Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задание движения и траектория

Задание движения и траектория  [c.101]

Рассмотренный способ задания движения точки называют естественным его можно также назвать способом задания движения точки траекторией и уравнением движения по ней.  [c.100]

При естественном способе задания движения задаются траектория и закон движения точки по траектории. Движение точки рассматривается относительно фиксированной системы отсчета. Задание траектории относительно выбранной системы отсчета осуществляется различными способами уравнениями (возможно, вместе с неравенствами), словесно или в виде графика (в каком-либо масштабе). Например, можно сказать, что траекторией автомобиля, принимаемого за точку, является дуга окружности радиусом 10 км и т. д  [c.107]


При помощи шарнирно-рычажных механизмов многие законы движения и траектории точек выходных звеньев воспроизводятся только приближенно, а иногда и вовсе неосуществимы (например, движение выходного звена с постоянно увеличенной или уменьшенной скоростью по отношению к скорости входного). Это связано с тем, что низшие кинематические пары предоставляют ограниченные возможности в выборе подвижностей. Значительно большие возможности выполнения заданных законов движения и траекторий точек выходных звеньев представляют собой механизмы, звенья которых образуют и высшие кинематические пары.  [c.18]

В большинстве практических задач движение точки определяется геометрическими условиями, вытекающими из заданной конструкции механизма. По этим условиям и находятся уравнения движения и траектория интересующей нас точки.  [c.230]

Механизация основных (технологических) и вспомогательных операций в современном автоматостроении чаще всего осуществляется кулачковыми механизмами, которые обладают широкими возможностями выполнения заданных закономерностей движения и траекторий точек ведомого звена.  [c.97]

При координатном способе задания движения найти траекторию и закон движения точки по ней, а также скорость и ускорение х = ей у = Ы).  [c.273]

Естественный способ. При естественном способе задания движения указываются траектория точки и закон ее движения по этой траектории.  [c.148]

Рассмотрим, как вычисляются скорость и ускорение точки при естественном способе задания движения (см. 37), т. е. когда заданы траектория точки и закон движения точки вдоль этой траектории в виде 5=/(/).  [c.107]

Перейти к естественному способу задания движения, т. е. определить траекторию и закон движения точки вдоль траектории в виде s=l(t). Найти также скорость и ускорение точки.  [c.115]

Таким образом, в случае естественного способа задания движения, когда известны траектория точки, а следовательно, ее радиус кривизны р в любой точке и уравнение движения s = / (/), можно найти проекции ускорения точки па естественные осп и по ним определить модуль и иаправление ускорения точки  [c.176]

В этом параграфе реш аются задачи на определение скорости, ускорения точки, нахождение радиуса кривизны траектории по известным уравнениям движения точки. Определение скорости и ускорения точки по заданным уравнениям движения сводится к дифференцированию уравнений движения н может быть всегда выполнено как при аналитическом, так и при графическом задании движения точки. Одновременно могут быть получены другие данные, характеризующие  [c.236]


Задача № 36. По заданным уравнениям движения точки в координатной форме найти уравнение траектории и уравнение движения по траектории  [c.132]

При заданном движении тепловоза точки О и Oi движутся прямолинейно и прямая АВ не меняет своего направления, т. е. движется поступательно. (При повороте тепловоза или при изменении уклона железнодорожного пути поступательное движение нарушается.) Все точки спарника описывают одинаковые траектории —укороченные циклоиды.  [c.162]

Построим графики для тех же условий, но при естественном способе задания движения. Траектория — вертикальная прямая. Начало отсчета выберем на поверхности Земли в точке, где камень получил начальную скорость, и за положительное направление примем направление вверх. Расстоянием камня (или его дуговой координатой) в таком случае явится высота камня над поверхностью Земли, а уравнением движения по траектории S = 30 — 5 (рис. 15, е). Первые 3 с расстояние (или дуговая координата) увеличивается, достигая при = 3 с значения = +45 м, затем расстояние камня (от начальной точки) уменьшается, и когда камень вернется к исходной точке, расстояние станет равным нулю. Графиком расстояния (иначе называемом графиком движения и графиком дуговой координаты) в данном примере является парабола.  [c.47]

В кинематике точки рассматриваются характеристики движения точки, такие, как скорость, ускорение, и методы их определения при различных способах задания движения. Важным в кинематике точки является понятие траектории. Траекторией точки называется геометрическое место ее последовательных положений в пространстве с течением времени относительно рассматриваемой системы отсчета.  [c.98]

Естественное задание движения точки полностью определяет скорость точки по величине и направлению. Алгебраическую скорость находят дифференцированием по времени закона изменения расстояний. Единичный вектор т определяют по заданной траектории.  [c.109]

Таким образом, задание силы не определяет конкретного движения материальной точки, а выделяет целый класс движений, характеризующийся шестью произвольными постоянными. Действующая сила определяет только ускорение движущейся точки, а скорость и положение точки на траектории могут зависеть еще от скорости, которая сообщена точке в начальный момент, и от начального положения точки. Так, например, материальная точка, двигаясь вблизи поверхности Земли под действием силы тяжести, имеет ускорение g, если не учитывать сопротивление воздуха. Но точка будет иметь различные скорости и положение в пространстве в один и тот же момент времени и различную форму траектории в зависимости от того, из какой точки пространства началось движение и с какой по величине и направлению начальной скоростью.  [c.233]

Механизмы с низшими кинематическими парами нашли широкое применение в машиностроении и приборостроении благодаря возможности обеспечения требуемого преобразования движения при простоте геометрической формы звеньев и элементов кинематических пар. Важное функциональное качество их — это возможность воспроизвести точно или с заданной степенью приближения практически любой закон движения или траекторию исполнительного органа при соответствующем выборе структуры механизма и разме-  [c.54]

Известно множество способов построения комплексных целевых функций. Среди них наиболее часто при синтезе механизмов используют метод взвешенных сумм, при котором все выходные параметры объединяют в две группы. В первую группу входят параметры, значения которых нужно повышать КПД, производительность, точность воспроизведения заданной функции или траектории, а в частном случае — изгибная и контактная прочность зубьев, коэффициент перекрытия и т. п. Целевые функции, соответствующие этим выходным параметрам, обозначим Ф/". Во вторую группу входят параметры, значения которых нужно снижать, например, габаритные размеры, скорости скольжения, углы давления, силы, действующие на звенья и кинематические пары, вибро-активность, неравномерность движения, силовое воздействие на стойку вследствие проявления инерционности. Целевые функции, соответствующие этим параметрам, будем обозначать Ф/". Тогда для случая минимизации комплексной целевой функции свертка векторного критерия будет иметь вид  [c.315]


Здесь можно выбрать как координатный, так и естественный способ задания движения, так как траектория движения точки прямая. Применим здесь естественный способ задания движения.  [c.324]

Изучением движения снаряда в воздухе занимается внешняя баллистика. В настоящем параграфе мы рассмотрим основную задачу внешней баллистики в схематизированной и упрощенной постановке. Отвлекаясь от влияния формы снаряда и его вращения, от изменения плотности воздуха с высотой полета снаряда, от влияния вращения Земли, скорости ветра и многих других факторов, рассматриваемых во внешней баллистике, примем снаряд за материальную точку М массы т, совершающую движение под действием двух сил (рис. 242) силы тяжести G = mg и силы сопротивления воздуха D, направленной по касательной к траектории снаряда в сторону, противоположную движению, и являющейся заданной функцией скорости v эту функцию обозначим через mf(v). Естественные уравнения движения снаряда будут иметь вид  [c.47]

К задачам второго типа относятся и такие задачи, когда заданы проекции вектора скорости или вектора ускорения точки и требуется определить уравнения движения точки в декартовых координатах (1, 2) и уравнение траектории точки. В этом случае на основании формул (6) и (13) необходимо проинтегрировать заданные функции и определить искомые уравнения движения точки. Для определения произвольных постоянных интегрирования нужно использовать данные начальные или конечные условия, приведенные в условии задачи.  [c.240]

Связь между координатным и естественным способами задания движения точки. Если движение точки задано координатным способом (1, 59), то для перехода к естественному способу необходимо определить 1) уравнение траектории точки, 2) положение точки в начальный момент времени (координаты х , у , г точки А) и 3) закон движения точки по ее траектории. Как определить уравнение траектории точки по заданным уравнениям (1, 59), нам уже известно. Для  [c.251]

Определение ускорения точки при естественном способе задания движения. Прежде всего остановимся на некоторых вопросах дифференциальной геометрии. Пусть точка движется относительно системы отсчета Охуг по некоторой неплоской криволинейной траектории.Предположим, что эта точка в рассматриваемый момент 1 находится в точке М на траектории (см. рис. 166). Проведем через точку М касательную к траектории и будем определять положительное направление этой касательной единичным вектором т , направленным по касательной в сторону возрастания дуговой координаты а и равным по модулю единице. Проведем через точку М плоскость, перпендикулярную к касательной эта плоскость называется нормальной плоскостью траектории в точке М. Все Рис. 166 прямые, проходящие через точку М и  [c.254]

Можно установить зависимость между естественным способом задания движения точки и методом полярных координат. Эту зависимость можно получить непосредственно исходя из выражения элемента дуги 5 траектории в полярных координатах. Рассматривая бесконечно малый криволинейный треугольник (рис. 180) М МС, мы можем с  [c.279]

При произвольном движении твердого тела отдельные его точки движутся, вообще говоря, по различным траекториям и имеют в каждый момент времени различные скорости и ускорения. Однако существуют кинематические характеристики, являющиеся одинаковыми для всех точек тела, по крайней мере, в данный момент времени. Основными задачами кинематики твердого тела являются а) установление способа задания движения тела, б) изучение кинематических характеристик движения, в) определение траекторий, скоростей и ускорений всех точек движущегося тела.  [c.109]

Найдите уравнения линий тока и траекторий для трех видов движения жидкости, заданных следующими проекциями скоростей  [c.40]

Управляемость как степень восприимчивости объекта управления к воздействию рулей и устойчивость, характеризующая как бы невосприимчивость к подобному воздействию, являются в известном смысле противоречивыми понятиями. Действительно, чем более устойчив летательный аппарат, снабженный мощным хвостовым оперением, тем труднее осуществить его поворот при помощи руля. Правильный выбор соответствующей аэродинамической схемы, конкретной конструкции летательного аппарата, его органов управления и стабилизации с точки зрения обеспечения наивыгоднейшей управляемости и устойчивости составляет важнейшую задачу современной аэродинамики, в частности аэродинамической теории управления и стабилизации. При этом обеспечение управляемости и устойчивости связано с исследованием динамических свойств такого аппарата, описываемых указанной системой уравнений возмущенного движения. Их коэффициенты определяются компоновочной схемой, которой соответствуют определенные аэродинамические и геометрические характеристики, а также параметры движения по основной траектории. В результате решения этих уравнений выбирают наиболее рациональную динамическую схему летательного аппарата и соответствующую ей конструктивную компоновку, которая бы удовлетворяла баллистическим, технологическим и эксплуатационным требованиям, а также заданной управляемости и устойчивости.  [c.6]

Основные данные для подготовки УП обработки на станке с ЧПУ содержатся в чертеже детали. Но перед вводом в ЭВМ геометрические параметры необходимо представить в закодированном виде. Для описания информации в требуемом виде используется специальный входной язык системы автоматизированной подготовки управляющих программ (САП УП). Входные языки существующих САП, таких, как APT, ЕХАРТ, СПС — ТАУ, АПТ/СМ и др., близки по структуре. Они состоят из алфавита языка инструкций определения элементарных геометрических объектов (точки, прямые линии, окружности) инструкций движения способов построения строки обхода введения технологических параметров способов разработки макроопределений и построения подпрограмм способов введения технологических циклов способов задания различных вспомогательных функций и т. п. Эти системы характеризуются тем, что все основные технологические решения даются технологом, так как входной язык ориентирован только на построение траектории перемещения инструмента, а технологические вопросы, связанные с обеспечением заданной точности и последовательности обработки, выбора инструмента и т. д., не могут быть решены на основе применения входного языка. Для автоматизации проектирования технологических процессов разработаны языки, позволяющие решать технологические задачи. Однако геометрическое описание детали, полученное с помощью этих языков, недостаточно детализировано для проектирования управляющих программ. Поэтому для комплексных автоматизированных систем конструирования и технологического проектирования, включая подготовку УП к станкам с ЧПУ, необходим многоуровневый язык кодирования геометрической информации, учитывающий специфику каждого этапа проектирования.  [c.169]


Естественный способ задания движения точки. Естественным (илИ траекторным) способом задания движения удобно пользоваться в тех случаях, когда траектория движущейся точки известна заранее. Пусть кривая АВ является траекторией точки М при ее движении относительно системы отсчета Охуг (рис, 115). Выберем на этой траектории какую-нибудь неподвижную точку О, которую примем за начало отсчета, и установим на траектории положительное и отрицатель- РисГ ное направления отсчета (как на координат-  [c.98]

При ином способе задания движения, так называемом естественном способе, в пространстве х, у, г задается кривая, по которой движется точка, — траектория точки. На траектории фиксируются начало, положительное направление отсчета и скалярная функция s(t), задаюш,ая длину дуги траектории от начала отсчета до того места, где в момент t находится движущаяся точка  [c.16]

Координатный способ задания движения точки. Когда траектория точки заранее не известна, положение точки в пространстве определяется тремя координатами абсциссой х, ординатой у и аппликатой Z по отношению к прямоугольной (декартовой) системе координат Oxyz (рис. 1.107). Если при этом известна или задана сис-  [c.86]

От координатного способа задания движения точки нетрудно перейти к естественному способу. Из 1.26 известно, что, исключив время из уравнений движения x=/j(/), /=/2(0 получаем уравнение траектории Ф(х, г/)=0. Уравнение движения s =/( ) по этой траектории получаем следующим образом. Так как v=dsiai, то ds=ud/ подставив сюда значение v = vl- -vl, полученное из уравнений движения в осях координат, и проинтегрировав  [c.97]

Из задаваемых условий сшпеза, определяющих свойства texa-низма, обычно выбирают одно основное условие получение заданной траектории, воспроизведение закона движения и т. п. Тогда все остальные условия называются дополнительными. Основное условие обычно выражается в виде целевой функции, экстремум которой определяет выходные параметры синтеза. Если целевую функцию нельзя выразить в явном виде через параметры синтеза, то ее задают алгоритмом вычисления, т. е. через операторную функцию. Например, для механизма на рис. 6.5 в качестве целевой функции представляют максимальное отклонение от расчетного значения функции (положения звена <5) в зафиксированной позиции к ведущего звена  [c.60]

Закон движения точки вдоль заданной траектории. Рассмотрим естественный способ задания движения точки, применяемый в случае, когда траектория точки заранее известна. Траектория может быть как прямая, так и кривая линия. Пусть точка М движется отно-  [c.250]

Наиболее полное представление о движении летательного аппарата позволяет установить теория динамичес[кой устойчивости, в которой рассматривается роль аэродинамических характеристик аппарата и управляющего воздействия в сохранении исходных параметров движения на траектории (устойчивости движения). В настоящей книге в краткой форме излагаются методы решения соответствующей системы дифференциальных уравнений возмущенного движения, акцентируется внимание на качественном анализе полученных результатов. Приводимые решения являются аналитическими и относятся к заданным областям начальных параметров, определяющих упрощенные модели динамической устойчивости. Такие решения имеют весьма большое значение для инженерной практики. Вместе с тем при необходимости получения массовых результатов для какой-либо определенной динамической модели летательного аппарата, обусловливающей многоварианткссть начальных условий и большой сбъем вы-  [c.5]


Смотреть страницы где упоминается термин Задание движения и траектория : [c.113]    [c.295]    [c.245]    [c.266]    [c.162]    [c.22]    [c.156]    [c.16]    [c.148]    [c.79]    [c.86]   
Смотреть главы в:

Курс теоретической механики  -> Задание движения и траектория



ПОИСК



Задание

Задание движения

Задание движения сплошной среды. Поле скоростей. Линии тока и траектории

Задание движения сплошной среды. Поле скоростей. Линии тока и траектории. Трубка тока и струя

Определение скорости точки при задании ее движения естественным способом. Проекции скорости на касательную к траектории

Примеры определения траектории, скорости и ускорения точки при задании ее движения координатным способом

Способы задания движения точки. Траектория

Траектория

Траектория движения

Траектория е-траектория



© 2025 Mash-xxl.info Реклама на сайте