Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения движения вязкой жидкости упрощение

Выше мы имели возможность убедиться, что в случае безвихревого движения жидкости значительное упрощение решений гидродинамических задач достигается введением потенциала скорости ф. Но эта функция существует только при отсутствии вихрей и потому при изучении течений вязкой жидкости важно выяснить, может ли существовать ее безвихревое движение, а следовательно, и потенциал скорости. Напомним, что уравнения движения вязкой жидкости отличаются от уравнений идеальной  [c.323]


Таким образом после работ Стокса дифференциальные уравнения движения вязкой жидкости находят себе конкретное применение при решении отдельных задач. При этом теоретические решения отдельных задач подтверждались тогда и результатами опытов, но при сравнительно малых скоростях движения жидкости. Особенное значение приобрело решение задачи об установившемся течении жидкости в цилиндрической трубке, полностью согласующееся с экспериментальной формулой Пуазейля. Благодаря этому обстоятельству формула Пуазейля стала широко использоваться для экспериментального определения коэффициента вязкости различных жидкостей. Кроме того, следует отметить и то, что с работ Стокса начинаются попытки упрощения нелинейных дифференциальных уравнений движения вязкой жидкости. Отбрасывание квадратичных членов инерции позволило Стоксу и целому ряду последующих исследователей найти теоретические решения многих задач, подтверждаемые опытами при малых скоростях движения жидкости. Некоторые из этих теоретических решений послужили основанием для разработки других методов определения вязкости жидкостей в тех случаях, когда метод истечения становится непригодным.  [c.21]

Задача определения характера движения вязкой несжимаемой жидкости на начальном участке цилиндрической трубы впервые решалась в работе Буссинеска с помощью ряда допущений и упрощений дифференциальных уравнений движений вязкой жидкости в цилиндрических координатах. Затем эта же задача решалась Шиллером путём сопряжения прямолинейного профиля распределения скорости  [c.350]

Мы можем поэтому представить себе схематически картину течения вязкой жидкости при больших числах Рейнольдса следующим образом. Всю область течения мы разбиваем на две части, а именно на тонкий пограничный слой вблизи тела и на остающуюся область течения, в которой течение можно считать совпадающим с потенциальным течением идеальной жидкости. В пограничном же слое мы будем учитывать также и силы вязкости однако, то обстоятельство, что толщина пограничного слоя очень мала, позволяет сильно упростить уравнения Навье — Стокса в результате такого упрощения мы получим уравнения Прандтля, решения которых тем менее будут отличаться от точных решений уравнений движения вязкой жидкости, чем больше будет число Рейнольдса и чем, следовательно, меньше будет толщина пограничного слоя.  [c.544]


Закончив на этом описание основных физических явлений, возникающих при течениях с очень малой вязкостью, и изложив тем самым в самых кратких чертах теорию пограничного слоя, мы перейдем в следующих главах к построению рациональной теории этих явлений на основе уравнений движения вязкой жидкости. В настоящей части книги (в главе III) мы составим общие уравнения движения Навье — Стокса, а во второй части сначала выведем из уравнений Навье — Стокса путем упрощений, вытекающих из предположения о малой величине вязкости, уравнения Прандтля для пограничного слоя, а затем перейдем к интегрированию этих уравнений для ламинарного пограничного слоя. Далее, в третьей части книги, мы рассмотрим проблему возникновения турбулентности (переход от ламинарного течения к турбулентному) с точки зрений теории устойчивости ламинарного течения. Наконец, в четвертой части книги мы изложим теорию пограничного слоя для вполне развившегося турбулентного течения. Теорию ламинарного пограничного слоя можно построить чисто дедуктивным путем, исходя из дифференциальных уравнений Навье — Стокса для движения вязкой жидкости. Для теории турбулентного пограничного слоя такое дедуктивное построение до сегодняшнего дня невозможно, так как механизм турбулентного течения вследствие его большой сложности недоступен чисто теоретическому исследованию. В связи с этим при изучении турбулентных течений приходится в широкой мере опираться на экспериментальные результаты, и поэтому теория турбулентного пограничного слоя является, вообще говоря, полуэмпирической.  [c.53]

В настоящее время существуют методы упрощения уравнений движения вязкой жидкости. Один из них заключается в том, что инерционные члены в этих уравнениях полностью отбрасываются, а слагаемые, определяемые вязкостью, сохраняются без изменения.  [c.238]

Другой метод упрощения уравнений движения вязкой жидкости, принципиально отличный от предыдущих, применим, наоборот, к изучению обтекания тел при больших числах К, вследствие чего он имеет огромное значение для авиации.  [c.239]

Уравнения движения. Вывод дифференциального уравнения движения вязкой жидкости требует громоздких математических выкладок. В связи с этим будет дан упрощенный вывод этого уравнения 1[Л. 171] для случая одномерного течения несжимаемой вязкой жидкости. Для трехмерного движения уравнение будет приведено без вывода. Уравнения движения подробно рассматриваются в курсах гидродинамики и монографиях по теплопередаче, например в [Л. 61, 154, 268].  [c.132]

Развитие производительных сил в XIX в. поставило перед наукой новые задачи, решать которые с помощью гидромеханики идеальной жидкости уже было невозможно. Надо было переходить к изучению движения реальных жидкостей. Рассмотрением этого вопроса занялся Навье, который в 1823 г. на основе гипотезы Ньютона о силе внутреннего трения вывел дифференциальные уравнения движения вязкой жидкости. Однако эти уравнения, даже упрощенные Стоксом, из-за значительных математических трудностей можно было применять лишь для простейших случаев движения. Таким образом, для решения конкрет-  [c.7]

Другой способ упрощения уравнений движения вязкой жидкости предложен Прандтлем и основан на использовании понятия пограничного слоя. Для плоского течения в декартовой системе координат уравнения Навье-Стокса приобретают вид  [c.20]

Идеальная или невязкая жидкость является упрощенной моделью реальной (вязкой) жидкости. По предположению, идеальная жидкость имеет все свойства реальной, кроме вязкости, поэтому для получения уравнения ее движения можно применить уравнения Навье — Стокса, положив л = О . Тогда уравнения движения вязкого газа (5.8) и движения вязкой несжимаемой жидкости (5.9) упрощаются и принимают вид  [c.99]

Разработан метод исследования динамики твердых тел (частиц), расположенных у границы сжимаемой вязкой жидкости, при прохождении акустической волны. Действие жидкости на тело (частицу) определяется средними по времени силами, представляющими постоянные во времени слагаемые гидродинамических сил. В связи с этим используется разработанный ранее метод вычисления давления в сжимаемой вязкой жидкости с сохранением слагаемых, квадратичных по параметрам волнового поля. Метод основан на использовании упрощенной (применительно к волновым движениям жидкости) системы исходных нелинейных уравнений гидромеханики. Оказалось возможным при вычислении напряжений в жидкости сохранить величины второго порядка, не решая систему нелинейных уравнений. Напряжения удается выразить через величины, определяемые с помощью линеаризованных уравнений сжимаемой вязкой жидкости. Для этого используются представления решений линеаризованных уравнений через скалярный и векторный потенциалы. На основе этого метода сформулирована задача для цилиндра у плоской стенки при падении волны перпендикулярно стенке, и рассмотрен конкретный пример.  [c.342]


Ламинарный пограничный слой несжимаемой жидкости. В теории ламинарного пограничного слоя при больших величинах числа Рейнольдса считают, что силы инерции и вязкие силы имеют в пределах пограничного слоя один и тот же порядок. Это приводит к значительному упрощению общих уравнений движения жидкости или газа, позволяя сх проинтегрировать в некоторых частных случаях. В частности, вводя толщину пограничного слоя о, например, как расстояние от стенки до точки, где скорость отличается на 1% от скорости невозмущенного потока, получим, что Ь будет иметь порядок величины  [c.682]

Необходимо также отметить применение уравнений медленного течения в гидродинамической теории смазки. Исследование относительного движения двух близко расположенных параллельных поверхностей было начато Рейнольдсом [25]. Развитые им методы применялись с тех пор в разнообразных задачах теории смазки [14]. В дополнение к пренебрежению инерцией принимается, что течение жидкости существенно одномерно. Такие же упрощения применялись также, например, к исследованию аксиального движения сферы в круглой трубе, заполненной вязкой жидкостью, в случае, когда диаметр трубы ненамного больше диаметра сферы [8], и для вязкого течения в зазоре между параллельными круговыми цилиндрами в случае, когда зазор между ними мал по сравнению с их диаметром [17]. В первом случае наблюдается хорошее согласие эксперимента с теорией. Имеется также много других аналогичных применений данной теории.  [c.76]

Совместное решение шести уравнений равновесия для вязкой жидкости, уравнения неразрывности и трёх уравнений движения (см. т. 1, сгр. 805—806) после ряда упрощений приводит к основному диференциальному уравнению гидродинамической теории смазки  [c.570]

Несмотря на то, что толщина жидкой пленки, разделяющей поверхности, незначительна по сравнению с остальными размерами, движение смазки протекает согласно законам гидродинамики или аэродинамики (в случае газовой смазки) вязких жидкостей, известным под названием уравнений Навье-Стокса. Следовательно, ими можно пользоваться в обычном виде, в котором они даются в специальных трудах, с некоторыми упрощениями, характерными для задачи смазки. Так, в связи с тем, что эффект вязкости преобладает, можно пренебречь силами инерции и весом жидкости.  [c.36]

Один из основных подходов для анализа и упрощения уравнений Павье — Стокса заключается в полном или частичном пренебрежении нелинейными инерционными членами (V по сравнению с линейными вязкими членами иАУ. Этот метод оправдан при Ке = Ы1 /г <С 1 и широко используется для исследования движения частиц, капель и пузырей в жидкости. Малые числа Рейнольдса характерны для следующих трех случаев медленных (ползущих) течений, сильно вязких жидкостей, малых размеров частиц.  [c.41]

Жидкость считаем несжимаемой и ради упрощения положим, что пограничный слой состоит из двух участков. Непосредственно к стенке примыкает вязкий подслой толщиной б,, а над ним расположена основная часть слоя, в которой движение полностью турбулентно (рис. 7.6). Задано распределение скорости по внешней границе слоя Пр М и распределение давления р (х), которое связано на внешней границе со скоростью уравнением Бернулли, а поперек слоя, как было показано, постоянно. Требуется определить касательное напряжение на стенке Тр (х) и толщину пограничного слоя б (х).  [c.178]

Используя последнее условие и считая движение жидкости в зазоре между окружностями медленным в том смысле, что можно пренебречь инерционными членами по сравнению с членами, учитывающими вязкие силы и изменение давления, приведем уравнения Стокса в полярных координатах (г, ф) [формула (25)] к упрощенному виду  [c.414]

Проблема гидродинамической теории смазки оказала решающее влияние на развитие гидродинамики вязкой жидкости не только потому, что открылись новые возможности для применения общих уравнений движения вязкой жидкости и приближённых уравнений с отброшенными квадратичными членами к практически весьма важной задаче, но также и потому, что открылись новые возможности для упрощения сложных уравнений движения жидкости. В этом отношении заслуга принадлежит выдающемуся английскому учёному О. Рейнольдсу ), который при рассмотрении течения в смазочном слое вполне обосновал возможность отбрасывания в уравнениях не только квадратичных членов инерции, но и большинства слагаемых от вязкости. Благодаря этому обстоятельству уравнения движения жидкости в смазочном слое резко упрощаются, и в связи с этим представились возможности в ряде случаев довести решения до простых формул, позволяющих, в частности, просто оценивать так называемый клиновидный эффект от эксцентричного расположения шипа в подшипнике.  [c.22]

Несколько иной способ упрощения задачи, уточняющий метод Стокса, принадлежит Озину [2] и заключается в том, что в уравнениях движения оставляются только важнейшие из инерционных членов, которые к тому же линеаризуются путем замены неизвестной скорости, стоящей множителем перед производной, ее характерным значением. При этом нелинейная система дифференциальных уравнений движения вязкой жидкости сводится к линейным уравнениям с частными производными первого и второго порядков.  [c.238]

Далее, говоря о нелинейном характере исходных дифференциальных уравнений движения вязкой несжимаемой жидкости, мы подчёркивали неизбежность приближённых методов упрощения этих уравнений применительно к целым группам конкретных задач. Излагая эти приближённые методы, мы старались подметить преемственность и некоторую логическую последовательность в развитии этих методов.  [c.7]


Изучение движения вязкой жидкости в области пограничного слоя основывается, как уже упоминалось, на интегрировании уравнений пограничного слоя, представляющих уравнения Стокса, существенно упрощенные за счет принятия в расчет малости толщины пограничного слоя. Решение этих, носящих имя своего создателя Л. Прандтля ) уравнений, как будет показано в следующем параграфе, представляется первым членом разложения решения уравнения Стокса в ряд по степеням малого безразмерного параметра — отношения масштаба толщины пограничного слоя к характерному для потока в целом масштабу обтекаемого тела (например, хорде крыла) — имеющего порядок обратной величины корня квадратного из рейнольдсового числа. Этот первый член содержит малый параметр в нулевой степени, поэтому уравнения пограничного слоя можно рассматривать как нулевое приближение в асимптотическом (при больших рейнольдсовых числах) разложении болееобщих уравнений движеиия вязкой жидкости — уравнений Стокса.  [c.557]

Будем теперь считать, что число Рейнольдса Ке потока очень велико. В таком случае нелинейные инерционные члены уравнений (1.6) будут существенно превосходить по величине члены, содержащие коэффициент вязкост]а, так что на первый взгляд может показаться, что влиянием вязкости здесь можно попросту пренебречь. На самом деле, однако, дело будет обстоять не совсем так отбрасывая члены с V в уравнениях 1.6), мы тем самым понижаем порядок этих дифференциальных уравнений, и решения получающихся упрощенных уравнений идеальной жидкости йе могут уже удовлетворить граничным условиям прилипания , требующим обращения в нуль скорости на всех твердых поверхностях, ограничивающих поток. В то же время хорошо иавестно, что для вязкой жидкости (со сколь угодно малым коэффициентом вязкости) прилипание обязательно должно иметь место. Поэтому при движениях вязкой жидкости, характеризующихся большим числом Рейнольдса, только вдали от твердых стенок течение будет близким к тому, которое могло бы иметь место в случае идеальной жидкости (с нулевой вязкостью) вблизи же от етенок образуется тонкий слой, в котором скорость течения очень быстро изменяется от нулевого значения на стенке до значения на внешней границе слоя, весьма близкого к тому, которое получилось бы при те-чении идеальной жидкости. Быстрое изменение скорости внутри этого так называемого пограничного слоя приводит к тому, что в его пределах влияние сил трения на деле оказываете вовсе не малым, а и ёщишм. тот порядок, что и влияние сил инерции. .....  [c.48]

В реальных условиях масляная пленка очень тонка А С а угол наклона колодки к опорной поверхности мал а 1. Если арПоА/р 1. то силами инерции можно пренебречь. В этом случае возможно дальнейшее упрощение уравнений. Поскольку У то второе уравнение (6.17) можно отбросить, приняв др ду = О, т. е. считать, что давление меняется только вдоль оси абсцисс. Граничные условия следуют из того, что вязкая жидкость прилипает к поверхности, т. е. скорость жидкости равна нулю на колодке н равна о на опорной поверхности. Отсюда при условии А / МОЖНО заключить, что д и1дх С д- и/ ду , т. е. что скорость значительно интенсивнее изменяется поперек слоя, нежели вдоль течения. После этих упрощений получим уравнение движения (6.17) в таком виде  [c.144]

На самом деле, как показывают многочисленные исследования, турбулентное движение, как бы ни было оно сложно по своей внутренней структуре, подчиняется общим законам динамики непрерывной среды, в частности установленным в предыдущей главе уравнениям динамики вязкой сжимаемой или несжимаемой жидкости в нестационарной их форме. В то же время не имеет смысла точная постановка вопроса о разыскании решений этих уравнений при строго поставленных начальных и граничных условиях. Де 1Ствительно, в обстановке неограниченного роста сколь угодно малых возмущений самые ничтожные отклонения от поставленных граничных и начальных условий (неточности в изготовлении поверхности обтекаемого тела, предыдущая история потока и др.) могут привести к столь значительным изменениям решений уравнений, чго за ними исчезнут все достоинства строгой постановки задачи. Пользоваться упрощенной геометризацией формы обтекаемых тел или каналов и не учитывать наличия начальных возмущений в потоке можно лишь в тех случаях, когда поток устойчив и существует уверенность, что сделанные малые ошибки в постановке задачи приведут к столь же малым ошибкам в ее пешении это и делалось ранее при рассмотрении ламинарных движений. Для исследования турбулентных движений приходится применять  [c.582]

Такой метод упрощения уравнений движения и энергии вязкой жидкости особенно эффективен применительно к потокам несжимае.мой жидкости, в которых поле скоро стей не зависит от температурного поля. Сложнее дело обстоит с потоком сжимаемой жидкости, где уравнения движения и энергии взаимосвязаны вследствие зависимости плотности, вязкости и теплопроводности от температуры. Кроме того, здесь само температурное поле зависит от теплообмена у стенки и от числа М внешнего потока. В потоке сжимаемой жидкости пограничные слои не являются единственными областями, в которых существенно влияние вязкости и теплопроводности это влияние важно также внутри ударных волн и в некоторых случаях за ударными волнами, где течение может быть вихревым, а соответствующие градиенты скорости могут в крайних случаях быть сравнимыми с градиентами скорости в пограничных слоях.  [c.35]

При движении плоской пластины А (рис. 13.6, а) относительно плоской поверхности Б в смазочном слое, разделяющем эти поверхности, возникают гидродинамические силы, зависящие от относительной скорости, вязкости смазочного материала и толщины его слоя. Для ламинарного потока вязкой жидкости эта зависимость описывается обобщенным уравнением Рейнольдса. Применительно к расчету подшипников скольжения в условиях жидкостной смазки вводят следующие упрощения движение пластины — установившееся с постоянной скоростью в направлении оси Ох, т. е. принимают U = onst, К=0 и W = 0. Течение смазки в направлении оси Oz от-  [c.383]

Получим уравнение подобия для теплоотдачи при свободном движении жидкости. Метод подобия используем в упрощенной форме, не проводя детального анализа системы дифференциальных уравнений конвективного теплообмена (см. 49, 50). При этом будем полагать, что движение среды в области динамического пограничного слоя осуществляется под действием двух сил архимедовой (движущая сила) и силы вязкого трения (сила сопротивления). Силами инерции пренебрегаем.  [c.394]

Природа течения вдоль твердой границы. В начале настоящего столетия предполагали, что между наблюдаемым движением жидкости и движением, предсказываемым теорией потенциального невязкого потока, мало общего. Несмотря на казалось бы приемлемость допущения, заключающегося в пренебрежении малой вязкостью обыкновенных жидкостей, воздуха и воды, теория не могла объяснить лобового сопротивления тел и таких часто наблюдаемых явлений, как формирование волн и отрыв потока. В 1904 г. в Германии была опубликована замечательная статья Людвига Прандтля, отца современной механики жидйости, не только указавшая истинную роль уравнений невязкого и вязкого потока в соответствии с характеристикой течения вдоль границ, но также показавшая, что упрощение равенств Навье—Стокса в соответствии с его допущениями значительно увеличивает число проблем вязкого потока, которые могут быть рассмотрены аналитически.  [c.283]



Смотреть страницы где упоминается термин Уравнения движения вязкой жидкости упрощение : [c.99]    [c.8]    [c.499]    [c.509]    [c.31]   
Гидродинамика при малых числах Рейнольдса (1976) -- [ c.56 , c.65 ]



ПОИСК



283 — Уравнения жидкости

Вязкая жидкость в движении

Движение вязкой жидкости

Жидкости вязкие — Уравнения движения

Жидкость вязкая

Упрощение уравнений

Упрощений

Уравнения движения вязкой жидкости

Уравнения движения жидкости

Уравнения тел вязких



© 2025 Mash-xxl.info Реклама на сайте