Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Манипулятор система управления

В качестве примера можно рассмотреть динамику патентования в области оборудования для производства крупных поковок [43]. Были рассмотрены следующие направления патентования конструкции прессов конструкции ковочных манипуляторов системы управления прессами и манипуляторами.  [c.211]

Особо важную роль в развитии современной техники играют гидравлические и пневматические приводы как основное средство механизации и автоматизации технологических процессов и процессов управления различными объектами. В качестве исполнительных устройств такие приводы применяют в станках и автоматических линиях, роботах и манипуляторах, системах управления автомобилем, самолетом и т. п.  [c.3]


Основными структурными составными частями ПР являются исполнительное устройство, система управления н информационная система (рис. 14.6). Исполнительное устройство ПР выполняет его двигательные функции. В состав ПР входит манипулятор и устройство передвижения.  [c.210]

Сварочный РТК включает автоматический манипулятор инструмента, систему управления всем комплексом, позиционер (манипулятор изделия) и сварочное оборудование, сопряженное с системой управления РТК.  [c.96]

Воистину революционную роль в системах управления автоматизацией производства сыграло появление ЭВМ. С помощью ЭВМ стал возможен анализ многозвенных, с большим числом степеней свободы механизмов, решение задач оптимального синтеза как отдельных механизмов, так и сложных машин автоматического действия, решение задач проектирования многокритериальных и многопараметрических машинных устройств, программное управление большинством современных машин, управление новыми машинами с устройствами биомеханического вида типа манипуляторов, роботов, шагающих машин и др.  [c.13]

Ко второму поколению относят роботы-манипуляторы, в системе управления которых жесткая программа сочетается с элементами адаптации (приспособления) к неизвестным или меняющимся условиям внешней среды (например, поиск предмета в заданной зоне) информацию о внешней среде получают с помощью соответствующих датчиков.  [c.324]

Роботы-манипуляторы третьего поколения — с элементами искусственного интеллекта их система управления сама формирует и затем реализует программу в зависимости от поставленной цели,  [c.324]

Механизмы манипуляторов воспроизводят движения рук человека. В атомной технике они позволяют выполнять различные манипуляции с радиоактивными материалами, причем оператор, управляющий движением манипулятора, находится в безопасной зоне. Автоматически управляемые манипуляторы применяются также для подводных работ на большой глубине и для работ в космосе. В последние годы по типу манипуляторов стали создаваться промышленные роботы, заменяющие человека при работе во вредных условиях, при выполнении утомляющих операций на быстродействующих конвейерах и т. п. Роботы отличаются от загрузочных, контрольных, упаковочных и других машин-автоматов тем, что их можно быстро переналаживать на выполнение различных операций. Рабочие органы манипуляторов и роботов совершают, как правило, сложные пространственные движения. В некоторых случаях рабочие органы должны ощущать соприкосновение с перемещаемым или обрабатываемым предметом, что достигается соответствующим построением системы управления.  [c.6]


В зависимости от вида системы управления различают манипуляторы с ручным управлением и манипуляторы с автоматическим управлением.  [c.550]

Первый низший) уровень формирует управление приводами. Программа управления на этом уровне задает значения каждой обобщенной координаты манипулятора. Задачи построения системы управления первого уровня решаются обычными методами теории автоматического управления. В зависимости от требований, предъявляемых к точности выполнения заданных движений, используется или следящий привод, или привод с жесткой программой, определяемой размерами управляющего устройства. Примером такого устройства может служить регулируемый дроссель объемного гидропривода, показанный на рис. 78.  [c.561]

В задаче управления автоматическими манипуляторами можно выделить два вопроса отыскание законов изменения обобщенных координат исполнительного органа, обеспечивающих требуемое движение захвата реализация этих законов системой управления. Здесь будет рассматриваться первая часть задачи управления (задача построения движений). Соответственно качество управления всюду будет оцениваться исходя из построенных законов фу t) изменения обобщенных координат. В свою очередь задачи построения движений манипуляторов могут быть классифицированы по типу выполняемого задания и свойствам исполнительных органов.  [c.26]

Для оптимального управления движением манипулятора требуется предварительное (до начала движения) вычисление его конечного состояния, сводящееся в рассмотренном случае к отысканию минимума функции / на конечном числе точек, являющихся корнями трансцендентных уравнений (14) или (22). Для более сложных кинематических схем манипуляторов число таких уравнений может совпадать с числом управляемых координат, а уравнения экстремалей при задании траектории движения могут быть проинтегрированы только численно, что дополнительно усложняет и без того нетривиальную задачу поиска всех экстремалей, удовлетворяющих условию трансверсальности [6]. Такие предшествующие процессу управления вычислительные процедуры являются неизбежной и в большинстве случаев чрезмерной платой за минимизацию функционала /. Есть причины, вынуждающие отказаться от строгих методов оптимизации, т. е. методов, обеспечивающих отыскание экстремума 1) разрыв между получением системой двигательного задания и началом движения, равный времени вычисления оптимального управления 2) неопределенность двигательной задачи при неполной информации о состоянии окружающей среды, когда эта задача доопределяется в процессе движения, и предварительное отыскание конечного состояния манипулятора либо невозможно, либо должно быть основано на статистическом подходе. Обе причины существенны, когда система управления двия<ением предназначена для выполнения разнообразных, не повторяющихся двигательных задач. При управлении циклически повторяющимся движением процесс оптимизации может быть проведен один раз, а его результаты использованы неоднократно  [c.32]

Системы автоматического управления движением с обратными связями широко используются в современных машинах как одно из наиболее эффективных средств повышения точности и быстродействия. Системами стабилизации угловой скорости снабжаются практически все энергетические агрегаты и цикловые технологические машины с развитием станков с программным управлением, автоматических манипуляторов и роботов широкое распространение получают системы позиционирования, обеспечивающие точное перемещение рабочих органов, все чаще используются контурные системы управления, контролирующие и корректирующие законы движения исполнительных механизмов.  [c.5]

Универсальная система управления СА-17 предназначена для управления манипуляторами. Система собрана на элементах Логика Т с усиленным релейным выходом.  [c.347]

Система управления линиями состоит из автономных подсистем программного управления манипуляторами автоматического контроля и регулирования технологических параметров управления вспомогательными механизмами и устройствами.  [c.348]


Эти требования были выполнены посредством модернизации электроавтоматики оборудования. Кроме того, была разработана гибкая перенастраиваемая система электроавтоматики участка, включающая в себя, помимо электрооборудования указанных выше станков, электрооборудование вспомогательных тар—накопителей, ложементов и т. п. Управление всей электроавтоматикой участка осуществляется системой ЧПУ автоматического манипулятора, которая в данном случае является центральной системой управления в условиях группового обслуживания станков и другого оборудования.  [c.32]

Поистине революционную роль в системах управления и автоматизации производства сыграло появление математических счетно-решающих машин и устройств. Их спектры оказались безгранично большими, чем спектры человека. Но, может быть, самое главное заключается в том, что с помощью этих машин стало возможным заменить человека не только в процессах управления машинами, но и в выполнении многих других интеллектуальных функций, требующих решения сложнейших логических задач. С помощью этих маШин стали возможными анализ многозвенных, с большим числом степеней свободы механизмов, решение задач оптимального синтеза как отдельных механизмов, так и сложных машин и систем машин автоматического действия, решение задач проектирования многокритериальных и многопараметрических машинных устройств, программное управление большинством современных машин, управление новыми машинами с устройствами биомеханического вида типа манипуляторов, роботов, шагающих и других машин.  [c.134]

К основным критериям качества манипуляторов относятся число степеней свободы, обслуживаемое пространство, занимаемые площадь и пространство цеха, быстродействие, быстроходность при выполнении отдельных движений, нагрузочная способность, отношения массы манипулятора к массе перемещаемого им груза и оснастки, вес и моменты инерции ведомых звеньев, величины инерционных моментов и усилий, усилия зажима транспортируемых деталей, точность позиционирования или отслеживания заданной траектории, воспроизводимость заданного закона движения (в том числе равномерность движения для технологических роботов), энергетические и вибрационные характеристики и КПД, температурные деформации, запас устойчивости и зона нечувствительности системы управления, показатели надежности, контролепригодность и др.  [c.67]

В результате изменяются характеристики на участке торможения и при подходе захвата к рабочему положению возникают значительные длительные колебания. Уровень этих колебаний уменьшается благодаря введению обратных связей и усложнению системы управления, учету собственных частот колебания руки при назначении режимов работы. При контурном управлении погрешности определяются как в плоскости (например, методом сечений с записью шариковой ручкой), так и в пространстве с использованием описанных выше линеек и датчиков. Учет погрешностей и деформаций шарнирных механизмов манипуляторов может выполняться расчетными [12] и экспериментально-расчетными методами. Такие методы разработаны в Институте механики АН СССР и Ленинградском политехническом институте. Большое значение имеет прогнозирование точностной (параметрической) надежности роботов. Здесь может быть применена методика, разработанная А. С. Прониковым и его учениками [25, 58].  [c.84]

В простейшем случае параметрической адаптации стабилизирующие законы управления приводами манипулятора дополняются алгоритмами самонастройки, обеспечивающими автоматическое приспособление системы управления к изменению параметров (например, к изменению массо-инерционных характеристик груза). Для придания роботу способности к параметрической адаптации достаточно заменить его сервоприводы на самонастраивающиеся приводы. Отличительной чертой последних является нечувствительность (инвариантность) по отношению к параметрическим возмущениям.  [c.137]

Рассмотрим методику алгоритмического синтеза и опыт программной реализации на ЭВМ адаптивной системы управления манипулятором с шаговыми приводами. Эффективность этой системы по сравнению с традиционными системами программного управления иллюстрируется экспериментальными данными, полученными при ее испытаниях в составе манипуляционного робота, изображенного на рис. 5.7. Этот робот оснащен телевизионной системой зрения на базе промышленной телевизионной установки ПТУ-102, позволяющей воспринимать и анализировать обстановку в рабочей зоне. Благодаря этому обеспечивается принципиальная возможность адаптации к изменяющейся производственной обстановке, в частности, оказывается возможным манипулирование деталями без их предварительного ориентирования и позиционирования.  [c.152]

Эф4>ективность предложенного алгоритмического обеспечения для адаптивной системы управления шаговыми приводами манипулятора проверялась путем моделирования на ЭВМ. При этом расчет числа управляющих импульсов j на входе каждого двигателя осуществляется по формуле  [c.157]

В другой серии экспериментов моделировался процесс точечной сварки по контуру. Так, в одном из экспериментов требовалось перевести схват последовательно в шесть точек, расположенных на окружности. При использовании сварочной головки массой 2 кг реализовывался неадаптивный режим управления, характеризующийся тем, что Л/(1, i < Л/ , i по всем обобщенным координатам. В этом случае система управления осуществила периодическое перемещение схвата манипулятора во все шесть заданных позиций с точностью е = 1 мм. По мере увеличения нагрузки в схвате до 5 кг реализовывался адаптивный режим управления, для которого I N ,i > Л/, i хотя бы по одной обобщенной координате. При точности позиционирования е 1 см произошло ие более двух коррекций управления по различным обобщенным координатам, а при точности е == 1 мм — не более четырех коррекций. Дальнейшее увеличение нагрузки в схвате манипулятора приводило либо к увеличению числа коррекций адаптивного управления (до нескольких десятков коррекций), либо к нарушению конструктивных ограничений на управление.  [c.158]


Робот состоит из многозвенного манипулятора, системы управления и рабочего инструмента, которым может быть сварочный инструмент (сварочные клещи, сварочный пистолет, головка для роликовой сварки) или захват для взятия и перемещения свариваемых деталей, а также собранного под сварку изделия или готовой сварной конструкции. Они имеют от двух до шести степеней подвижности и строятся в прямоугольной, цилиндрической, сферической и угловых системах координат. Роботы с двумя—четырьмя степенями подвижности применяют для сварки изделий простой формы, например плоскостных конструкций. Они являются специализированными, поскольку пригодны для ограниченного круга операций, в отличие от универсальных пяти-шестикоординатных, которые могут быть запрограммированы на выполнение практически любой задачи. Классификация рассматриваемых роботов приведена на рис. 3.1.  [c.203]

Манипул5ггор перемещения годелия (см. рис. 1) осуществляет его движение по координатам R , манипулятор перемещения инсгрумента-по координатам R , а в результате их взаимного перемещения вьшолняется механическая обработка и сила резания Р,, , возникающая при этом, воздействует на оба манипулятора. Система управления по информации  [c.40]

Многообразие существующих манипуляторов лелает необходимым их классификацию. В ее основе положены метод уир кле1[к 1, вид связи между управляющим н ксполпительнымн механизмами, а также некоторые конструктивные признаки ). Обычно манипулятор с автоматической системой управления ма-зывакя роботом-манипулятором или просто роботом.  [c.617]

Сервоманипуляторы. Это название укрепилось за копирующими манипуляторами, в которых управляющий и исполнительный механизмы, расположенные дистанционно, связаны системами управления особого вида — обратимыми следящими системами (ОСС). ОСС обеспечивают однозначное соответствие по положению между задающими и исполнительными органами,  [c.619]

К ручным системам управления копируюпшми манипуляторами предъявляется специфическое требование их очувствления , когда человек-оператор должен ощущать не только перемещения объекта манипулирования, но и нагрузку в виде силы или момента, дейст-вуюпких на схват манипулятора.  [c.333]

По назначению ПР делятся на универсальные, специализированные и специальные. По грузоподъемности различают роботы сверхлегкие (до I кг), легкие (I... 10 кг), средние (10...200 кг), тяжелые (200... 1000 кг), сверхтяжелые (более 1000 кг). По типу силового привода звеньев манипулятора различают роботы с гидравлическим, пневматическим, электрическим и комбинированным приводом. Промышленные роботы по типу системы управления делятся на программные — это роботы, работающие по жесткой программе с цикловой или числовой системой программного управления, адаптивные роботы, оснащенные датчиками с управлением от системы ЭВМ или ЧПУ, позволяющими реагировать на изменение некоторых условий эксплуатации, и интеллектуальные роботы, управляемые от ЭВгЧ с программированием цели и обладающие широкими возможностями реагирования на изменение технологии процесса, распознавания объектов, принятия решений и т. п.  [c.221]

Промышленный робот (ПР)—это манипулятор с изменяемой программой, представляющий собой автономно функционирующую МА, предназначенную для воспроизведения некоторых двигательных и умственных функций человека при выполнении вспомогательных и основных производственных операций. Отличительными чертами ПР являются многоподвижность кинематической цепи манипулятора и автономная система управления.  [c.502]

Бдок-схемы системы управления манипуляторами. Как уже указывалось, манипуляторы могут быть с ручным управлением и с автоматическим. Специфическим требованием, предъявляемым к системам ручного управления манипулятором, является возможность их очувствления , т. е. между силами, приложенными к звеньям манипулятора, и силами, действующими на руку оператора, должно быть определенное соответствие. Другими словами, оператор должен чувствовать те усилия, которые действуют на захват манипулятора.  [c.265]

При дистанционном управлении копирующим манипулятором применяются различные виды следящих систем, действие которых сходно с действием следящего привода, показанного на рис. 129, б. Отличительной особенностью является лищь свойство очувствления , в зависимости от которого системы управления подразделяются на системы с пассивным отражением сил и системы с ак-тивным отражением сил, называемые также обратимыми следящими системами.  [c.265]

Подсистема управления манипуляторами имеет командоаппарат повышенной надежности, обладающий возможностью продолжения выполнения программы в автоматическом режиме работы с любого места ее прерывания при случайном кратковременном обесточивании системы управлений. Точность горизонтального позиционирования манипуляторов 10 мм, точность вертикального позициониро-  [c.348]

Другой комплексной проблемой является создание и освоение использования современных достижений в области кузнечноштамповочного производства, высокопроизводительного кузнечно-прессового оборудования и автоматических комплексов, в том числе автоматических линий, комплексов и участков с программным управлением и управляемых от ЭВМ, обеспечиваюш,их повышение производительности кузнечно-прессового оборудования в 2—2,1 раза и устраняюш,их тяжелый физический и утомительный монотонный труд. Решение этой проблемы связано с созданием и освоением производства автоматизированных и автоматических машинных систем для производства поковок, обеспечиваюш,пх повышение производительности труда в 1,5—2 раза и снижение расхода металла на 7—8% автоматических комплексов оборудования (модулей) для синтеза на их базе автоматических и автоматизированных линий производства точных заготовок широкой номенклатуры горячим и полугорячим объемным деформированием с электронными и программными системами управления с использованием промышленных манипуляторов, обеспечива-ЮШ.ИХ повышение производительности труда в 1,5 раза и снижение расхода металла на 20—30% быстропереналаживаемых автоматизированных машинных систем с управлением от ЭВМ, вклю-чаюш,их нагрев для получения радиальным обжатием в горячем и холодном состоянии деталей с вытянутой осью автоматических и автоматизированных линий и комплексов для получения деталей широкой номенклатуры методом холодной объемной штамповки с программным управлением и использованием промышленных роботов многономенклатурных обрабатываюш,их центров для получения вырубкой-пробивкой, вытяжкой и гибкой деталей из листового проката с управлением от ЭВМ автоматических машинных систем для получения прессованием и литьем изделий из пластмасс и вспениваемых пластиков с управлением от ЭВМ автоматических и автоматизированных комплексов оборудования для прессования деталей из порошков и штамповки специальных заготовок с программным управлением, обеспечивающих комплектование на их базе участков, управляемых от ЭВМ тяжелого и уникального кузнечно-прессового оборудования со средствами механизации, в том числе с программным управлением, для получения крупных и сложных поковок сплошных и с внутренними полостями из алюАшния, титана, стали.  [c.284]


ТСЯ из статических, квазистатических и динамических погрешностей (систематических и случайных). Прогибы руки манипулятора различны при различном весе объектов манипулирования, различных вылетах и направлении движения. Поэтому они не всегда могут быть компенсированы у переналаживаемых конструкций роботов. В процессе эксплуатации возникает смещение нуля настройки, которое устраняется при обслуживании. К квазистатическим погрешностям отнесены сравнительно медленно изменяющиеся смещения узлов в процессе их прогрева. Наибольшее количество составляющих относится к динамическим погрешностям, возникающим во время движения или под действием окружающей среды и источников питания энергией (разброс сигналов системы управления при изменении напряжения в сети, колебание фундаментов, воздушные потоки и т.п.). На случайные и систематические погрешности оказывают влияние погрешности изготовления датчиков внутренней системы измерения робота или расстановка упоров у простейших манипуляторов.  [c.84]

Уже много раз писалось о применении манипуляторов в космосе и под водой, на атомных электростанциях и под землей — всюду, где пребывание человека опасно или нежелательно. Широко известны биоманипулятор-ные протезы для инвалидов, управляемые биотоками. Появилась даже возможность управлять манипуляторами посредством движений глаз. Эту идею подробно обосновал эстонский ученый А. О. Лаурингсон. Дело в том, что врачи-окулисты разработали надежные способы слежения за поворотом глазного яблока. Соответственно выделенный сигнал нужно усилить и использовать в цепи управления. Эксперименты показали, что глазное яблоко может поворачиваться с угловой скоростью до 30° в секунду и следить за целью довольно точно. По сравнению с обычной системой управления глаз—мозг— рука такой способ оказывается и быстрее и точнее. По-видимому, он мог бы пригодиться опять-таки космонавтам в условиях перегрузок, когда трудно пошевелить рукой. Последний крик манипуляторостроения — это так называемая Рука Эрнста , построенная швейцарским аспирантом Генрихом Эрнстом под руководством известных кибернетиков Клода Шеннона и Марвина Минского. Оснащенная фотоэлементами и контактными датчиками, спаренная с электронной вычислительной машиной Рука Эрнста может самостоятельно собрать кубики, разбросанные на полу, и сложить их в коробку.  [c.288]


Смотреть страницы где упоминается термин Манипулятор система управления : [c.270]    [c.107]    [c.332]    [c.390]    [c.448]    [c.151]    [c.24]    [c.201]    [c.83]    [c.148]    [c.343]   
Теория механизмов и машин (1987) -- [ c.332 ]



ПОИСК



Манипулятор



© 2025 Mash-xxl.info Реклама на сайте