Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Объекты экспериментальных исследований

Выполненными экспериментальными исследованиями и сравнительными испытаниями было установлено, что соответствующим повышением высоты зубьев можно значительно увеличить число зубьев, участвующих в зацеплении, и тем самым повысить надежность сцепления. В качестве объекта экспериментальных исследований были приняты звездочки г = 8 (тип 2, табл. 3) с наибольшей хордальной высотой зуба, подсчитанной по формуле  [c.148]


Выбор приведенных ниже методов и способов интенсификации конвективного теплообмена в качестве объектов экспериментального исследования обусловлен, прежде всего, тем, что эти методы показали значительную эффективность для переходного и турбулентного режимов течения и одновременно являются технологичными и перспективными для ламинарных течений.  [c.521]

В качестве объектов экспериментальных исследований использовались два шнеко-центробежных насоса с двухзаходными винтовыми шнеками постоянного шага, существенно отличающиеся по геометрическим и режимным параметрам, приведенным в табл. 4.1 [47].  [c.101]

Объектом экспериментального исследования может быть натурная деталь, конструкция или соответствующая  [c.309]

ОБЪЕКТЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ  [c.474]

Исследование конструктивной прочности рулонированных тонкостенных и толстостенных оболочек типа газопроводных труб и корпусов атомных реакторов Здесь имеются в виду как разработка теории расчета таких систем, так и экспериментальное исследование их напряженно-деформированного состояния (в том числе в упруго-пластической области) и разрушения под действием силовых нагрузок и теплосмен при неравномерном нагреве, а также малоцикловой усталости. Цель — установить их предельное состояние и разработать метод расчета таких объектов на прочность применительно к тем или иным условиям их эксплуатации.  [c.664]

Существующие в настоящее время способы экспериментального исследования напряженных конструкций сводятся, так или иначе, к прямому определению деформаций, возникающих в испытуемом объекте. Напряжения определяются косвенно через деформации на основе закона Гука. В случае пластических деформаций определение напряжений при испытаниях конструкций обычно не производится и определяется только разрушающая нагрузка или то значение силы, при котором наблюдаются признаки возникновения пластических деформаций.  [c.506]

При диагностировании технического состояния длительно проработавшего оборудования анализ механизмов повреждений и выявлений определяющих параметров технического состояния обследуемого аппарата должен включать оценку фактической нагруженности основных элементов объекта в соответствии с требованиями НТД фактической геометрии и толщины стенок, концентраторов напряжений и дефектов результатов исследования напряженно-деформированного состояния (НДС), полученных при диагностике и экспертного обследования установления механизмов образования и роста обнаруженных дефектов и повреждений металла, возможных отказов вследствие их развития параметров технического состояния аппаратуры (и их соответствие требованиям НТД) и проектной документации. Если есть отклонения, то необходимо выполнить работы по установлению определяющих параметров технического состояния. Завершает перечисленные этапы заключение о необходимости дальнейших экспериментальных исследований НДС характеристик материалов, уточненных расчетов и оценки ресурса безопасной эксплуатации аппарата.  [c.333]


Муаровый эффект представляет собой метод экспериментального исследования деформаций и напряжений, который в отличие от остальных экспериментальных методов дает наглядность и позволяет получить картину деформаций по всей поверхности объекта исследования непосредственно по стадиям в процессе испытаний.  [c.338]

На этапе технического проектирования продолжается дальнейшая детализация объекта проектирования вплоть до принятия решений по его конструктивному исполнению. С позиций конструирования уточняются и корректируются техническое задание и отдельные положения технического предложения и эскизного проекта. С помощью анализа возможных вариантов конструктивного исполнения осуществляется выбор окончательного варианта. Для принятого конструктивного варианта объекта проектирования выполняются наиболее точные расчетные и экспериментальные исследования характеристик и параметров как объекта в целом, так и его узлов и деталей. Расчетно-экспериментальным путем проверяется выполнение всех требований технического задания. По результатам проверки корректируются проектные решения и данные до тех пор, пока все требования будут удовлетворены.  [c.36]

Из сказанного выше видна определяющая роль коэффициента интенсивности напряжений в механике разрушения, что связано с рассмотрением коэффициента интенсивности напряжений как объекта аналитического и экспериментального исследований.  [c.332]

Экспериментальное исследование нелинейных объектов также связано с рядом трудностей. Для нелинейных операторов не выполняется ни дискретный принцип суперпозиции (2.2.1), ни интегральный принцип суперпозиции (2.2.33), (2.2.34). Поэтому если имеется многомерный нелинейный оператор с несколькими входными параметрами, то, определив реакцию объекта на изменение отдельных параметров, нельзя предсказать поведение объекта при одновременном изменении всех параметров. Напомним, что для линейного оператора такое предсказание всегда возможно, и это является основой исследования линейного многомерного оператора путем его замены эквивалентной системой одномерных операторов, описывающих отдельные каналы связи в объекте. Кроме того, при исследовании нелинейных объектов нельзя ограничиться изучением реакции объекта на одно какое-нибудь стандартное воздействие. Знание отклика объекта на входное воздействие одного вида недостаточно для предсказания поведения объекта при воздействии произвольного вида. Действительно, поскольку для нелинейного объекта не выполнен принцип суперпозиции, то представление входной функции в интегральном виде (2.2.33) не дает возможности утверждать о возможности аналогичного интегрального представления (2.2.34) для выходной функции. Это означает, что для нелинейного оператора невозможно ввести характеристические функции, которые определяли бы все свойства оператора.  [c.77]

В предыдущих главах были рассмотрены методы описания динамических свойств химико-технологических процессов, основанные на уравнениях математических моделей, все коэффициенты которых считались известными. Однако часто оказывается, что математическая модель объекта содержит коэффициенты, которые нельзя рассчитать теоретически. При этом возникает задача нахождения неизвестных коэффициентов математических моделей на основе данных экспериментального исследования нестационарных режимов объектов. Цель главы — описание некоторых методов экспериментального определения коэффициентов математических моделей.  [c.261]

МЕТОДЫ ЭКСПЕРИМЕНТАЛЬНОГО ИССЛЕДОВАНИЯ ДИНАМИЧЕСКИХ СВОЙСТВ ХИМИКО-ТЕХНОЛОГИЧЕСКИХ ОБЪЕКТОВ  [c.261]

В данном разделе будут рассмотрены основные методы определения коэффициентов математических моделей, основанные на экспериментальном исследовании динамических свойств объектов.  [c.261]

Экспериментальные исследования динамических свойств объектов проводят, как правило, в условиях, когда вид входного воздействия выбирается экспериментатором по собственному усмотрению. При этом обычно входное воздействие u i) представляют в виде суммы двух величин — некоторого постоянного воздействия Uq и возмущения u i). Наиболее распространенными видами возмущений являются следующие синусоидальное, импульсное, ступенчатое. Выходная функция v t) также является суммой некоторой постоянной величины vo = A(ai,. .., an)uo и некоторого приращения v t), которое называется откликом на возмущение, т. е. v t)= Uo + +  [c.262]


В заключение рассмотрим важный случай экспериментального исследования динамики объектов химической технологии, когда вид оператора, описывающего этот объект, неизвестен. Наиболее целесообразным подходом в данном случае является подбор эмпирических уравнений, описывающих динамику объекта с достаточной точностью. Существует несколько методов нахождения этих эмпирических зависимостей. Рассмотрим два из них.  [c.271]

Экспериментальное исследование (физический эксперимент) натурного объекта весьма трудоемко. Возможность физического моделирования (изучение процесса теплообмена на модели натурного объекта) ставится под сомнение. Поэтому следует признать, что методы изучения и расчета теплообмена с помощью ЭВМ являются наиболее рациональными и они будут быстро развиваться.  [c.445]

Точные аналитические методы исследования гидро-аэродинамических явлений охватывают ограниченный круг задач. В ряде случаев аналитическое решение сопряжено со значительными математическими трудностями, а часто строгая математическая постановка задачи оказывается невозможной из-за сложности исследуемого явления не всегда можно получить удовлетворительный результат и с помощью численных методов. В таких случаях на помощь приходят экспериментальные исследования на моделях реальных объектов.  [c.373]

Экспериментальное исследование процесса конвективного теплообмена. Этот путь используется чаще других, в особенности для сложных процессов. Проведение эксперимента на реальных объектах связано с трудностями организационного и экономического порядка. Кроме того, в период проведения исследования реального объекта может не быть вообще, поскольку именно потребность спроектировать его и вызвала необходимость проведения исследования. Поэтому в большинстве случаев эксперимент проводится на лабораторных установках. В процессе эксперимента выявляется влияние отдельных величин на интенсивность теплоотдачи, при этом измеряются температура, скорость, массовый расход, давление и т. п. в экспериментах по теплообмену теплофизические свойства жидкости, как правило, не измеряют, а используют опубликованные справочные данные. Экспериментальный путь решения задач конвективного теплообмена связан, с одной стороны, со сложностью, обусловленной большим количеством влияющих на теплообмен факторов [см. зависимость (14.12)], а с другой, — с узко специальным характером получаемых результатов, справедливых только для данной лабораторной установки в пределах изменения параметров эксперимента. При этом следует иметь в виду, что создание лабораторной установки, выбор моделирующей среды, определение необходимых интервалов изменения параметров эксперимента должны осуществляться в соответствии с определенными правилами, обеспечивающими достижение главной цели, — получить расчетную зависимость для процесса на реальном объекте. Три указанных проблемы — упрощение функциональной зависимости для теплоотдачи, повышение ее универсальности, создание правил моделирования — помогает решить теория подобия.  [c.328]

На основе результатов исследования экспериментального прямоточного парогенератора Л.К.Рамзина в 1933 г. был пущен первый крупный советский прямоточный парогенератор высокого давления, изготовленный на Невском и Кировском заводах. Этот парогенератор, установленный в котельной ВТИ, стал объектом глубоких исследований в специально организованном Бюро прямоточного котлостроения (ВПК) и положил начало производству отечественных прямоточных парогенераторов.  [c.42]

При обтекании твердых стенок газовым или паровым потоком, содержащим взвешенную влагу, часть капель будет попадать в пограничный слой как вследствие кривизны стенок, так и в результате турбулентных пульсаций в потоке. Движение капель в адиабатном пограничном слое исследовал Бам-Зеликович. Если при теплоотводе в поток температура стенок ниже критической величины (соответствующей переходу к сфероидальному состоянию), то капли образуют на поверхности жидкую пленку. В этой пленке возникает испарение с поверхности или ядерное кипение, характер которых и будет определять интенсивность теплоотдачи от стенок к потоку. Подобные задачи явились объектом экспериментальных исследований [Л. 4-9, 10]. Однако изучалась теплоотдача при небольших температурных напорах. Эти случаи нетипичны для газовых турбин, где температуры лопаток должны быть по возможности близки к предельно допустимым температурам металла и во всяком случае должны значительно превосходить критические величины. Поэтому влага на поверхности охлаждаемой лопатки должна находиться в сфероидальном состоянии.  [c.108]

Выбор мрамора и песчаника в качестве объектов экспериментального исследования был случайным, результаты, между тем, оказались неожиданными. Эти твердые тела, допускающие сравнительно высокое осевое напряжение перед разрушением при атмосферном давлении, оказываются хрупкими под действием сжимающей нагрузки. Белый с голубыми жилками каррарский мрамор и красный песчаник из Мутен-берга, которые изучались Карманом, имели при атмосферном давлении разрушающие напряжения 13,60 кгс/мм и 6,90 кгс/мм соответственно. Разрушение достигалось при осевой деформации порядка 0,5%.  [c.87]

Расчетный метод основан на использовании информации, получаемой с помощью теоретических или эмпирическ1 .х зависимостей. Этим методом пользуются главным образом при проектировании продукции, когда она еще не может быть объектом экспериментальных исследований (испытаний). Расчетный метод применяют для определения значений показателей производительности, безотказности, долговечности, сохраняемости, ремонтопригодности и др. При необходимости величины показателей качества находят с использованием нескольких методов. Например, показатель ремонтопригодности можно определять средним значением трудозатрат (в человеко-часах), необходимых для осуществления данной категории ремонта. В этом случае используется комбинация регистрационного метода (подсчет лиц определенной квалификации, занятых ремонтом) с измерительным (измерение времени, затраченного на ремонт).  [c.464]


Экспериментальные исследовання. Объектом экспериментального исследования в М. г. являются жидкие металлы и ионизованный газ — плазма. В прини,ппе с их помощью можно охватить весьма широкий диапазон магнитогидродипамич. параметров (см. табл.). Одпако идеально проводящей  [c.58]

Деформации, напряжения и перемещения экспериментально определяют на натурных деталях и элементах конструкций или на их моделях. Экспериментальные исследования на моделях могут быгь проведены на всех стадиях проектирования объектов. Экспериментальные исследования на натурных объектах могут быть проведены на стадиях изготовления, при заводских и пусковых испытаниях, эксплуатации  [c.309]

Следующий фактор связан с флюктуационным характером отражения от подстилающей поверхности — спекл-шумом на РЛИ. Влияние его можно оценить, зная законы распределения мощности шумов, сигналов от объекта и фона, окружающего объект. Экспериментальные исследования процесса дешифрирования РЛИ привели к формулированию модели зрительного анализатора, позволяющей учесть изменение контрастной чувствительности от СКО флюктуаций прозрачности, размеров отметок и оптической плотности изображения на снимке (или яркости изображения на видеомониторе). В этой модели влияние факторов, вызывающих ограничение контрастного разрешения, выражено в виде составляющих эквивалентного шума, действующего на входе решающего устройства совместно с полезным сигналом (рис. 9.3). Разрешаемое приращение яркости изображения выражается через СКО суммарного "шума зрительного анализатора", образованного несколькими независимыми составляющими [15]  [c.123]

В настоящее время математическая модель исследуемого объекта или процесса становится необходимой частью экспериментальных исследований, так как без нее трудно правильно и с наименьшими затратаиги осуществить экспериментальпое исследование и статистическую обработ1 у полученных ])езультатов.  [c.173]

Основной недостаток экспериментального метода исследования заключается в том, что результаты данного эксперимента не могут быть использованы применительно к другому явлению, которое в деталях отличается от изученного. Поэтому выводы, сделанные на основании анализа результатов данного экспериментального исследования, не допускают распро -транения их на другие явления. Следовательно, при экспериментальном методе исследования каждый конкретный случай должен служить самостоятельным объектом изучения. Последнее обстоятельство является органическим недостатком указанного метода исследований.  [c.408]

Микро- и макроструктур закрученного потока представлякгг особый интерес для понимания физического механизма процессов течения и тепломассообмена. На структуру турбулентного течения существенно влияют особенности радиального распределения осредненных параметров и кривизна обтекаемой газом поверхности. При этом поле турбулентных пульсаций при закрутке всегда трехмерно и имеет особенности, отличающие его от турбулентных характеристик осевых течений [16, 27, 155, 156]. Одно из основных и характерных отличий состоит в том, что в камере энергоразделения вихревой трубы наблюдаются значительные фадиенты осевой составляющей скорости, характеризующие сдвиговые течения. Эти градиенты наиболее велики на границе разделения вихря в области максимальных значений по сечению окружной составляющей вектора скорости. Приосевой вихрь можно рассматривать как осесимметричную струю, протекающую относительно потока с несколько отличной плотностью, и естественно ожидать при этом появления эффектов, наблюдаемых в слоях смешения струй [137, 216, 233], прежде всего, когерентных вихревых структур с детерминированной интенсивностью и динамикой распространения. Экспериментальное исследование турбулентной структуры потоков в вихревой трубе имеет свои специфические сложности, связанные с существенной трехмерностью потока и малыми габаритными размерами объекта исследования, что предъявляет достаточно жесткие требования к экспериментальной аппаратуре. В некоторых случаях перечисленные причины делают невозможным применение традиционных  [c.98]

Экспериментальные исследования сварочных деформаций и напряжений проводят на образцах, свариваемом объекте или его модели. Используя различные приемы моделирования, можно добиться воспроизведения процессов образования сварочных деформаций и напряжений на лабораторных образцах небольших размеров вместо реальных сварных конструкций. Правила масштабного моделирования основаны на подобии модели и натуры [4] предусматривается изготовление модели из того же металла, что и исследуемый объект, обеспечиваются подобия геометрических параметров сварного соединения, режимов сварки, температурных полей, деформаций и перемещений модели и натуры. Этими условиями можно пользоваться для моделирования напряжений и деформаций при однопроходной и многослойной сварке, а также для моделирования сварочных деформаций и перемещений, возникающих в процессе электрошлаковой сварки прямолинейных и кольцевых швов.  [c.419]

Для реальных объектов уравнения состояния довольно сложны, и их определению посвящается много работ, теоретических и экспериментальных, число которых особенно велико для жидкостей и газов, используемых в различных технологических процессах и тепловых машинах. Экспериментальное исследование уравнений состояния в широкой области температур и давлений требует затраты огромного труда. Поэтому во многих случаях предоочитают обходиться более ограниченными сведениями о поведении системы, и для описания ее реакции на небольшие изменения объема, давления или  [c.84]

Эскизное проектирование является тем этапом, на котором начинается детализация объекта проектирования, хотя еще уделяется много внимания принципиальным основам проектных решений. При разработке эскизного проекта уточняются и корректируются отдельные положения технического задания и технического предложения и осуществляется окончательный выбор рационального варианта объекта проектирования, производится более точная оценка его характеристик и показателей, дается технико-экономическое 9боснование окончательного варианта. На этапе эскизного проектирования наряду с расчетными работами могут создаваться и испытываться макеты объекта проектирования или его отдельных частей и узлов, если это необходимо для получения соответствующих уточнений. С этой же целью могут проводиться экспериментальные исследования аналогов или прототипов объекта проектирования.  [c.35]

Проводят оценку полученных значений ПТС объекта, их соответствия требованиям научно-технической и проектноконструкторской документации. При отсутствии отклонений от требований диагностика оборудования, выполняемая в пределах расчетного ресурса, заверщается. При наличии отклонений основные ПТС диагностируемого объекта определяют согласно [74-76, 124]. Подлежит уточнению (относительно требований научно-технической документации) система предельных состояний элементов конструкций и критериев их оценки, а также необходимость в дополнительных расчетах и экспериментальных исследованиях напряженно-деформированного состояния оборудования и свойств материалов.  [c.166]

При экспериментальном исследовании этого явления, впервые пpoвeдe п oм Комптоном (1922 — 1923), было установлено, что наряду с закономерностями, хорошо объясняемыми электромагнитной теорией (поляризация рассеянного излучения и его интенсивность), наблюдаются эффекты, истолкование которых в рамках этой теории невозможно. Так, например, было обнаружено появление спутника у основной линии, совпадающей по длине волны с облучающими 8.26. Эффект Компто-объект характеристическими лучами. Ока- на на Х-линии молиб-залось, что смещение ДХ этого спутника не  [c.447]


Размер пузырька в момент отрыва от твердой поверхности — важный параметр для понимания механизма кипения. На сегодня накоплена обширная опытная информация о предотрывных диаметрах паровых пузырьков при кипении различных жидкостей. (Часть этой информации получена в тех экспериментальных исследованиях динамики паровых пузырьков, результаты которых отражены на рис. 6.12.) Но, несмотря на это, а также на кажущуюся простоту объекта исследования (индивидуальный паровой пузырек, растущий на твердой обогреваемой стенке), в теоретическом плане проблема отрыва пузырька весьма сложна и, к сожалению, изрядно запутана.  [c.271]

Современная физика материалов считает объект своего исследования дискретным телом на двух уровнях поликристаллическом и молекулярном. Однако полученные в подобных предположениях зависимости оказались настолько сложны и громоздки, что пока не полошили широкого распространения в сопротивлении материалов. В этих обстоятельствах оказалась плодотворной гипотеза о сплошности материала, согласно которой тело рассматривается как некий материальный континуум или среда, непрерывно заполняющая данный объем и наделенная указанными выше экспериментально найденными физико-механическими свойствами. Практическая реализация такого подхода подтверждает его эффективность, поскольку именно на этой основе спроектированы, построены и успешно эксплуатируются все современные инженерные объекты. Одним из сущест-венв[ейших преимуш еств является возможность ввести в рассмотрение бесконечно малые величины (например длины, площади, объемы) и использовать тем самым мощный и хорошо развитый аппарат дифференциального и интегрального исчисления.  [c.10]

Неравновесное состояние границ зерен. В хорошо отожженных поликристаллах или бикристаллах межзеренные границы являются обычно совершенными, поскольку не имеют дальнодей-ствующих упругих полей и разделяют недеформированные кристаллы (зерна). До недавнего времени именно границы с совершенной структурой были основным объектом теоретических и экспериментальных исследований, где достигнуты значительные успехи в их описании [154-157].  [c.87]

Чтобы определить, насколько данные, полученные с помощью универсального адаптера, соответствуют данным, полученным стандартизованными адаптерами (диск по ГОСТ 12.1.034—81 и рожок по ГОСТ 12.1.042—84 ), были проведены экспериментальные исследования на вибростенде и на реальных объектах (на грузовых машинах, на трактора с, на ручном инструменте). Измерения проводили с помощью виброметра 00031 и вибродозиметра ВД-01, разработанного во ВЦНИИОТе, который по своим характеристикам близок к виброметру М1300. В процессе измерений определяли при разных интервалах времени усреднения эквивалентные виброуско-  [c.36]


Смотреть страницы где упоминается термин Объекты экспериментальных исследований : [c.397]    [c.17]    [c.183]    [c.45]    [c.8]   
Смотреть главы в:

Нормы расчета на прочность оборудования и Н83 трубопроводов атомных энергетических установок  -> Объекты экспериментальных исследований



ПОИСК



Крит А. С., Равва Ж. С. Комплекс экспериментальных установок для исследования объектов класса автоматически управляемая магнитожидкостиая опора — шпиндель

Методы экспериментального исследования динамических свойств химико-технологических объектов

Объект и метод экспериментального исследования

Объекты исследования

Экспериментальное исследование



© 2025 Mash-xxl.info Реклама на сайте