Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение осесимметричного деформирования оболочек вращения

Основные уравнения осесимметричного деформирования оболочек вращения  [c.177]

В результате решения уравнений равновесия оболочки в пространстве нагрузка—перемещения в выбранных пределах изменения внешней нагрузки находим кривую, представляющую равновесные состояния оболочки. При этом на полученной кривой отыскиваем точки (если такие имеются), соответствующие верхней и нижней критическим нагрузкам оболочки. Вместе с тем в процессе нагружения оболочек (как и других тонкостенных конструкций) нередки случаи, когда при определенной нагрузке (нагрузке бифуркации) происходит разветвление равновесных форм оболочки, т. е. на исходное поле перемещений оболочки накладывается по меньшей мере одно дополнительное, бесконечно малое поле перемещений, которое в процессе его эволюции приводит к выпучиванию оболочки. В случае осесимметричного деформирования оболочки вращении при бифуркационной нагрузке появляется, как правило, одно дополнительное, вообще неосесимметричное поле перемещений (возможны также случаи выпучивания по нескольким формам).  [c.288]


Представленные динамические уравнения (2.5.13) в вариационном виде определяют (после замыкания системы определяющими соотношениями поведения материала оболочки) модель нелинейного осесимметричного деформирования оболочек враЩеНия с учетом сдвига. В отличие от моделей, основанных на гипотезах Кирхгофа [86, 182], определяющими кинематическими параметрами здесь являются три функции r(0i, t), z(0i, t), ф(0ь О-  [c.46]

Для осесимметрично деформированной оболочки вращения существуют два уравнения совместности деформаций, являющиеся частным случаем уравнений совместности деформаций общей теории оболочек [6]  [c.120]

Для осесимметричного случая деформирования оболочки вращения система уравнений (9.5.1) - (9.5.4) принимает вид  [c.145]

Основные уравнения осесимметричного деформирования безмоментных оболочек вращения за пределами упругости были получены и использованы для решения ряда задач А. С. Григорьевым [18—20, 23].  [c.177]

Как следует цз гл. 1 для осесимметричного циклического упруго-пластического деформирования оболочки вращения постоянной толщины при постоянной температуре могут быть записаны следующие уравнения  [c.398]

Вдали от полюса оболочки (а = 0) последними слагаемыми в этом операторе можно пренебречь, и, следовательно, деформированное и напряженное состояния осесимметрично нагруженной оболочки вращения в зонах, достаточно удаленных от полюса, описываются следующим дифференциальным уравнением второго порядка  [c.158]

Параметр с в уравнении (527), которое описывает напряженное и деформированное состояния осесимметрично нагруженных оболочек вращения вблизи полюса, равен единице. Следовательно, основное дифференциальное уравнение рассматриваемой задачи имеет вид  [c.163]

Одномерные и квазиодномерные задачи механики описываются системами обыкновенных диф ренциальных уравнений. К одномерным можно отнести задачи о деформировании стержней, балок, а также круглых пластин и оболочек вращения при осесимметричном нагружении. В ряде случаев для трехмерных и двумерных задач теории упругости можно применить метод разделения переменных и решать задачу в рядах Фурье или методом Канторовича. Задачи, для которых тем или иным способом возможно приближенно перейти от уравнений в частных производных к обыкновенным уравнениям, называются квазиодномерными. Для расчетов на ЭВМ наиболее удобной формой представления разрешающих дифференциальных уравнений является система дифференциальных уравнений первого порядка, или каноническая система. Для таких систем разработаны стандартные программы интегрирования, а также различные вычислительные приемы, обеспечивающие достаточную точность решения краевых задач [20, 33].  [c.85]


В гл. 4 основное внимание уделено многослойным оболочкам вращения, у которых упругие характеристики отдельных слоев примерно одинаковы. Для описания деформирования применяются два подхода. Первый основан на гипотезах Кирхгофа—Лява, второй — на обобщении гипотез С. П. Тимошенко. Рассмотрены способы решения с помощью МКЭ и численного интегрирования систем дифференциальных уравнений задач статики, устойчивости и колебаний, а также вопросы стыковки оболочек с кольцевыми подкрепляющими элементами. Приводится решение задач об осесимметричном деформировании тонкой многослойной оболочки, выполненной из композиционного материала с хрупкой полимерной матрицей, с учетом геометрической, физической и структурной нелинейностей.  [c.122]

При осесимметричном нагружении цилиндрическая оболочка становится оболочкой вращения (рис. 6,7). Уравнения равновесия мягкой оболочки, как уже указывалось, составляются для деформированного состояния и по виду совпадают с уравнениями оболочки вращения  [c.167]

Структура исходных уравнений нелинейной теории многослойных анизотропных оболочек довольно сложна, получить аналитическое решение уравнений (1.42), (1.43) непросто, позтому будем ориентироваться на их численное решение на ЭВМ, В последние годы самое широкое распространение и признание получила методика решения задач прочности оболочек вращения, согласно которой исходная система уравнений, описывающих напряженно-деформированное состояние конструкции в геометрически линейной постановке, сводилась к решению краевой задачи для нормальной системы обыкновенных дифференциальных уравнений. Этот прием в сочетании с методом ортогональной прогонки оказался настолько плодотворным, что проблема расчета осесимметричных оболочек вращения в классической постановке оказалась в основном завершенной [ 1.16].  [c.23]

Как показано в гл. 1, расчет нелинейного осесимметричного напряженно-деформированного состояния многослойных анизотропных оболочек вращения связан с решением наи+ 1-ом шаге последовательных приближений системы линейных дифференциальных уравнений  [c.128]

Уравнения бифуркационной потери устойчивости конечного элемента оболочки (уравнения по отысканию нагрузки выпучивания оболочки) следуют непосредственно из равенства (33), если его правую часть приравнять нулю. Прн этом варьирование в функционалах осуществляется по перемещениям в бесконечно близкой, но отличной от основного, осесимметричного, деформированного состояния оболочки. Так, если при осесимметричных нагрузках перемещения в пределах конечного элемента оболочки вращения описываются согласно выражениям (24), когда параметр волнообразования п—О, то в точке бифуркации на исходное осесимметричное поле перемещений накладывается дополнительное бесконечно малое (неосесимметричное. пфО) поле перемещений и варьирование в функционалах равенства (33) осуществляется именно по этим дополнительным перемещениям. Для нахождения точек бифуркации на кривой нагрузка—перемещение основное поле перемещений оболочки представим в виде  [c.288]

В настоящем параграфе рассмотрен класс осесимметричных краевых задач статики слоистых анизотропных оболочек вращения. Сформулированы и приведены к матричной форме система обыкновенных дифференциальных уравнений, описывающая осесимметричное напряженно-деформированное состояние таких оболочек, и соответствующая ей система граничных условий.  [c.75]

Среди практически важных задач расчета таких оболочек видное место занимает класс осесимметричных задач статики. Укажем, например, на задачу изгиба замкнутой в окружном направлении оболочки вращения — если условия нагружения и опирания оболочки, структура армирования ее слоев не зависят от угловой координаты, то такими же будут и все характеристики ее напряженно-де-формированного состояния. В этой и аналогичных задачах исследование процесса деформирования требует обращения не к общей системе уравнений с частными производными (3.5.1)—(3.5.7), (3.6.3) — (3.6.5), а к ее частной форме — системе обыкновенных дифференциальных уравнений.  [c.76]


Внутренние силы и деформированное состояние оболочек вращения, находящихся под воздействием осесимметричной нагрузки, направленной перпендикулярно срединной поверхности оболочки, могут быть определены решением дифференциальных уравнений четвертого [табл. 3.1) порядка. Из частного решения неоднородного дифференциального уравнения получают внутренние силы в сечениях оболочки и ее деформированное состояние при нагрузках, приложенных к поверхности оболочки. На основании общего решения однородного дифференциаль-  [c.25]

Для анализа осесимметричного напряженно-деформированного состояния в тонкой конической оболочке используются нелинейные уравнения типа С. П. Тимошенко, учитывающие сдвиг и инерцию вращения. Таким образом, задача сводится к решению следующей системы уравнений  [c.144]

Пусть, далее, такая оболочка имеет по тор-цам осесимметричные граничные условия и загружена осесимметрично относительно оси г, т. е. Х=Х (а), У=У (а), Х=Х (а). В этом случае, ввиду полной симметрии, оболочка будет деформироваться осесимметрично, т. е. после деформирования тело оболочки остается телом вращения с осью вращения г. Тогда все искомые расчетные величины оболочки будут функциями лишь одной переменной а, т. е. оси не будут зависеть от угловой координаты д (рис. 22). Для рассматриваемой оболочки из (3.3)—(3.5) имеем уравнения равновесия  [c.56]

В работе [28] дано приближенное решение задачи, основанное на уравнении состояния нелинейно-вязкого тела типа Пэккера — Шерби. Ниже приведено численное решение [11, 12], основанное на выведенных в предыдущем параграфе уравнениях осесимметричного деформирования оболочек вращения.  [c.182]

Так как BD = dSi = RidQ, то имеем Ai = Ri, а ai = б, dij = ABd( = Ri sin 6 dq>, где ф — угол вращения кривой KLM относительно вертикальной оси z. Тогда Ai = Вг sin 9, а ф = аг. В случае осесимметричного нагружения оболочки вращения напряженное и деформированное состояние не будет изменяться по окруи ной координате ф. При этом п = о, и из (9.27) получим следующие уравнения для определения перемещений ниш  [c.250]

Деформированное состояние оболочки компенсатора определялось на основе метода [140] решения задачи о длительном циклическом нагружении данной конструкции. Задача решалась в ква-зистациоиарной несвязанной постановке путем численного интегрирования на ЭВМ Минск-32 системы нелинейных дифференциальных уравнений, определяющих напряженно-деформированное состояние неупругих осесимметрично нагруженных оболочек вращения. Решение линейной краевой задачи производилось на основе метода ортогональной прогонки [52]. Рассматривалась только физическая нелинейность. Учет геометрической нелинейности при расчетах сильфонов, работающих как компенсаторы тепловых расширений в отличие от сильфонов измерительных приборов [193], обычно не производится [32, 150, 222], как не дающий существенного уточнения при умеренных перемещениях. Предполагалось, что все гофры сильфона деформируются одинаково. Поэтому расчет производился только для одного полугофра. Эквивалентный размах осевого перемещения полугофра, вызывающий те же деформации, что и полное смещение концов сильфона, определялся по формуле  [c.200]

Глава посвящена рассмотрению двух наиболее интересных случаев деформирования оболочки вращения — осесимметричному ( = 0) и обратносимметричному k — 1) изгибам. Решение однородной системы разрешающих уравнений определяется методом асимптотического интегрирования и является точным в рамках кирхгофовской теории оболочек. Однако для практических целей достаточной обычно является точность первого (так называемого геккелеровского) приближения, соответствующая пренебрежению слагаемыми порядка Y hlRo по сравнению с единицей. Частное решение также вычисляется приближенно на основе предложения о его плавности и совпадает с безмомент-ным решением. Главу заключают параграфы, посвященные отдельно цилиндрическим, коническим и сферическим оболочкам. Рассмотрен ряд задач, которые могут представлять самостоятельный интерес (например, аналог теоремы о трех моментах в теории оболочек).  [c.184]

В этой главе рассматривается осесимметричная деформация тонких нелинейно-упругих оболочек вращения. Исходя из трехмерных уравнений теории упругости дается вывод приб.чиженных соотношений упругости двухмерной теории оболочек, основанный на асимптотических разложениях. Ползгченные соотношения упругости для ряда упругих потенциалов сравниваются с вытекающими из модифицированных гипотез Кирхгофа-Лява (см. гл.З). Кроме того, приводятся решения ряда частных задач о нелинейном деформировании оболочек вращения, используюыще асимптотические разложения.  [c.328]

В настоящей монографии приведены результаты численного и экспериментального исследования термоползучести гибких пологих замкнутых, открытых и подкрепленных в вершине оболочек вращения переменной толщины, выполненных из изотропных и анизотропных материалов, обладающих неограниченной ползучестью. В главе I дан краткий анализ подходов к решению задач изгиба и устойчивости тонких оболочек в условиях ползучести. Глава II посвящена построению вариационных уравнений технической теории термоползучести и устойчивости гибких оболочек и соответствующих вариационной задаче систем дифференциальных уравнений, главных и естественных краевых условий, разработке методики решения поставленной задачи. Вариационные уравнения упрощены для случая замкнутых, открытых и подкрепленных в вершине осесимметрично нагруженных пологих оболочек вращения, показаны некоторые особенности алгоритма численного решения. Результаты решений осесимметричных задач неустаповившейся ползучести и устойчивости замкнутых, открытых и подкрепленных в вершине сферических и конических оболочек постоянной и переменной толщины приведены в главе III. Рассмотрено также влияние на напряженно-деформированное состояние и устойчивость оболочек при ползучести высоты над плоскостью, условий закрепления краев (при постоянном уровне нагрузки), уровня и вида нагрузки, дополнительного малого нагрева, подкрепления внутреннего контура кольцевым элементом. Глава IV посвящена численному исследованию возможности неосесимметричной потери устойчивости замкнутых в вершине изотропных и анизотропных сферических оболочек в условиях ползучести. Проведено сопоставление теоретических и экспериментальных дан-лых.  [c.4]


Вариационное уравнение термоползучести (11.20) для пологих неоднородных анизотропных оболочек вращения с подкрепленными центральными отверстиями в условиях осесимметричного деформирования с учетом (11.50), (11.52), (11.53) принимает вид  [c.39]

Простейший нелинейный вариант теории осесимметричных многослойных анизотропных оболочек построен. Нормальная система уравнений (1.52), граничные условия (1.62), (1.63), соотаошения (1.54), (1.55), (1.57)—(1.59) и система линейных алгебраических уравнений (1.60) полностью разрешают поставленную задачу. Как видим, задача определения напряженно-деформированного состояния многослойных анизотропных оболочек вращения сведена к нелинейной краевой задаче (1.52), (1.62), (1.63), что позволяет применить к ее решению стандартный, хорошо изученный на более простых задачах подход.  [c.27]

Итак, сформулирована нелинейная система обыкновенных дис )ференциаль-ных уравнений, описывающая осесимметричное напряженно-деформированное состояние слоистой анизотропной оболочки вращения. Эта система состоит из уравнений (3.5.1), (3.5.6), (3.6.3) — (3.6.5), (3.6.7) — (3.6.10) и интегрируется при соответствующих краевых условиях. Последние вытекают из общих краевых условий (3.2.19) и требуют задания при х = р, х = q либо значений обобщенных перемещений, либо значений соответствующих им обобщенных контурных нагрузок. Упростив с учетом осевой симметрии представления этих величин и объединив их в пары  [c.78]

Рассмотрим задачу об устойчивости равновесия упругой слоистой анизотропной оболочки вращения, нагруженной осесимметричной системой внешних сил, интенсивности которых пропорциональны одному параметру. Докритическое равновесное состояние оболочки определяем на основе линеаризованных уравнений статики, а его устойчивость исследуем в рамках статической концепции Эйлера о разветвлении фop равновесия, позволяющей трактовать (см. параграф 3.3) задачу устойчивости как линейную краевую задачу на собственные значения для системы дифференциальных уравнений с частными производными. Решение этой задачи строим в форме тригонометрических рядов Фурье по угловой координате (см. параграф 3.6) с коэффициентами, зависящими от меридиональной координаты. Отделяя угловую координату и вводя 2х-мерный вектор j>(x) вариаций безразмерных кинематических и силовых характеристик напряженно-деформированного состояния оболочки (см. параграф 3.6), приходим к линейной краеюй задаче на собственные значения для системы обыкновенных дифференциальных уравнений, которую запишем в векторной форме  [c.205]

Содержание книги отвечает следующему плану сначала рассматриваются термодинамические основы термоупругости и дается постановка задачи термоупругости для самого общего случая, когда приращение температуры не является малой величиной по сравнению с начальной температурой, а нестационарные процессы деформирования сопровождаются существенными динамическими эффектами и взаимодействием между полями деформации и температуры затем приводятся основные уравнения квазистатической задачи термоупругости и сообщаются основные сведения по теории стационарной и нестационарной теплопроводности, необходимые для исследования температурных полей и соответствующих им тепловых напряжений в квазистатической и динамической постановках далее разбираются основные классы квазистатических задач термоупругости (плоская задача термоупругостн, задача термоупругостн круглых пластин и оболочек вращения, осесимметричная пространственная задача термоупругости) в последних двух главах рассматриваются динамические и связанные задачи термоупругости.  [c.3]

Основной расчетной схемой при анализе напряженно-деформирован-ного состояния конструкций типа баллонов давления является слоистая безмоментная оболочка вращения. Оболочка нагружена постоянным внутренним давлением р и осевыми силами Ро, равномерно распределенными по краю полюсного отверстия радиуса Гц. Осевые силы могут изменяться от значения Со = О Для баллона с открытым полюсным отверстием до значения Со = рт 2, соответствующего полюсному отверстию, закрытому жесткой силовой крышкой. В числе слоев могут быть изотропные типа внутренней герметизирующей оболочки и слои из композита, образованные нитями, уложенными под углами +фг или —фг к образующей. Учитывая взаимодействие между слоями, уравнения равновесия слоя при осесимметричном нагружении можно записать в виде [14]  [c.353]


Смотреть страницы где упоминается термин Уравнение осесимметричного деформирования оболочек вращения : [c.149]    [c.26]   
Ползучесть в обработке металлов (БР) (1986) -- [ c.177 , c.187 ]



ПОИСК



124 — Уравнение с вращением

Оболочки вращения

Оболочки уравнения



© 2025 Mash-xxl.info Реклама на сайте