью. При определенных условиях воздействие жидкости может быть столь активным, что гидроабразивное изнашивание (действие твердых частиц) подавляется кавитацией или коррозией. Обычно гидроабразивному разрушению предшествуют пластическая деформация, микроусталостные явления или процессы микрорезания, на которые накладываются гидравлические удары захлопывающихся кавитационных пузырьков и адсорбционно-коррозионные реакции [186, 190].  [c.110]

Де Сильва и Чэдуик [23] наблюдали улучшение прочностных характеристик матрицы в волокнистой эвтектике Fe — РвгВ при расстоянии между волокнами мкм оно обусловлено совместным влиянием близости волокон и согласованной деформации фаз в окрестности поверхности раздела. При пластической деформации матрицы течение у поверхности раздела затруднено в большей степени, чем в областях между волокнами. Де Сильва и Чэдуик проводят аналогию между этим явлением и гидродинамическим пограничным слоем при ламинарном течении жидкости.  [c.261]

Развивая теорию спекания, Я. Френкель выдвинул представление о процессе вязкого течения кристаллических тел при высокой температуре, осуществляемого при посредстве диффузного механизма. Раньше считали, что вязкое течение свойственно только жидкостям, а кристаллические тела испытывают лишь пластическую деформацию. Теоретическими расчетами и экспериментами было доказано, что и крвдстал-лы могут вязко течь. Только вязкость кристаллов более высокая, чем вязкость жидкости.  [c.73]

В последнее время в практику входит мойка изделий в органических растворителях, в которых помещено около 5% по весу жидкости нерастворимых в ней пластических материалов в виде мелких кусочков с удельным весом, близким к удельному весу жидкого растворителя ( пертиноль -процесс). Кусочки твердой фазы в кипящем растворителе оказывают легкое абразивное действие на поверхность обезжириваемого изделия, содействуя механическому удалению загрязнений. Этим достигается более быстрое и полное удаление загрязнений.  [c.45]

Вазелин кремнийорганический КВ-З/ЮЭ (КВ-3) (ГОСТ 15975—70) — высоковязкая однородная паста от светло-серого до серо-голубоватого цвета, получаемая загущением диметилсплоксановой жидкости аэросилом. Вазелин гпдро-фобен, химически инертен, является хорошим диэлектриком, его пластические и другие свойства фактически ив изменяются в интервале температур от —60 до +200° С. Используют для защиты полупроводнпковых приборов, а также в качестве диэлектриков и демпфера в приборах.  [c.467]


Смотреть страницы где упоминается термин Жидкость пластическая : [c.266]    [c.219]    [c.11]    [c.87]    [c.294]    [c.92]    [c.269]    [c.156]    [c.259]   
Механика жидкости и газа (1978) -- [ c.356 ]



ПОИСК



Рейнольдса жидкость пластическое тело



© 2025 Mash-xxl.info Реклама на сайте