Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задача технологического проектирования ЭМП и оборудования

В процессе технологической подготовки производства решаются задачи технологического проектирования — разработка технологических процессов, маршрутных карт и т. п. нормирования — расчеты трудоемкости операций и материалоемкости деталей конструирования и производства основного и вспомогательного оборудования и технологической оснастки.  [c.28]


В работе рассматриваются свойства задач технологического проектирования процессов изготовления деталей путем механической обработки поверхностей на металлорежущем оборудовании. Анализируются содержание задач проектирования структура этого содержания элементы, образующие эту структуру. Предлагаются методики решения задач, пригодные для реализации на ЦВМ,  [c.3]

Технологическое проектирование заключается в решении задач технологической подготовки производства — разработке принципиальной схемы, маршрутов, операций и переходов технологических процессов изготовления деталей, сборки и монтажа узлов, включая выбор оснастки, инструмента, технологического оборудования и т. п.  [c.11]

Б настоящее время лишь закладываются основы интегрированных автоматизированных производственных систем. САПР в составе ГАП будут развиваться в направлении совершенствования средств машинной графики, методов и программ автоматического синтеза технологических процессов и конструкций. Но роль САПР в автоматизации производства не ограничивается функциями автоматизации конструирования и технологической подготовки производства в уже созданных ГАП. Не менее важная задача САПР — проектирование самих автоматизированных производств, включая проектирование робототехнических комплексов, технологического оборудования, их компоновку, размещение и т. п. Для этого в САПР должны быть мощные средства имитационного моделирования работы производственных линий, участков, цехов синтеза и анализа объектов с физически разнородными элементами, каковыми являются различные виды роботов, манипуляторов, тел-  [c.390]

Исходя из основных положений о конструктивной и технологической преемственности, освоение новых конструкций перестает быть связанным с первоначальным комплексом сложных и трудоемких задач по проектированию и изготовлению технологической оснастки и специального оборудования. В связи с этим необходимо типизацию технологических процессов не только рассматривать как один из методов технологической преемственности, но и внутреннее содержание типизации необходимо согласовывать не только с разработкой технологических процессов, но и с разработкой конструкции машин.  [c.4]

Широкое применение водогрейных котлов на электростанциях и в районных отопительных котельных значительно облегчило задачу теплоснабжения теплом интенсивно растущих новых жилых застроек и промышленных предприятий. Непосредственный подогрев сетевой воды в водогрейных котлах упрощает схему котельной, удешевляет стоимость и эксплуатацию ее. Существующие водогрейные котлы рассчитывались на подогрев воды от 70 до 150°С и удовлетворяли наиболее распространенному температурному графику работы теплофикационной системы. В настоящее время имеется тенденция к повышению начальной температуры воды в тепловых сетях до 180—200°С. Подогрев воды от 70°С до конечной температуры производится в тех случаях, когда котлы являются основным источником теплоснабжения. В условиях ТЭЦ, когда первоначальный подогрев осуществляется в основных подогревателях за счет отборного пара турбин, пиковые водогрейные котлы предназначаются для догрева теплофикационной воды сверх той температуры, которую в состоянии обеспечить основные подогреватели. Согласно действующим нормам технологического проектирования ТЭЦ состав основного оборудования ТЭЦ и его загрузка выбираются исходя из коэффициента теплофикации а ц =0,5.  [c.18]


В процессе технологической подготовки производства решают задачи планирования всех этапов подготовки к производству нового изделия, отработки изделий на технологичность, собственно технологического проектирования (разработка технологических маршрутов и процессов), нормирования (расчеты трудности операций и материалоемкости деталей) и конструирования (оснастки, специального и вспомогательного оборудования).  [c.105]

Выбор оборудования. Выбор станка — одна из важных задач при проектировании технологического процесса обработки резанием. Для любой операции всегда можно подобрать соответствующий станок. Исключениями являются некоторые операции в массовом производстве, для которых экономически целесообразно изготовлять специальные станки. При проектировании технологических процессов серийного производства, где наряду со специальными используют и универсальные станки, выбор последних производят по следующим показателям 1) вид обработки — токарная, фрезерная, сверлильная и т. п. 2) точность и жесткость станка 3) габаритные размеры станка (высота и расстояние между центрами, размеры стола) 4) мощность станка, частота вращения шпинделя подачи и т. п. 5) цена станка.  [c.48]

Прогресс в машиностроении вызывает необходимость частой замены освоенных в производстве машин новыми, более совершенными. Подготовка производства новой машины, однако, требует длительного времени. Для сокращения сроков технологического проектирования в дальнейшем будут широко использоваться типовые технологические процессы, а также нормативы для ускорения технологических разработок. Для ускорения разработки технологических процессов изготовления специальных деталей будут более широко использоваться вычислительные средства (ЭВМ), которые позволят решать частные и общие задачи проектирования. Они не только будут экономить время и затраты на проектирование, но позволят получить оптимальный вариант технологического процесса. Значительное время затрачивается на изготовление специальных приспособлений и другой оснастки. На этом этапе время сокращают, применяя типовую и обратимую оснастки (УСП, УНП, СРП и другие системы приспособлений), а также нормализацию и унификацию технологической оснастки и ее элементов. Получит развитие технология ускоренного изготовления специальной оснастки. Перестройка производства на выпуск новых изделий ускоряется при наличии гибкого быстропереналаживаемого оборудования и при возможности быстрой и легкой перестановки его в цехе. Непрерывный рост машиностроения выдвигает задачи дальнейшего формирования и развития научных основ технологии машиностроения как единого методического учения, на базе которого должны решаться как технологические задачи, так и задачи подготовки инженерно-технических и научных кадров. В настоящее время технология машиностроения развивается по нескольким взаимосвязанным направлениям. Несмотря на наличие нескольких научных школ, противоречий у них нет, и они взаимно дополняют друг друга.  [c.413]

Основная задача при проектировании литейной технологии состоит в выборе методов производства, обеспечивающих высокие технико-экономические показатели на всех этапах технологического процесса и необходимые эксплуатационные качества литых деталей. При оценке того или иного технологического процесса следует учитывать не только затраты на получение отливок в литейном цехе, но и стоимость обработки. Поэтому необходимо уменьшать припуски на обработку, упрощать формовку, максимально использовать существующее производственное и вспомогательное оборудование.  [c.180]

В настоящее время при наличии базовой технологии создание фотошаблонов — наиболее трудная задача синтеза на этапе технологического проектирования ИС. Исходными данными для разработки фотошаблонов являются результаты синтеза топологии схемы, как правило, в виде описания топологии на специализированном входном языке. Автоматизированный процесс проектирования фотошаблонов предполагает формализацию следующих задач контроля топологии и чертежей фотошаблонов получения чертежей отдельных слоев синтеза программы для изготовления фотошаблонов на программно-управляемом технологическом оборудовании (координатографах и фотонаборных установках). В алгоритмическом плане наиболее сложны задачи контроля топологии, генерации изображений для фотонаборных установок, минимизации времени работы технологического оборудования.  [c.218]


Для заданного нового изделия необходимо проектировать наиболее рациональную технологию сварки и по оптимальным технологическим режимам закупить готовое или спроектировать новое сварочное оборудование. Проектирование нового оборудования иногда выливается в создание особых специализированных машин или в проектирование каких-то дополнительных устройств, совершенствующих готовые сварочные машины — задача технологически значительно более творческая.  [c.114]

Необходимость решения задачи трассировки при проектировании технологического оборудования в основном  [c.21]

Задача трассировки при проектировании систем обслуживания технологического оборудования почти однозначно решается после выполнения этапа размещения оборудования. В некоторых случаях к задачам трассировки сводится конструирование кинематических схем машин.  [c.22]

В автоматизированной системе проектирования технологических процессов механической обработки происходит преобразование описания деталей, представленных в виде чертежа, в совокупность технологической документации. Обычно проектирование включает в себя решение следующих задач разработка принципиальной схемы технологического процесса и проектирование технологического маршрута обработки детали, включая выбор баз и заготовок проектирование технологических операций с окончательным выбором оборудования, приспособлений и инструмента, назначением режимов резания и норм времени разработка управляющих программ для станков с ЧПУ расчет технико-экономических показателей технологических процессов разработка необходимой технологической документации.  [c.82]

Важным и обширным множеством приложений, в которых для синтеза целесообразно применять генетические алгоритмы, является планирование производства и распределение ресурсов, включая задачи проектирования технологических процессов производства изделий. Возникающие здесь задачи можно трактовать как задачи синтеза расписаний. Другими примерами приложений генетических методов синтеза могут служить компоновка и размещение оборудования, диспетчирование потоков работ, распределение частот в радиоканалах сетей мобильной связи, проектирование подвески автомобиля и др.  [c.205]

Организация группового производства заготовок включает следующие этапы 1) унификация элементов, габаритных размеров заготовок, отверстий, уступов, материалов 2) разработка классификаторов кованых, штампованных, литых и сварных заготовок 3) разработка комплексных заготовок и групповых технологических процессов для них 4) выбор, проектирование и изготовление специализированной технологической оснастки 5) выбор необходимого оборудования 6) решение задач по механизации и автоматизации технологического процесса 7) планирование группового производства.  [c.214]

В зависимости от задач исследования рассматривают техническую или химическую термодинамику, термодинамику биологических систем и т. д. В рамках химической термодинамики изучаются физикохимические превращения вещества, определяются тепловые эффекты реакций, рассчитывается химическое равновесие систем. Техническая термодинамика изучает закономерности взаимного превращения тепловой и механической энергии и является (вместе с теорией теплообмена) теоретическим фундаментом теплотехники. На ее основе осуществляют расчет и проектирование всех тепловых двигателей — паровых и газовых турбин, реактивных и ракетных двигателей, двигателей внутреннего сгорания, а также всевозможного технологического оборудования — компрессорных мащин, сушильных и холодильных установок и т. д.  [c.6]

В соответствии с Государственным стандартом надежность объекта определяется как его свойство выполнять заданные функции, сохраняя во времени установленные эксплуатационные показатели в пределах, соответствующих заданным режимам и условиям эксплуатации. Другими словами, обеспечение надежности работы технологического оборудования и систем транспорта газа зависит от решения комплекса научных, технических, экономических и организационных задач на всех этапах — от проектирования, строительства и затем эксплуатации.  [c.78]

Новые и важные результаты, достигнутые по общим методам теории малых упруго-пластических деформаций и решение конкретных задач о напряженных состояниях за пределами упругости (Н. М. Беляев, А. А. Ильюшин), предопределили успешное их применение в практике расчета высоконапряженных деталей турбин, химических и энергетических агрегатов высокого давления, а также при проектировании технологического оборудования. Это способствовало более полному использованию материала в деталях и обеспечивало более правильное определение запасов прочности.  [c.37]

Указав на положительные стороны книги Шаумяна (своевременность тезиса о борьбе за сокращение потерь времени, способствующей эффективному использованию оборудования и являющейся одной из задач социалистического хозяйства постановка вопроса о необходимости пересмотра теоретических основ управления стойкостью режущего инструмента и скорости резания и пр.), Ученый совет остановился и на ее недостатках. Например, Шаумян не разработал в ней методику технологических нормативов и экономических обоснований целесообразности варианта конструкций автоматических машин с учетом всех условий их эксплуатации. Книга не исчерпывает всех вопросов теории проектирования автоматов. В книге недостаточно полно раскрыта прогрессивная роль электро-и гидроавтоматики и т. д. В то же время Ученый совет МВТУ не согласился с оценкой книги Шаумяна, данной специалистами ЭНИМСа. В частности, совет подчеркнул, что принцип оценки производительности рабочих машин, положенный Шаумяном в основу рассматриваемых в книге вопросов, является в своей основе общепринятым. Что касается материала, посвященного влиянию угла давления на коэффициент полезного действия кулачкового механизма, то, по мнению совета, он является новым и впервые освещается Шаумяном.  [c.59]


Наиболее простой вариант — прочитать студентам описательный курс, ознакомив их с имеющимися образцами автоматизированного оборудования (при соответствую-ш ей их типизации, классификации и т. п.), с типовыми методами и средствами автоматизации управления, загрузки и транспортировки, зажима и поворота изделий и т. д. И тогда выпускник вуза, обладающий общей хорошей конструкторской и технологической подготовкой, сможет работать в области автоматизации, добросовестно воспроизводя известные ему прототипы, разумеется, на более высоком уровне. Такая ознакомительно-описательная методология преподавания дисциплин по автоматизации принята в некоторых вузах, нашла отражение в учебных пособиях. По-видимому, она явилась закономерной для ранних этапов развития автоматизации и становления учебных курсов, когда еще не сложились школы по этим вопросам, не был накоплен достаточный опыт проектирования и эксплуатации машин и опыт преподавания, не сформировались квалифицированные кадры инженеров и ученых, способных решать усложняющиеся задачи на высшем уровне. Однако в настоящий момент это методология вчерашнего дня.  [c.99]

В целом анализ задач технологического проектирования ЭМП показывает следующее. Эти задачи по содержанию наиболее разнообразны в сравнении с задачами расчетного и конструкторского проектирования. Однако по методам решения они наименее формализованы. Только небольшая часть задач, в основном связанных с динамическим моделированием технологических процессов r оценкой затрат на производство, решается формально с помощью методов и средств расчетного проектирования ЭМП. Остальные задачи технологического проектирования ЭМП в настоящее время можно решить с помощью методов и средств, используемых в диалоговом конструировании в САПР. Необходимо отметить, что в прикладной математике и математическом программированитг разработан ряд методов, оптимизирующих решение задач по закупке и размещению оборудования, распределения ресурсов, составления  [c.189]

В России и за рубежом разработаны САП, ориентированные на определенные типы оборудования, например сверлильные (СПС-С, ЕХАРТ-1) и токарные (СПС-Т, Е РТ-11) станки. С помощью этих САП решается специфическая задача технологического проектирования — на основе геометрической и технологической информации о процессе изготовления детали на заданном станке разрабатывается управляющая программа, т.е. последовательность команд на управление рабочими органами станка.  [c.201]

Под комплексными автоматизированными системами технологической подготовки произво.т-ства (КАС ТПП) понимают автоматизированную систему организации и управления процессом технологической подготовки производства, включая технологическое проектирование. На рис. 2.8, а—в показаны структуры КАС ТПП первой степени сложности с различными задачами проектирования КАС ТПП Технолог Т1—для проектирования технологических процессов деталей класса тела вращения , обрабатываемых на универсальном оборудовании КАС ТПП Автомат А-—для обработки деталей на прутковых токарных автоматах типа ГА, КАС ТПП Штамп ШТ — для деталей, обрабатываемых листовой штамповкой. Предусматривается, что КАС ТПП Гй степени сложности — это типовая комплексная система, реализующая совокупность задач ТПП и имеющая многоуровневую структуру. Первый уровень включает подсистемы общего назначения подсистемы кодирования Код , документирования Д, банк данных БнД или информационную систему ИС. Второй уровень включает подсистемы проектирования технологических процессов для основного производства Тсхнолог-1 Т1, Автомат А, Штамм ШТ. Третий уровень — подсистемы конструирования специальной технологической оснастки приспособлений П, режущих и измерительных инструментов И, штампов ШТ и т, п. Четвертый уровень — подсистемы проектирования технологических процессов для деталей, конструируемых в системе оснастки Технолог-2 Т2 [15].  [c.84]

Задача оптимальной компоновки оборудования возникает на этапе конструкционного проектирования,когда проектировщику из-. . вестны технологическая схема-лимичеокого производства и результаты расчета материального баланса тип и размеры оборудования , материал трубопроводов и их диаметр физико-химические свойства веществ, перемешаемте в химико-технологической систб№ ( ХТС ).  [c.54]

Учитывая наличие на ТЭС оборудования физико-химической очистки (ФХО), можно рассматривать водоподготовительные установки (ВПУ) ТЭС как комплексный узел, способный осуществить доочистку — подготовку добавочной воды требуемого качества в цикл ТЭС из частично или полностью очищенных городских стоков. При этом исходя из конкретных условий — близости расположения ТЭС к очистным сооружениям, наличия на них схем первичной или вторичной очистки, особенностей энергетического производства и схем водоподготовки — наряду с рекомендуемым в нормах технологического проектирования использованием доочищенных сточных вод решение задачи возможно также путем использования сточных вод только после биологической очистки без доочистки, после упрощенной физико-химической очистки и даже после механической очистки. При этом необходимая доочистка должна осуществляться потребителем. Во всех рассмотренных случаях, предусмотренных и не предусмотренных нормами технологического проектирования, задачи химводоочист-ки (ХВО) ТЭС по подготовке добавочной воды усложняются и расширяются. Такое расширение технологических функций ВПУ ТЭС требует Дополнения традиционной технологии водоприго-товления соответствующими стадиями очистки, разработки новых и корректировки применяющихся технологических процессов.  [c.12]

Комплексные автоматизированные системы технологической подготовки производства (КАСТПП) в машиностроении представляют собой автоматизированную систему технологического проектирования, организации и управления процессом ТПП. На рис. 10, а — в показаны структуры КАСТПП с различными задачами проектирования Технолог (рис. 10, а) —для проектирования технологических процессов деталей класса тел вращения, обрабатываемых на универсальном оборудовании Т1 Автомат (рис. 10,6) — для обработки деталей на прутковых токарных станках А Штамп (рис. 10,в) — для деталей, обрабатываемых штамповкой (ШТ). Предусматривается, что КАСТПП — это типовой комплексный моду.ль, реализующий законченный этап проектирования определенной совокупности задач ТПП с многоуровневой структурой ряда подсистем. Первый уровень состоит из подсистем общего назначения код — кодирование, Д — документирование, БД — банк данных или ИС — информационная система. Второй уровень включает проектирование технологических процессов для деталей основного производства. Третий уровень содержит подсистемы конструирования специальной технологической оснастки П — приспособлений, И — режущих и измерительных инструментов, ШК — штампов и т. п. Четвертый уровень включает подсистемы проектирования технологических процессов изготовления для конструируемой в системе оснастки Технолог 2 (Т2).  [c.212]

Главной задачей при проектировании и реконструкции как механических, так и всех других производственных цехов является обеспечение того, чтобы ко времени ввода в действие они оказались технически передовыми, имели высокие показателя по производительности труда, себестоимости и качеству продукции и отвечали современным требованиям по услов иям труда. Для решения этой задачи проектирование должно вестись на основе максимального учета новейших достижений науки и техники в данной отрасли производства, применения в проектируемом цехе наиболее прогрессивных технологических процессов, высокопроизводительного оборудования, средств механизации и автоматизации производственных процессов, а также передовых форм организации производства и управления с трименением автоматизированных систем.  [c.119]


Выбор оборудования. Выбор станка — одна из важных задач при проектировании технологического процесса механической обработки. Наша станкостроительная промышленность выпускает такие станки, что для любой операции всегда можно подобрать соответствующий станок. Исключениями являются некоторые операции в массовом производстве, для которых экономически целесообразно строить специальные станки. При проектировании технологических процессов сериГшого производства, где используются универсальные станки, выбор последних производят по следующим показателям  [c.40]

Вопросам автоматизации сборки изделий посвящены многочисленные исследования советских ученых — А. И. Рабиновича, Б. С. Балакшина, П. И. Буловского и других. Но, несмотря на это, практически отсутствуют теоретические основы проектирования технологических процессов автоматической сборки и автоматического сборочного оборудования. Работники промышленности не имеют достаточного опыта в автоматизации сборочных операций, и порой решение сравнительно несложных задач ведется интуитивно, что приводит к созданию оборудования с большими дефектами и недостаточно надежного в работе. Поэтому это оборудование приходится долго налаживать перед внедрением. Зачастую сборочные операции автоматизируются выборочно, без учета всего комплекса технологии производства изделия, без технико-экономического анализа производственного процесса, без анализа технологичности конструкции деталей и конструкции изделия в целом, т. е. решаются частные задачи по проектированию автоматических устройств [3].  [c.5]

Успешное выполнение этой задачи связано с созданием новых высокопроизводительных прокатных станов, кузнечно-прессрвых и других машин и агрегатов, а также с интенсификацией технологических процессов на действующем оборудовании. При проектировании оборудования для обработки металлов давлением и при эксплуатации его технологические и прочностные расчеты. необходимо проводить с учетом механических свойств материалов.  [c.4]

Процедуру построения технологических марщрутов сборки на основе вариантов последовательности установки отдельных элементов изделия можно автоматизировать с применением компьютеров. Для этого технологу необходимо сформулировать состав дополнительных операций и логические условия их включения в технологический маршрут сборки. Здесь рассматриваются только перечень и содержание задач и подзадач на каждом уровне технологического проектирования и наиболее важные блок-модули технологических расчетов, которые в дальнейшем могут быть использованы при разработке алгоритмов автоматизированного проектирования процессов сборки изделий на базе использования афсгатного сборочного оборудования.  [c.350]

Из всего разнообразия функциональных назначений оборудования в соответствии с задачами подготовки инженеров машиностроительных специальностей формально в учебном пособии должны были бы рассматриваться вопросы по проектированию оборудования, используемого только в машиностроительном производстве, которое можно еще квалифицировать как обслуживающее оборудование для машиностроения. Однако практика показала, что нет необходимости ограничиваться только проектированием оборудования исключительно для Машиностроительных предприятий. На самом деле нет четкого разграничения и существенной разницы в принципах и методах проектирования оборудования для машиностроения и других сфер производства, т.е. оборудования, с помощью которого реализуются некие технологические процессы преобразования исходного продукта (вещества, энергии, информации) в конечный. Об этом свидетельствует как опыт проектантов-пракТиков, так и анализ работ теоретиков проектирования в самых разных отраслях техники. На-йример, одним из авторов опыт по созданию стендового и испытательного оборудования для экспериментального исследования объектов новой техники был успешно использован в совершенно разных областях производства при разработке автоматизированной линии по расфасовке и укупорке детского питания (для пищевой промышлен-  [c.9]

Тех1юлог, разрабатывающий технологический процесс, должен решить следующие задачи , определить состав групповой (типовой) операции (количество типов и типоразмеров) выбрать технологические базы уточнить содержания операций и переходов разработать эскизы обработки составить таблицы применяемости деталей выбрать заготовки, оборудование, станда этный инструмент и т. п. определить режимы резания и штучное время. Эти данные технолог передает конструктору по станочным приспособлениям. Кроме этих данных конструктор также должен иметь чертежи деталей и заготовок типовой или групповой технологический процесс полный набор стандартов на детали, узлы и ваготовки станочных приспособлений альбомы стандартизованных конструкций и типовых наладок и различные справочные материалы. Такое большое количество исходных данных требует упорядочения пользования ими. Частично эта проблема решается ИПС технологического проектирования, значительно упрощающей проведение проектных работ.  [c.32]

В зависимости от задач исследования рассматривают техническую или химическую термодинамику, термодинамику биологических систем и т. д. Т е х и и ч е-ская термодинамика изучает закономерности взаимного превращения тепловой и механической энергии и свойства тел, участвующих в этих превращениях. Вместе с теорией теплообмена она является теоретическим фундаментом теплотехники. На ее основе осуш,ествля-ют расчет и проектирование всех тепловых двигателей, а также всевозможного технологического оборудования.  [c.6]

С решением задач размещения и трассировки приходится сталкиваться не только при проектировании радиоэлектронных устройств, по и при проектировании объектов. других отраслей техники и народного хозяйства (например, при размещении технологического оборудования в цехе, элементов гидросистемы, кинематической схемы, электрооборудования н электроавтоматики стайка, трассировке транспортных потоков цеха, прокладке иефте- и газопроводов с учетом рельефа местности, прокладке автомобильных и железных дорог и т. д.).  [c.11]

Комплексная автоматизация проектирования и производства изделий техники. Комплексная автоматизация охватывает проектирование и производство изделий и обеспечивается совокупностью автоматизированных систем. В эту совокупность входят автоматизированная система научных исследований (АСНИ), система автоматизированного проектирования (САПР), автоматизированная система технологической подготовки производства (АСТПП), автоматизированная система управления производством (АСУП) и гибкая производственная система (ГПС). В этом ряду АСНИ служит для выполнения научно-иссле-довательских работ и часто рассматривается как подсистема САПР. Функциями АСТПП являются разработка технологических процессов, проектирование оснастки, инструмента, специализированного технологического оборудования. АСТПП также может рассматриваться как поп-система САПР. АСУП используется для планирования производства, распределения ресурсов, решения задач материально-технического снабжения. ГПС представляет собой совокупность технологического оборудования и средств обеспечения его функционирования в автоматическом режиме, причем в ГПС должна быть обеспечена возможность автоматизированной переналадки при производстве любых изделий в пределах установленного класса и установленного диапазона их характеристик.  [c.389]

Э т а 1[ проектирования — часть процесса проектирования, включающая в себя формирование всех требующихся описаний объекта, относящихся к одному или нескольким иерархическим уровням и аспектам. Часто названия этапов совпадают с названиями соответствующих иерархических уровней и аспектов. Так, проектирование технологических процессов расчленяют на этапы разработки принципиальных схем технологического процесса, маршрутной технологии, операционной технологии и получения управляющей информации на машинных носителях для программно-управляемого технологического оборудования. При проектированнн больших интеграл )-иых схем (БИС) выделяют этапы проектирования компонентов, схемотехнического, фупкционально-логическо-го и топологического проектирования. Первые три из этих этапов связаны с решением задач трех иерархических уровней функционального аспекта, имеющих аналогичные названия. Этан топологического проектирования включает в себя задачи, относящиеся ко всем иерархическим уровням конструкторского аспекта в проектировании БИС.  [c.18]

Комплексная стандартизация (КС). По определению, данному Постоянной Комиссией СЭВ по стандартизации, — это стандартизация, при которой осуществляется целенаправленное и планомерное установление и применение спстемы взаимоувязанных требований как к самому объегсту КС в целом и его основным элементам, так и к материальным и нематериальным факторам, влияющим на объект, в целях обеспечения оптимального решения конкретней проблемы. Следовательно, сущность КС следует понимать как систематизацию, оптимизацию и увязку всех взаимодействующих факторов, обеспечивающих экономически оптимальный уровень качества продукции в требуемые сроки. К осиовн лм факторам, определяющим качество машин и других изделий, эффективность их производства и эксплуатации, относятся совершенство конструкций и методов проектирования и расчета машин (их составных частей н деталей) на прочность, надежность и точность качество применяемого сырья, материалов, полуфабрикатов, покупных и получаемых по кооперации изделий степень унификации, агрегатирования и стандартизации уровень технологии и средств производства, контроля и испытаний уровень взаимозаменяемости, организации производства и эксплуатации машин квалификация рабочих и качество их работы. Для обеспечения высокого качества машин необходима оптимизация указанных факторов и строгая взаимная согласованность требований к качеству как при проектировании, так и на этапах производства и эксплуатации. Решение этой задачи усложняется широкой межотраслевой кооперацией заводов. Например, для производства автомобилей используют около 4000 наименований покупных и кооперируемых изделий и материалов, тысячи видов технологического оборудования, инструмента и средств контроля, изготовляемых заводами многих отраслей промышленности. КС позволяет организовать разработку комплекса взаимоувязанных стандартов и технических условий, координировать действия большого числа организаций-исполнителей. Задачами разработки и выполнения программ КС являются 1) обеспечение всемерного повышения эффективности общественного производства, технического уровня и качества продукции, усиление режима экономии всех видов ресурсов в народном хозяйстве 2) повышение научно-технического уровня стандартов и их организующей роли в ускорении научно-технического прогресса на основе широкого использования результатов научно-исследовательских, опытно-конструкторских работ и лучших оте-  [c.59]


Широкое развитие ирииципа совмещения контроля и управления производственным процессом возможно на основе решения конструкторских, технологических и метрологических задач при создании нового, более соверщенного оборудования. Общую тенденцию развития машиностроения в этом плане можно проследить по такой схеме. Содержание чертежей но каналам связи будет передаваться на технологические центры, в которых методами машинного проектирования будут разработаны оптимальные (с учетом местных запасов материала, инструмента, ириспособлений и оборудования) технологические процессы. Затем будут спроектированы системы контроля и управления производственными процессами с учетом обеспечения заданного качества. Поскольку качество изделия зависит от качества выбранного материала и заготовок, параметров предварительных процессов и других факторов, контрольное оборудование должно осуществлять коррекцию и предыдущих технологических операций. Ввиду сложности этих процессов на всех этапах неизбежно широкое использование автоматической вычислительной техники, которая оперативно обрабатывает исходные данные, позволяет осуществлять машинное проектирование чертежей, технологических процессов, схем контроля и управления и т. п. Средства контроля все шире используют для управления производственным процессом с целью исключения авари11ных ситуаций, иредотвращения условий, способствующих их возникновению, с целью защиты окружающей среды и т. д.  [c.148]

Задача курса теплотехники заключается в подготовке инженера-химика-технолога, владеющего навыками грамотного руководства проектированием и эксплуатацией современного химического производства, представляющего собой совокупность технологических и тепловых процессов и соответствующего технологическою и теплоэнергетического оборудования. Эта подготовка будет способствовать успешному выполнению указанньгх выше задач выпускниками химико-технологических вузов. Значение такой подготовки будет расти по мере вовлечения атомной, термоядерной и возобновляемых видов энергии в ряд практически значимых и эффективных, ибо, по извес1ному выражению, никакой вид энергии не обходится так дорого, как его недостаток.  [c.5]

Основными направлениями экономического и социального развития СССР на 1981—1985 годы и на период до 1990 года, утвержденными XXVI съездом КПСС, предусмотрен переход к массовому применению высокоэффективных систем машин и технологических процессов, обеспечивающих комплексную механизацию и автоматизацию производства, техническое перевооружение его основных отраслей. Это требует дальнейшего развития методов расчета и проектирования автоматизированного технологического и вспомогательного оборудования, а также систем управления. Создание и эффективное внедрение автоматических систем машин для условий массового и особенно серийного производства — сложная и трудоемкая задача, решение которой включает такие этапы, как разработка технологического процесса выбор структурно-компоновочного варианта систем разработка кинематических, гидравлических, пневматических схем, блок-схем управления и т. д. конструктивная разработка механизмов, транспортнозагрузочных устройств, инструмента, приспособлений разработка планировок и общих видов изготовление и сборка приемосдаточные испытания. Чем сложнее автоматическая система машины, тем больше вариантов ее построения при этом сложность и ответственность технических решений смещаются на ранние стадии разработки — стадии технического задания и технического предложения.  [c.3]


Смотреть страницы где упоминается термин Задача технологического проектирования ЭМП и оборудования : [c.4]    [c.113]    [c.116]    [c.116]    [c.53]    [c.288]    [c.64]    [c.155]   
Основы автоматизированного проектирования электромеханических преобразователей (1988) -- [ c.187 ]



ПОИСК



Задача технологического проектирования ЭМП

Задачи при проектировании

Оборудование технологическое для

Проектирование технологические - Оборудование

Проектирование технологическое

Технологические задачи



© 2025 Mash-xxl.info Реклама на сайте