Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линии Системы управления

Внешняя автоматическая система путевого контроля, организованного по принципу обратной связи, обеспечивает согласован ную работу агрегатов и участков линий. Системы управления АЛ строятся на электрических, механических, гидравлических, пневматических или комбинированных связях. Для автоматического регулирования технологического процесса и переналадки оборудования на АЛ, преимущественно групповых, применяют системы электронного программного управления.  [c.92]


Потери в системах управления с блокировками (РК) связаны с неодновременным окончанием работы агрегатов. Эту причину образования простоев можно устранить применением межоперационных заделов между агрегатами в 1—2 опоки или формы. Даже такие минимальные заделы могут привести к существенным повышениям производительности линий. Системы управления, построенные по принципу РК и составленные из высоконадежных бесконтактных логических элементов в линиях с гибкими связями, могут свести до минимума потери из-за неполадок в системах управления.  [c.146]

Простои линии можно разделить на собственные, возникшие по причине выхода из строя механизмов линии, системы управления оснастки, и  [c.194]

Основы проектирования автоматов и автоматических линий, системы управления и целевые механизмы рассмотрены в учебном пособии Автоматы и автоматические линии [11], где три раздела книги соответствуют этим курсам. Настоящий учебник базируется на курсе Автоматизация производственных процессов , который является завершающим в цикле специальных дисциплин по автоматизации.  [c.9]

Автоматическая линия (АЛ) — это совокупность машин-автоматов, соединенных между собой автоматическими транспортными устройствами, с общей системой управления. В настоящее время широко распространены АЛ из агрегатных станков, роторные и др. [I, 11, 33, 35].  [c.161]

Системы управления с упорами (путевые). Упоры—-это рычаги, детали с выступами, установленные по линии движения рабочего органа МА и воздействующие па путевые переключатели (или конечные выключатели), которые в свою очередь производят включение-выключение привода РО (обычно в крайних положениях). Сигналы управления определяются положением рабочего органа в системе упоров, поэтому такие СУ называют системами управления по пути (или путевыми). Обычно МА с СУ от упоров имеют индивидуальный привод для каждого РО. Примером МА, имеющего СУ с упорами, является агрегатный станок (см. рис. 5.38). Подробнее о работе и синтезе СУ с упорами см. 5.4.4.  [c.173]

Для управления скоростью перемещения поршня I сливную линию системы включен регулируемый дроссель Д, который выполнен в виде переставного плунжера с десятью продольными пазами квадратного сечения (сторона квадрата а = 0,75 мм). Перемещение плунжера изменяет дросселирующую длину I пазов плунжера и, следовательно, сопротивление дросселя.  [c.454]


В нашей стране последовательно осуществляется курс КПСС на подъем материального и культурного уровня жизни народа на основе динамичного и пропорционального развития общественного производства и повышения его эффективности, ускорения научно-технического прогресса, роста производительности труда, всемерного улучшения качества работы во всех звеньях народного хозяйства. В машиностроении созданы и освоены новые системы современных, надежных и эффективных машин для комплексной автоматизации производства, что позволило выпускать продукцию высокого качества с наименьшими затратами труда увеличился выпуск автоматических линий, новых видов машины, приборов, аппаратов, отвечающих современным требованиям. Непрерывно совершенствуются конструкции машин и других изделий, технология и средства их производства и контроля, материалы расширилась внутриотраслевая и межотраслевая специализация на основе унификации и стандартизации изделий, их агрегатов и деталей шире используются методы комплексной и опережающей стандартизации внедряются системы управления и аттестации качеством продукции, система технологической подготовки производства. Увеличилась доля изделий высшей категории качества в общем объеме их производства.  [c.3]

Автоматическая линия Дополнительно введены и автоматизированы транспортирующие устройства между рядом автоматов и общая система управления То же  [c.12]

Машина-автомат и автоматическая линия. Машина-автома есть машина, в которой все преобразования энергии, материалов и информации выполняются без непосредственного участия человека. Совокупность машин-автоматов, соединенных между собой автоматическими транспортными устройствами и предназначенных для выполнения определенного технологического процесса, называется автоматической линией. Применение машин-автоматов и автоматических линий требует участия человека (оператора, наладчика) лишь для контроля за их работой и возможного устранения отдельных неполадок. Наибольшее распространение имеют технологические машины-автоматы, которые предназначены для изменения формы, размеров или свойств обрабатываемого предмета. В технологических машинах каждое твердое тело, выполняющее заданные перемещения с целью изменения или контроля формы, размеров и свойств обрабатываемого предмета, называется исполнительным органом. Обычно исполнительные органы соединены с выходными звеньями механизмов, но могут быть приведены в движение и непосредственно от двигателей (например, шлифовальный круг, помещенный на валу электродвигателя). Движение исполнительных органов в машинах-автоматах определяется программой, под которой понимается совокупность предписаний, обеспечивающих выполнение технологического процесса. Для автоматического выполнения программы предусматривается система управления, т. е. система, обеспечивающая согласованность перемещений всех исполнительных органов в соответствии с заданной программой.  [c.509]

В заключение можно проверить по схеме действие всей системы управления. Для этого представим себе, что по линиям, обозначенным кружком с точкой, в систему поступил сжатый  [c.541]

На рис. 162 показана типичная кривая распределения наработок до отказа при производственном испытании автоматической линии для механической обработки ступенчатых валов [31 ]. Как видно из графика, частота отказов весьма высока и вероятность безотказной работы линии в течение t— ч Я (/) —> 0. Сюда включены все виды отказов, как, например, износ режущего инструмента, застревание заготовки в транспортном лотке, несрабатывание механизма загрузки из-за попадания стружки, отказы системы управления и др,, в основном связанные с нарушением правильности функционирования линии и требующие малых затрат времени на восстановление ее работоспособности. Аналогичные данные о потоке отказов получают при испытании таких сложных изделий как двигатели, транспортные машины (автомобили, самолеты), технологические комплексы различных отраслей промышленности. Для анализа отказов их обычно разбивают на категории по системам или узлам машины или по последствиям, к которым приводит отказ (см. гл. 1, п. 4).  [c.511]


Рассматриваемые элементы конструкции шасси по существу своего назначения нагружаются в узле аналогично тому, как это было рассмотрено выше применительно к системам управления. В процессе выпуска-уборки шасси кронштейны нагружаются, а все остальное время они не работают. С этой точки зрения они могут формировать рельеф излома в виде усталостных бороздок или блока усталостных линий в зависимости от того.  [c.790]

В ближайшее время на авиалиниях малой протяженности, не имеющих взлетно-посадочных полос с искусственным покрытием, будут введены уже упоминавшиеся 24-местные пассажирские самолеты Як-40 с турбовентиляторными двигателями, сочетающие простоту и эксплуатационную надежность поршневых самолетов типа Ли-2 и Ил-14 с достоинствами современных реактивных воздушных кораблей, и легкие 15-местные турбовинтовые самолеты Бе-30, спроектированные в ОКБ Г. М. Бериева. Для магистральных линий в ОКБ А. Н. Туполева закончена постройка нового пассажирского самолета Ту-154 с турбовентиляторными двигателями, рассчитанного на перевозку до 160 пассажиров со скоростью 900—950 km 4u . Наконец, в том же конструкторском коллективе — на основе накопленного опыта и широкого кооперирования со многими исследовательскими и проектными организациями — начаты доводка и испытания первого в Советском Союзе сверхзвукового пассажирского самолета Ту-144, предназначаемого для перевозки 110—120 пассажиров на большие расстояния со скоростью, вдвое превышающей скорость звука. Тщательно продуманная аэродинамическая компоновка этого самолета без горизонтального хвостового оперения, с тонким крылом конической формы в плане обеспечит минимальное сопротивление полету на сверхзвуковых скоростях и получение взлетно-посадочных характеристик, удовлетворяющих, требованиям удобства и безопасности эксплуатации. Четыре мощных реактивных двигателя самолета по соображениям улучшения аэродинамических свойств крыла и снижения шума в пассажирском салоне размещены в хвостовой части фюзеляжа. Совершенная система управления и сложный комплекс различных автоматических устройств обусловят регулярность и надежность полетов практически в любых метеорологических условиях.  [c.403]

Перейдем к проблеме применения теории чувствительности для построения оптимальных (самонастраивающихся) систем управления. При построении некоторой системы управления необходимо, чтобы она работала некоторым лучшим , оптимальным образом в соответствии с принятыми критериями. В некоторых случаях можем оценить качество процесса, сравнивая его действительное состоянием (/) с желаемым z(i). В других случаях оценка производится в величинах, связанных с поставленной задачей. Например, в случае спутника целью является достижение им некоторой периодической орбиты, в случае автоматической линии—достижение максимальной производительности (при заданной точности изделий) или минимальной себестоимости и т. д. Во всяком случае, критерии качества почти всегда связаны с некоторым наблюдением за процессом в течение конечного интервала 0 — Т.  [c.88]

Замкнутые системы управления активно реагируют на отклонения, возникающие в технологическом машинном процессе. Применяемые системы управления в машинах и поточных линиях можно разделить на три группы централизованные, децентрализованные и комбинированные.  [c.251]

Из устройств активного контроля размеров на последних операциях наибольшее распространение на отечественных заводах и автоматических линиях машиностроения находят пневматические измерительные системы управления. Это положение объясняется тем, что пневматические измерительные системы надежнее, чем другие системы, сохраняют высокую точность в цеховых условиях вследствие их малой чувствительности к вибрации, изменению температуры, влиянию на результат измерения охлаждаю-ш ей жидкости при измерениях в зоне обработки изделия и др. Вместе с тем пневматические измерительные системы обладают существенным недостатком — повышенной инерционностью, которая вызывает рост динамических погрешностей измерений по мере форсирования режимов обработки изделий на автоматах при врезном шлифовании. Эффективность компенсации динамических погрешностей измерений в режиме слежения за обрабатываемым размером изделия зависит в значительной мере от удачного выбора параметров и варианта схемы компенсации [1].  [c.99]

В курсе Системы управления все вопросы синтеза системы управления с учетом многовариантности решения необходимо рассматривать не абстрактно, а с позиций достижения автоматом или линией наилучших технико-экономических показателей по качеству изделий, производительности, себестоимости продукции.  [c.102]

Целевые механизмы. Задача курса — на основе изучения, анализа и систематизации методов и средств автоматизации рабочих и вспомогательных операций, принципов их унификации и т. д. научить студентов конструированию и расчету наиболее типовых механизмов и устройств (силовых головок, механизмов подачи материала, зажима, поворота, транспортирования, ориентации и др.). Здесь, чтобы не повторять материал традиционных конструкторских курсов, основное внимание должно уделяться расчету и конструированию механизмов холостых ходов с позиций их быстродействия, надежности в работе, универсальности и переналаживаемости. И снова, как в курсах по системам управления, вопросы выбора и обоснования тех или иных конструктивных решений должны решаться с позиций обеспечения высоких технико-экономических показателей автоматов и линий в целом — их производительности и экономической эффективности.  [c.102]

Совокупность управляющих команд, подаваемых системой управления, должна обеспечивать автоматической машине или автоматическому комплексу в автоматическом и наладочном режимах выполнение следующих основных функций а) управление работой отдельных встроенных агрегатов (головок, столов, транспортеров, кантователей и др.) для обеспечения им заданных перемещений, скоростей б) управление рабочим циклом линий и их участков из жестко сблокированных агрегатов для обеспечения заданной последовательности их работы в) взаимная блокировка независимо работающих агрегатов для обеспечения заданного характера их действия г) быстрое обнаружение места и характера возникающих отказов для максимального сокращения длительности их устранения д) учет количества выпускаемых деталей  [c.134]


Под общими устройствами понимаются устройства, которые являются общими для всей линии и отказы которых вызывают простой воей линии система управления автоматической линией, энергопитание и т.д.  [c.49]

На рис. JJQ показана принципиальная схема пресса с насосным приводом, обычно называемая схемой безаккумуляторного привода. Из бака 18 жадность забирается насосом 19 и через органы управления 20 подается в цилиндр I, где она, находясь под давлением 200...250 ат, давит на плунжер 2, соединенный с траверсой 6, к которой через промежуточную плиту прикрепляется пуансон 8, фор1иующий заготовку 9 в изделие в матрице II последняя установлена на нижнем основании 14. При холостом ходе пресса (излишнем давлении, остановке пресса по технологической необходимости) происходит перелив рабочей жадности через систему трубопроводов, показанных пунктирной линией от системы управления 20 до бака 18. Обратный ход плунжера 2 осуществляется под давлением жадности через нижний циливдр 12 и плунжер 10.  [c.70]

Изображается черньи ящик системы управления (на рис. 5.39 показан илрнховой линией), показываются по два входных сигнала на кажды11 ИМ и г, г от одного элемента памяти. На выходе — но два выходных сигнала fi, ffua каждый ИД 1 и jj — д, 1я одного ЭП.  [c.194]

В заключение проверяется по схеме действие всей системы управления. Для этого нужно представить, что после открытия пневмокрана в систему будет подан сжатый воздух. Пневмосигналы Х = 1, Xi=l, Д з=1, 2=1 от нажатых пневмокнопок Ки Л г, Кз и пневмораспределителя памяти ПР4 поступят на вход блока управ-ЛС1И1Я БУ. Ка выходе fi x-i-z = 0 (так как 2 = 0), fj=z=l, поэтому поршень ИМ1 остается в том же левом положении, fi = Xi х -, f, = Xi=0, ( х = 0 (так как, v 2 = 0), поэтому подвижная часть распределителя ПР2 передвинется вверх, сжатый воздух от напорной линии пойдет в верхнюю полость пневмоцилиндра H.V12, и поршень со штоком 6 начнет рабочий ход вниз. В другом край-  [c.198]

Контурная система управления задает движение в виде непрерывной траектории, причем в каждый момент времени определяет не только положение звеньев механизма, но и вектор скорости движ зния инструмента. Поэтому движение инструмента по прямой линии или по окружности требует задания всего двух точек в первом случае и трех точек —во втором. Это позволяет интерполировать отдельные участки траектории отрезками прямых и дугами окружности, что существенно сокращает время обучения робота (рис. 4.15, в). Поэтому, как правило, применяют кон-  [c.68]

Пщропривод рабочего передвижения экскаватора выполнен по закрытой x Aie циркуляции рабочей жидкости. Привод включает регулируемый насос 13, распределительный блок 14 с ручным и гидравлическим управлением. Распределительный блок 14 предназначен для давления в напорных линиях системы и обеспечения подшгг-ки. Гидропривод передвижения имеет также гидромотор 15 привода механизма хода, систему подпитки, состоящую из нерегулируемого насоса 16, фильтра 17 с переливным золотником, охладителя жидкости 18.  [c.83]

Основные определения. Машиной-автоматом называют машину, движение элементов и рабочий процесс в которой (преобразования энергии, положения, формы или размеров обрабатываемых изделий и материалов, информации) выполняются без непосредственного участия человека. Автоматической линией называют совокупность целесообразно взаимосвязанных и автоматически управляемых технологических и транспортных машин-автоматов, предназначенных для реализации определенного технологического процесса. За человеком сохраняется роль наладчика, регулировщика и контрольные функции. В процессе настройки автоматических линий реализуется программа ее действия. Программой называют совокупность предписаний, определяющих последовательность, ритм, количество и качество выполнения технологических операций. Осуществление требуемой программы действия автоматической линии достигается с помощью системы управления линией, предназначенной для реализации согласованных по месту и времени действий всех входящих в линию исполнительных органов машин-автоматов. Здесь под исполнительным органом машин понимается любое их звено, предназначенное непоередственно для изменения или контроля формы, размеров и свойств обрабатываемого материала или предмета. Исполнительные органы машин, как правило, представлены их выходными звеньями или их частями и получают необходимые перемещения непосредственно от двигателей либо посредством промежуточных или передаточных звеньев.  [c.119]

В системах управления с памятью кроме входных и выходных сигналов должны быть еще сигналы памяти, чтобы можно было различать совпадающие наборы входных сигналов. Для подачи этих сигналов служит элемент памяти (П), выполненный в виде двухпо-зицнонного четырехлинейного распределителя. Первая линия (верхняя правая) этого распределителя дает сигнал памяти 2, вторая — инверсионный сигнал I, третья — соединена с атмосферой и четвертая— с источником сжатого воздуха. Позиция, при которой 2=1  [c.256]

В системах управления с памятью, кроме входных и выходных сигналов, должны быть еще сигналы памяти, чтобы можно было различать совпадающие наборы входных сигналов. Для подачи этих сигналов служит элемент памяти (П), выполненный в виде двухпозиционного четырехлипейного распределителя. Первая линия (верхняя правая) этого распределителя дает сигнал памяти 2, вторая — инверсионный сигнал z, третья — соединена с атмосферой и четвертая — с источником сжатого воздуха. Позиция, при которой Z = I и 2 = О, соответствует включенной памяти, другая позиция (г = О, 2= 1) —выключенной памяти. Сигнал на включение (передвижение в позицию 2=1) обозначается через /г, сигнал на выключение —/j. На рис. 198 элемент памяти показан выключенным, так как поршни механиз-  [c.539]

В случае работы ГТД с постоянной частотой вращения все точки пересечения характеристики турбины (линии I) с кривой п1п = 1 удовлетворяет первым двум условиям. Для каждой точки с помощью формул 6.5 можно определить эффективную мощность и эффективный КПД установки. Отсюда вытекает и обратный вывод каждой снимаемой с вала ГТД мощности соответствует определенная точка на кривой щ = onst, которая и будет кривой рабочих режимов II. Автоматическая система управления и регулирования при этом обеспечит подачу такого количества топлива, чтобы частота вращения о при любой нагрузке оставалась неизменной. Расчеты показывают, что в рассматриваемом случае снижение нагрузки приводит к значительному падению КПД вследствие су-  [c.325]

Структурная модель АУКГ (рис. 10) учитывает взаимосвязь перечисленных операций контроля и основных блоков [18]. Модель предполагает наличие контролируемого изделия как объекта контроля J, испытательной камеры 2, совмещенной с узлом герметизации, коммуникации для транспортирования потока контрольного газа 3, преобразователя потока газа 4, устройства разбраковки изделий на герметичные и негерметичные 5 и логической схемы управления 6. В ряде случаев имеется устройство для механизации загрузки изделий 7. На рисунке двойными линиями обозначено перемещение контролируемых изделий, сплошными одиночными линиями ах—(35 показано направление управляющих команд. Команда используется в автоматизированной системе управления производством. Общее количество изделий, поступающих на контроль, обозначено Л о, Nr — количество герметичных изделий и Л п — количество негерметичных изделий, выявленных автоматом.  [c.200]

Механическая часть АУКГ состоит из модуля загрузки 7 и модуля разгрузки 8 изделий I, модуля герметизации контролируемого изделия 3 и камеры 2. Пневмовакуумная часть схемы включает в себя линию гелия I, линию воздуха //, линию форвакуума III, линию высокого вакуума IV, линию азота V, а также блок клапанов 4. обеспечивающих работоспособность всех систем. Система управления 6 способствует взаимосвязанной работе всех модулей АУКГ и выполняется на электронных или пневматических элементах.  [c.202]


Итак, развитие усталостных трещин в процессе эксплуатации элементов конструкций и деталей системы управления ВС является длительным. Это позволяет эффективно проводить их контроль и осуществлять эксплуатацию по принципу безопасного повреждения при обеспечении надежности функционирования систем даже при однократном пропуске трещины, поскольку число полетов с развивающейся трещиной составляет от одной до нескольких тысяч. При определении повреждающего цикла следует исходить из того, что основную роль в развитии трещины играет блок нагрузок от вибраций, которые накладываются на статическую нагрузку, возникающую в момент функционирования системы в полете. В зависимости от вида элемента конструкции вибрации вызывают продвижение трещины или могут не оказывать влияние на ее продвижение. В первом случае имеет место формирование мезоусталостных линий с площадками излома между ними, а во втором случае каждый акт функционирования элемента конструкции в полете связан с формированием каждой усталостной бороздки. В зависимости от условий работы разное число усталостных бороздок может характеризовать один полет ВС. Однако и в этом случае может быть проведена оценка числа бороздок за полет, поскольку начало функционирования и повторение этих действий в полете имеют некоторые различия, что отражается в различии профиля усталостных линий и бороздок, а также в различиях закономерности изменения шага бороздок по направлению роста трещины. Все это несколько усложняет интерпретацию  [c.753]

За прошедшие 50 лет резко возросли техническая вооруженность и совершенство методов эксплуатации железнодорожного транспорта — основного звена транспортной сети СССР. Коренные изменения произошли в составе локомотивного и вагонного парков, значительно усилено строение рельсового пути, намного улучшилось территориальное размещение железнодорожных магистралей во вновь осваиваемых экономических районах. В устройствах сигнализации, централизации и блокировки, в системах управления движением поездов все более широко используются совершенные средства автоматики и телемеханики. Длина электрифицированных линий к концу 1960 г. достигла 13,8 тыс. км, более чем в четыре раза превысив длину электрифицированных линий в Соединенных Штатах Америки, в 1965 г. составила 24,9 тыс. км, превысив суммарную длину электрифицированных участков железных дорог Англии, Франции и Италии, и к концу 1966 г. возросла до 27 тыс. км. По основным показателям эксплуатационной работы — грузо-и пассажирообороту, грузонапряженности, участковой скорости грузовых поездов, среднесуточному пробегу грузовых локомотивов и вагонов — желе зные дороги Советского Союза значительно опережают железные дороги США [16, 22, 23].  [c.322]

Начальной или низшей ступенью иерархической лестницы АСУ энергетики являются автоматические системы управления энергетическими агрегатами, блоками и энергетическими сетями (линиями передачи). Наиболее важные и сложные агрегаты— это АСУ тепловых и атомных электростанций (рис. 7-2). В 1976 г. АСУ ТП были введены на Змиевской, Бурштынской и Молдавской ТЭС. Экономическая эффективность АСУ ТП еще недостаточно высока, срок окупаемости затрат составил от 1,8 до 3 лет (средний срок окупаемости АСУ ТП в целом по промышленности составляет 1—1,5 года).  [c.270]

Значительно расширились также процессы автоматизации в промышленности и на транспорте. Если в первые послевоенные годы автоматизация охватывала только отдельные технологические и энергетические агрегаты, то в наше время все чаще внедряются установки комплексной автоматизации в виде автоматических линий, цехов и предприятий. Успешно работают автоматизированные системы управления технологическими процессами в энергетике, черной и цветной металлургии, нефтедобывающей, газовой, нефтехимической, химической, пищевой и других отраслях промышленности. К числу наиболее совершенных относятся принятые в опытнопромышленную эксплуатацию автоматизированные системы управления блоком котел — турбина — генератор мощностью 200 тыс. кет и процессом каталитического крекинга. В обеих системах электронно-вычислительные машины автоматически управляют ходом процесса, выполняя расчет его оптимальных параметров и обеспечивая стабилизацию режимов.  [c.14]

Работы в области полупроводниковых логических элементов привели к созданию методики расчета оптимальных схем элементов, учитывающей как наихудшие, так и вероятностные сочетания значений параметров, к разработке способов повышения надежности элементов за счет построения избыточных структур и созданию различных полупроводниковых элементов и систем. Разработанные элементы нашли широкое применение для построения различных систем автоматического управления, в том числе телеавтоматической системы управления поточно-транспортными линиями. Была разработана единая серия полупроводниковых логических элементов общепромышленного назначения, в которую вошли логические и функциональные элементы, элементы времени, усилителр и блоки питания (рис. 47). Единая серия разрабатывалась совместно Институтом автоматики и телемеханики АН СССР, Всесоюзным научно-исследовательским институтом электропривода, Центральным научно-исследовательским институтом МПС, Конструкторским бюро Цветметавтоматика и рядом других организаций. Разработанная серия полупроводниковых логических элементов работает при колебаниях напряжения питания 20%, изменениях температуры окружающей среды от —45 до +60° С при частоте до 20 кгц.  [c.266]

Совокупность операционных роторных машин, установленных в строгой операционной последовательности и соединенных между собой межопера-ционными транспортными устройствами с единой системой управления циклом движений, является роторной линией. Если в роторной линии имеются также контрольно-измерительные приборы, обеспечивающие контроль качества выпускаемой продукции и контроль правильности работы линии, то такие линии являются полностью автоматическими.  [c.54]

Всякая система автоматического управления машинами и линиями состоит из совокупности цепей управления отдельными исполнительными механизмами и устройствами машины. Каждая цепь управления имеет программоноситель, дешифратор (читающее устройство), передаточно-преобра-зующее устройство, исполнительный механизм (привод) и исполнительный орган. В зависимости от требований, предъявляемых к работе исполнительных механизмов, системы управления могут быть разомкнутыми и замкнутыми. Структурные схемы таких систем управления приведены на рис. XIII.1.  [c.250]

Тип и вместимость межоперациониых накопителей. Автоматические накопители по характеру встраивания в линию делятся на сквозные и тупиковые (рис. 1.10), 5 = 2. Сквозные накопители занимают меньшую площадь, и система управления при этом проще, однако через них проходит весь поток деталей (даже при безотказной работе сопряженных участков). Накопители тупикового типа включаются в работу лишь при отказах одного из сопряженных участков, поэтому они имеют более надежную конструкцию, однако занимают большую площадь.  [c.20]

Чем протяженнее линия и ниже показатели надежности встроенного оборудования, тем больше выигрыш в производительности. На рис. 4.14 показаны графики зависимости ф от числа рабочих позиций q и внецикловых потерь одной позиции В при делении линии на два участка. Как видно, деление линии с В = 0,02 (показатели агрегатных станков) и числом позиций до q = 10- 12 незначительно повышает производительность и не оправдывает дополнительных капиталовложений на встраивание накопителей, усложнение системы управления и пр. Для линии с В = 0,10 (показатели гидрокопировальных автоматов для обработки ступенчатых валов) рост производительности становится уже ощ,утимьш, а при В = 0,15 (показатели оборудования для обработки колец подшипников) применение жесткой межагрегатной связи явно нецелесообразно. Уравнения роста производительности при делении автоматических линий на участки необходимы при решении задачи выбора оптимальной структуры автоматических линий и использованы в примере, рассмотренном в п. 3.2.  [c.95]


Смотреть страницы где упоминается термин Линии Системы управления : [c.341]    [c.133]    [c.143]    [c.196]    [c.256]    [c.248]    [c.123]    [c.124]   
Комплексные автоматические линии и участки Том 3 (1985) -- [ c.348 , c.349 ]



ПОИСК



Автоматические линии для корпусных станочные —Системы управлени

Блокирование в системах управления автоматическими линиями. Системы регулирования параметров настройки инструментов и агрегатов (станков) линии

Линии Классификация систем управления

Принципы управления РТК, роботизированными линиями и производственными системами В. Т. Музычук, В. А. Тимченко)

Система управления автоматических линий 167, 168 — Основы построени

Системы программного управления автоматической линии

Системы управления автоматическими линиями j Основные сведения о системах управления

Системы управления автоматических линий

Системы управления автоматических сборочно-сварочных линий

Системы управления последовательностью фаз работы линии

Системы управления рабочим циклом линии

Способы компоновки, транспортные системы, управление и расчеты производительности автоматических линий

Стыкование электрифицированных линий с различными системами тока и структура управления электроснабжением и энергетическим хозяйством

Т л а в а 23. Радиоинерциальная система управления (Д. П. Лине)



© 2025 Mash-xxl.info Реклама на сайте