Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Воспроизводимость

Рассмотрим вопрос о том, какие передаточные отношения могут быть воспроизводимы указанными передачами. Для этого воспользуемся формулами для передаточных отношений планетарных механизмов, выведенными в 33,  [c.500]

Оно также представляет собой минимальное количество работы, необходимое для восстановления теплового источника до его первоначальных условий. Обратимый воспроизводимый процесс показан на рис. 43. Для того чтобы передать количество теплоты Q в верхний тепловой источник с температурой Т, от внешнего источ-  [c.205]


Рнс. 43. Рассеянная энергия (потерянная работа). Обратимый воспроизводимый процесс  [c.205]

Номенклатура диагностических параметров автомобильных двигателей определяется ГОСТ 23435—79, а методика испытаний по токсичности ГОСТ 17.2.2.03—77. В них предусмотрено использование только режимов холостого хода двигателей как воспроизводимых в любых условиях. Если на АТП имеется роликовый мощност-ной стенд, то необходимо расширить число контрольных точек с использованием нагрузочных режимов проверки двигателей по ток-90  [c.90]

Более воспроизводимые результаты получаются для перемешиваемой с определенной контролируемой скоростью жидкости и, в частности, для вращающегося дискового электрода, для которого и была в первую очередь сформулирована теория конвективной диффузии.  [c.209]

Значительных успехов достигла термометрия по сопротивлению. Воспроизводимость платиновых термометров для измерения температур от 630 °С вплоть до точки затвердевания золота стала существенно превышать воспроизводимость эталонных термопар, в связи с чем появились реальные перспективы замены последних более точным интерполяционным прибором. Новые сорта платины позволяют получить для низкотемпературных термометров ве-  [c.6]

Важное значение трудов Фаренгейта заключается в том, что он создал как стабильные термометры, так и воспроизводимые шкалы. Он не только первым предложил шкалы с двумя фиксированными точками, но первым нашел применение для хороших термометров.  [c.32]

Воспроизводимость лучших магнитных термометров в широкой области температур выше 0,5 мК. Точность по отношению  [c.128]

В этой главе рассмотрены основные принципы высокоточной реализации реперных точек. Во многих случаях, когда нет необходимости в термометрии высшей точности, ставится вопрос о том, как реализовать реперную точку не со столь высокой воспроизводимостью. На этот вопрос дать уверенный ответ почти никогда не удается. В процедуре реализации реперной точки существует много возмущающих факторов, любой из которых может привести к понижению уровня точности. Обычно  [c.138]

Воспроизводимость тройных точек аргона, азота и метана, реализованных таким образом, составляла 0,1 мК. Для неона и криптона, однако, воспроизводимость несколько хуже, 0,2 мК. Причина, вероятно, состоит во влиянии изотопов этих двух газов. Для таких газов, как аргон, азот, кислород и водород, плато плавления проходит в очень малом температурном интервале, меньшем 0,5 мК, и поэтому легко заметить и воспроизвести плоскую часть плато. Это труднее сделать для таких газов, как неон и криптон, имеющих интервал плавления соответственно 0,8 и 1,5 мК и по этой причине обладающих несколько худшей воспроизводимостью в качестве температур реперных точек. Тройную точку ксенона следует отнести к другой категории, поскольку в этом случае интервал плавления больше 4 мК, что делает ее непригодной для использования в качестве реперной точки температурной шкалы. Это обусловлено большим количеством естественных изотопов, ни один из которых не является доминирующим, а также большим различием их атомных весов 29 % изотопов имеют атомный вес не более 129 г и 19 % — атомный вес свыше 134 г.  [c.164]


Интенсивное изучение методов и техники точной реализации точек плавления и затвердевания металлов было проведено авторами работ [47—50] и [52—56]. Предел воспроизводимости, достигнутый при реализации точек затвердевания металлов, определяется скорее совершенством термометров, используемых для фиксации переходов, чем самими металлами. Необходимость обеспечить достаточную глубину погружения термометра в среду с измеряемой температурой является сложной проблемой (см. гл. 5). В зависимости от конструкции термометра требуется его погружение в зону однородных температур в пределах от 10 до 20 см, чтобы чувствительный элемент в пределах 0,5 мК соответствовал температуре окружения. Поскольку разница АТ между температурой чувствительного элемента и температурой окружения экспоненциально уменьшается с глубиной погружения, нет больших различий в глубине погружения для точки таяния льда, точки затвердевания олова и даже золота. Увеличение глубины погружения для разных конструкций термометров на 1,5—3 см приводит к уменьшению АТ примерно в 10 раз. В точках затвердевания металлов обычно можно обеспечить достаточную глубину погружения, однако при измерении платиновым термометром сопротивления температур других объектов всегда важным ограничением является однородность их температур. Поэтому выше 500 °С платиновым термометром трудно измерить температуру тела с точностью лучше 50 мК. Отметим в этой связи эффективность применения тепловых трубок для увеличения области очень однородной температуры.  [c.169]

Галлий плавится при температуре, близкой к 29,772 °С, и имеет тройную точку на 2 мК более высокую, 29,774 °С. Изучение поведения галлия при плавлении [40] показывает, что он позволяет реализовать воспроизводимую с высокой точностью и удобную реперную точку. Различие в тройной точке от образца к образцу редко превышает [ 0,05 мК воспроизводимость индивиду-  [c.182]

Очевидно, что для правильного использования термометров сопротивления нет необходимости в детальном понимании процессов электропроводности. Однако исследования, направленные на улучшение воспроизводимости результатов измерений, расширение диапазона применения термометров, едва ли будут эффективными без общего знакомства с теоретическими основами их работы. Прежде чем приступить к описанию характеристик и практического использования основных типов термометров сопротивления, рассмотрим кратко теорию электропроводности чистых металлов, сплавов и полупроводников.  [c.186]

Воспроизводимость результатов (под которой здесь понимается краткосрочная стабильность) технического платинового  [c.224]

В промышленных условиях обычно требуется не столько исключительная воспроизводимость, сколько хорошая долговременная стабильность показаний при неблагоприятных условиях (вибрация, давление, перепады температур, агрессивная среда), а также взаимозаменяемость однотипных термометров. Именно поэтому большое значение имеет конструкция корпуса и крепления чувствительного элемента внутри корпуса. Огромное большинство отказов термометров, работающих в условиях промышленного производства, связано о обрывом выводов. Обрыв происходит в результате механических нагрузок, возникающих вследствие теплового расширения при циклических изменениях температуры.  [c.226]

Необходимо отметить, что приведенные выше формулы для определения щ, полученные путем описания перехода плотного слоя в неподвижный (по прямой прямого хода), имеют общий недостаток зависимость расчетной минимальной скорости псевдоожижения от начальной порозности слоя [18, 19]. Дело в том, что гщ плохо воспроизводимо даже для одного и того же слоя. В то же время известно, что uпсевдоожижен-ного слоя в неподвижный, хорошо воспроизводится в повторных опытах [18, 20]. Поэтому, подобно Ребу [21], Беранек и Сокол [22] рекомендуют принимать за скорость  [c.38]


По характеру воспроизведения задаваемой функции F x) функцией Fm(x) механизма различают 1) методы синтеза точных механизмов 2) методы синтеза приближенных механизмов. В первом случае выходные параметры Г механизма определяются нз условия, что воспроизводимая механизмом функция Fm x, Г , Г2,. .., /"г, г ) совпадает с заданной функцией F(x, bj) во всем интервале изменения незавнсимого переменного х  [c.77]

Достоинством метода проверки дымности на режиме свободного ускорения является возможность работы двигателя, хотя и кратковременной, на режимах полных нагрузок в широком диапазоне частоты вращения вала двигателя. Выполнить измерения можно просто и быстро, воспроизводимость режимов высокая, однако надежное измерение дымности могут обеспечить только приборы, работающие на принципе просвечивания отработавших газов. По ГОСТ 21393 75 таким прибором должен быть дымомер, работающий по методу просвечивания. Метод свободного ускорения при контроле дымности дизелей широко применяется в различных странах как при контроле новых, так и находящихся в эксплуатации автомобилей.  [c.33]

Так как работа с водородным электродом связана с некоторыми трудностями, для измерения потенциалов в качестве электрода сравнения часто применяют каломельный электрод, устройство которого показано на рис. 11. Каломельный электрод отличается хорошей воспроизводимостью, большим постоянством потенциала и может быть легко изготовлен. Электродом этого полуэлемен-та является ртуть, электролитом — насыщенный раствор Hgi b и КС различных концентраций. Наиболее удобны в обращении электроды с насыщенным раствором КС1 во избежание возможного испарения воды. Потенциал насыщенного каломельного электрода по отношению к стандартному водородному электроду равен  [c.24]

Метод срависии.ч с мерой — метод из,мерений, при котором измеряемую величину сравнивают с величиной, воспроизводимой мерой. Например (рис, 9.1), для измерения вывозы /. деталей 1 миниметр 2 закрепляют в стойке плиты, Слд. слку миниметра устанав-лквают на нуль по како.му-либо образцу (набору концевых мер) 3, имеющему высоту N, равную номинальной высоте L измеряемых д(Л алей. Затем приступают к измерению партии деталей. О точности размеров L судят по отклонению б стрелки миниметра относительно нулевого поло-Рис. 9.1. Относительное измерение жения,  [c.110]

Существенный прогресс последних лет в эталонной термометрии связан с созданием герметичных ячеек с чистыми газами для воспроизведения температур их тройных точек. Осуществленное по разработанной ККТ программе международное сличение транспортируемых герметичных ячеек разных лабораторий, в том числе ВНИИФТРИ, показало, что их воспроизводимость по крайней мере в несколько раз лучше, чем на традиционной стационарной аппаратуре. Поэтому естественна современная тенденция положить в основу будущей МПТШ в качестве реперных температур только тройные точки в ее низкотемпературной части и точки затвердевания металлов при температурах выше 0° С. Отметим в этой связи превосходные метрологические характеристики точки галлия. В низкотемпературной части МПТШ эта программа, обеспечивающая повышение воспроизводимости будущей шкалы в несколько раз, может быть, без сомнения, реализована вплоть до 24 К, особенно при добавлении к традиционным тройным точкам МПТШ-68 тройной точки вблизи 150 К и точки плавления галлия.  [c.7]

Теперь можно проследить за развитием международных соглашений по термометрии от их истоков. Термометрия с самого начала была включена в сферу деятельности МБМВ, однако в основном в связи с необходимостью измерять температуру и тепловое расширение новых метровых линеек из сплава платины с иридием. Было решено, что к каждому национальному прототипу метра должны прилагаться два ртутных термометра, градуированных в МБМВ. С этой целью по заказу МБМВ парижским мастером Тоннело была изготовлена серия термометров. Для обеспечения высокой стабильности термометры были выполнены из тугоплавкого стекла. Постоянство этих термометров превзошло ожидания и оказалось, что с их помощью можно измерять температуру с воспроизводимостью в несколько тысячных градуса. Были изготовлены термометры трех типов. Термометр типа а имел шкалу от 0 до 100 °С с делениями через 0,1 °С, нанесенными через 5 мм. Термометр типа б имел шкалу до 50 °С, затем следовало расширение капилляра, после чего шкала с делениями через 7 мм возобновлялась на интервале от 95 до 100 °С. Термометр типа в имел шкалу с делениями через 8 мм до 39 °С, после чего следовало расширение, затем короткий участок шкалы вблизи 66 °С, вновь расширение и, наконец, участок шкалы от 97 ДО-100 °С. Создание таких термометров и необходимость их  [c.38]

Газовую термометрию Шаппюи можно считать истоком современной термометрии. Работа выполнялась в специально построенной лаборатории с превосходной термостабилизацией помещения, хотя в ней и отсутствовало многое из того, что сегодня считалось бы необходимым. Основная задача Шаппюи состояла в градуировке лучших ртутно-стеклянных термометров по абсолютной (т. е. термодинамической) температуре. Первая часть работы состояла в детальном изучении газового термометра постоянного объема, заполнявшегося водородом, азотом и углекислым газом в качестве рабочего тела. Результатом были отсчеты показаний набора ртутно-стеклянных термометров Тоннело, четыре из которых были типа а и четыре усовершенствованного типа б со шкалой, расширенной до —39 °С. На рис. 2.1 представлены результаты Шаппюи для трех газов, полученные в период 1885—1887 гг. [15]. Сочетание превосходной воспроизводимости термометров Тоннело и чрезвычайной тщательности работы с газовым термометром позволило получить погрешность менее одной сотой градуса почти во всем интервале — действительно выдающееся достижение.  [c.39]


За исключением области самых низких температур (скажем, ниже 1 К), первичные термометры остаются гораздо более трудоемкими при использовании и менее воспроизводимыми, чем лучшие вторичные термометры. Для большинства целей удобство и воспроизводимость показаний термометра важнее, чем точность по термодинамической шкале. Кроме того, существует очень много физических величин, для измерения которых требуется находить разности температур. К их числу относятся теплоемкость, теплопроводность и другие теплофизические величины. Если отклонения применяемой практической шкалы от термодинамической описываются медленно меняющейся плавной функцией температуры, то серьезных проблем не возникает. Если же, напротив, практическая шкала содержит небольшие, но заметные скачки отклонений от.термодинамической шкалы, то и измерения соответствующих физических величин в зависимости от температуры дадут неожиданные ложные скачки, которые отражают только несовершенство термометрии. Для исключения подобных затруднений необходимо, чтобы практическая шкала была гладкой функцией от термодинамической температуры. Это эквивалентно требованию непрерывности первой и второй производных температурной зависимости разности практической и термодинамической температурных шкал. Если для конк >етного вторичного термометра (такого, например, как платиновый термометр сопротивления) нетрудно рассчитать гладкую практическую шкалу, то получить гладкое соединение шкал для двух разных вторичных термометров гораздо сложнее. Основной источник трудностей заключается в том, что два различных участка шкалы часто основаны на разных физических закономерностях, отклонения которых от термодинамической шкалы не совпадают. Соединение шкалы по платиновому термометру сопротивления и по платинородие-вой термопаре в МТШ-27, так же как и в МПТШ-48 и МПТШ-68, служит хорошим примером типичных трудностей. В МПТШ-68 в этой точке имеется скачок первой производной от разности / — 68, достигающий 0,2%. Такие разрывы можно  [c.44]

В интервале в МПТШ-68 определяется термопарой из платины и сплава 10 % родия с платиной, градуированной при 630,74 °С, а также в точках затвердевания серебра и золота с использованием квадратичной интерполяционной формулы. Разработаны требования к величинам термо-э. д. с. термопары в реперных точках, которым этот прибор должен удовлетворять при воспроизведении шкалы. В гл. 6 будет показано, однако, что эти требования часто неоправданно строги. Было найдено, что если один из электродов термопары изготовлен из чистой платины, а другой содержит родий в пределах от 10 до 13%, то шкала воспроизводится удовлетворительно. Главная проблема при использовании термопар состоит в их недостаточной воспроизводимости. Причины этого рассматриваются в гл. 6 и хотя они понятны, их воспроизводимость очень трудно улучшить. Проблема в том, что измеряемая термо-э. д. с. возникшая вследствие разности температур спаев термопары, зависит не только от этой разности температур, но и от однородности проволоки электродов термопары. Если электроды не вполне однородны, то измеренная термо-э. д. с. начинает зависеть от конкретного распределения температуры вдоль проволок от горячего до холодного спаев. Найдено, что по этой причине для термопар из Р1 —10% НМ/Р в интервале 630—1064 °С достижимая точность не превышает 0,2 °С. Современные требования к точности измере-  [c.55]

Выше были рассмотрены определение МПТШ-68, ее воспроизводимость, гладкость и единственность. Остается еще важный вопрос о том, насколько близко МПТШ-68 соответствует термодинамической температурной шкале. В разд. 2.4 было отмечено, что практическая шкала не обязана воспроиз-  [c.60]

В шкалу ПТШ-76 введены реперные точки по температурам переходов пяти металлов в нулевом магнитном поле из сверхпроводящего в нормальное состояние. Эти металлы входят в прибор, разработанный в НБЭ под названием Стандартный справочный материал ЗКМ 767 . Некоторый недостаток ПТШ-76 состоит в том, что один из рекомендованных способов ее воспроизведения тесно связан с конкретным прибором, который изготавливается только в НБЭ. Можно надеяться, что в будущем удастся изготавливать наборы из пяти металлов с достаточно воспроизводимыми свойствами, с тем чтобы и температуры переходов имели одно и то же значение независимо от происхождения образца. Значения температур, приписанные сверхпроводящим переходам свинца, индия и алюминия, соответствуют среднему значению, полученному по шкалам различных лабораторий после согласования шкал с ТхАс- Неопределенность в этих значениях оценена величиной 0,5 мК- Значение температуры сверхпроводящего перехода цинка получено по магнитному термометру НФЛ, а для кадмия — по магнитному термометру НФЛ и шумовому термометру НБЭ. Детальное описание ПТШ-76, историю ее создания и построения можно найти в работе Дюрье и др. [22].  [c.68]

Температурная зависимость давления насыщенных паров гелия представляет собой настолько удобную шкалу с хорошей воспроизводимостью, что ею пользовались задолго до появления международных соглашений в гелиевой области температур. Еще в 1924 г., до появления МТШ-27, Камерлинг-Оннес в Лейденском университете первым установил температурную шкалу по давлению паров " Не вплоть до критической точки 5,2 К. Шкала уточнялась в Лейдене в 1929, 1932 и 1938 гг. Международное соглашение о шкале по давлению паров Не было заключено в 1948 г., когда представители лаборатории Камерлинг-Оннеса (КОЛ), Королевской лаборатории Монда в Кембридже и нескольких криогенных лабораторий в США согласились принять усредненную шкалу [55]. Эта шкала была основана на термодинамической формуле Блини и Симона [8] для температур ниже 1,6 К, измерениях давлений паров от 1,6 до 4,3 К, выполненных Шмидтом и Кеезомом [51], и на пяти значениях давлений паров между 4,3 и 5,2 К, найденных Камерлинг-Оннесом и Вебером [37]. Построенная таким образом шкала официально не принималась, однако была широко известна и ею пользовались при  [c.68]

В гл. 2 излагалось, каким образом на основе ряда реперных точек и определенных методов интерполяции между ними возникла Международная практическая температурная шкала (МПТШ). Реперными точками первой МПТШ являлись точки кипения кислорода, воды и серы, точки затвердевания воды, серебра и золота. В современной редакции шкалы добавлены точки кипения водорода и неона, тройные точки водорода, неона, аргона, кислорода и воды, точки затвердевания олова и цинка в свою очередь точка кипения серы исключена. В последние годы тройные точки и точки затвердевания считаются более предпочтительными по сравнению с точками кипения по простой причине они могут быть реализованы без необходимости измерять давление. Продолжающийся рост требований к увеличению точности реализации точек кипения приводит к необходимости более точных измерений давления, что сопряжено с очень большими трудностями. Например, для реализации точки кипения воды с воспроизводимостью по температуре 0,1 мК необходимо измерение давления с погрешностью 0,3 Па в свою очередь в точке кипения серы изменения давления 0,3 Па приводят к изменениям температуры на 0,2 мК- Необходимость в расширении МПТШ ниже 13,81 К, т. е. в область, где тройных точек не существует, привело к разработке реперных точек, основанных на фазовых переходах в твердом теле. Наиболее важным шагом в этом направлении явилось принятие в качестве реперных точек нижней части ПШТ-76 температур сверхпроводящих. переходов.  [c.138]


Для воспроизводимости герметичных ячеек тройных точек важнейшим является вопрос чистоты газов при долговременном их хранении. В процессе изготовления и заполнения ячейки необходимо предъявлять к ней такие же требования, как и к сверхвысоковакуумной системе. Это означает, в частности, тщательную очистку внутренней поверхности ячейки, в том числе и от масла, длительную дегазацию при высокой температуре перед заполнением газом высокой чистоты. Герметизация ячейки завершается обычным пережиманием капилляра заполнения и его запайкой. Опыт, накопленный с 1975 г., подтверждает эффективность герметичных ячеек как метода реали-  [c.164]

Описанным методом можно достаточно просто воспроизводить среднюю точку перехода в пределах 0,1 мК. Долговременная воспроизводимость Гс превосходна, она лучше 0,3 мКдля каждого металла в 5КМ 767 ).  [c.167]

Здесь следует упомянуть, что при необходимости добиваться исключительно высокой воспроизводимости результатов (скажем, лучше 20 мкК) ограничивающим фактором будет, скорее всего, нестабильность самонаг-рева. Эта нестабильность обусловлена непостоянством теплового контакта между окружающей средой и измерительным элементом.  [c.212]

В нынешней редакции МПТШ-68 платиновый термометр сопротивления, используемый при температурах выше 630 °С, должен градуироваться лишь путем сравнения со стандартной платино-платинородиевой термопарой. Поскольку даже с учетом эффектов решеточных вакансий и царапания проволоки воспроизводимость результатов у платинового термометра сопротивления гораздо лучше, чем у термопары, эту ситуацию нельзя признать удовлетворительной. Отсутствие общепринятого интерполяционного уравнения является одним из препятствий на пути к более широкому использованию высокотемпературных термометров сопротивления. До тех пор пока не будут проведены надежные сравнения МПТШ-68 с термодинамической шкалой температур в диапазоне от 630 до 1064 °С, от интерполяционного уравнения можно требовать лишь приведения в соответствие показаний платинового термометра сопротивления с квадратичной зависимостью э. д. с. термопары от температуры. Такое уравнение уже существует оно определяет градуировку платинового термометра сопротивления по шкале МПТШ-68 с точностью, достижимой для платино-платинородиевой термопары, а именно 0,2°С.  [c.219]

Точный платиновый термометр сопротивления, который обсуждался в предшествующих разделах, является тонким и хрупким прибором. Механические сотрясения, даже не столь сильные, чтобы повредить кожух, вызывают напряжения в чувствительном элементе и увеличивают его сопротивление. В некоторых конструкциях термометров повторные сотрясения в осевом направлении могут привести к сжатию витков проволоки и в конечном счете к замыканию между витками. Помимо этих деликатных приборов, существуют также технические платиновые термометры сопротивления, конструкция которых выдерживает использование в нормальных производственных условиях. Выпускается множество самых различных типов технических термометров. Общим для всех них является то, что чувствительный элемент прочно закреплен, а часто просто заделан в стекло или керамику. Это Делает термометр исключительно прочным, но в то же время пбнижaJeт стабильность его сопротивления. Причин относительной нестабильности сопротивления по сравнению с точным лабораторным термометром две. Во-первых, чередование нагрева и охлаждения приводит к тому, что вследствие различия в коэффициенте теплового расщирения у платины и материала, охватывающего проволоку, чувствительный элемент испытывает напряжения, приводящие к изменению его сопротивления, и возникают остаточные деформации, которые также сказываются на величине сопротивления. Влияние механических напряжений можно снять отжигом при достаточно высокой температуре, однако остаточные деформации устранить, разумеется, невозможно. Во-вторых, при высоких температурах происходит изменение сопротивления вследствие диффузионного загрязнения платины окружающим материалом. Хотя воспроизводимость результатов, получаемых с помощью технических платиновых термометров сопротивления, уступает воспроизводимости прецизионных платиновых термометров сопротивления, она существенно лучще, чем у термопар, работающих в условиях технологического процесса. По этой причине многие миллионы платиновых термометров сопротивления используются в технике, промыщленности, авиации и т. д.  [c.221]

Нет причин полагать, что стабильность сопротивления германия р- или п-типа является одним из факторов, ограничивающих воспроизводимость результатов, получаемых с германиевыми термометрами сопротивления. Небольшие случайные скачки сопротивления, которые иногда наблюдаются при циклическом изменении температуры, возникают скорее всего на спаях между золотыми выводами и германием. В этих спаях сосредо-  [c.238]


Смотреть страницы где упоминается термин Воспроизводимость : [c.205]    [c.206]    [c.174]    [c.209]    [c.7]    [c.44]    [c.49]    [c.51]    [c.54]    [c.55]    [c.167]    [c.179]    [c.182]    [c.225]    [c.226]    [c.239]   
Смотреть главы в:

Измерение лазерных параметров  -> Воспроизводимость

Карманный справочник инженера-метролога  -> Воспроизводимость


Взаимозаменяемость, стандартизация и технические измерения (1987) -- [ c.114 ]

Основные термины в области метрологии (1989) -- [ c.0 ]

Карманный справочник инженера-метролога (2002) -- [ c.19 ]



ПОИСК



Воспроизводимости точки серы. Влияние давления на точку серы (перевод Беликовой Т. П. и Боровика-Романова

Воспроизводимость измерений — Поняти

Воспроизводимость результатов

Воспроизводимость результатов измерения

Воспроизводимость точки кипения воды. Влияние давления на точку кипения (перевод Беликовой Т. П. и Боровика-Романова

Воспроизводимость точки кипения ртути. Влияние давления на точку кипения ртути (перевод Беликовой Т. П. и Боровика-Романова

Воспроизводимость точки льда (перевод Шаревскон

Воспроизводимость точки льда и тройной точки воды. Температура тройной точки воды (перевод Беликовой Т. П. и Боровика-Романова

Воспроизводимость частоты

Измерения — Воспроизводимость

Методы оценки повторяемости и воспроизводимости результатов испытаМетоды испытаний на воздействие внешних факторов

Сверхпроводящие точки воспроизводимость

Сертификация элементов систем качества с использованием индексов воспроизводимости производственных процессов

Стабильность и воспроизводимость длины волны

Температура воспроизводимость

Термисторы воспроизводимость показаний

Термометр воспроизводимость

Термометр, воспроизводимость градуировки

Термометр, воспроизводимость градуировки азотный

Термометр, воспроизводимость градуировки водородный

Термометр, воспроизводимость градуировки воспроизводимость

Термометр, воспроизводимость градуировки вспомогательный

Термометр, воспроизводимость градуировки глубина погружения

Термометр, воспроизводимость градуировки идеальный

Термометр, воспроизводимость градуировки конструкция

Термометр, воспроизводимость градуировки модели

Термометр, воспроизводимость градуировки объема

Термометр, воспроизводимость градуировки платиновый

Термометр, воспроизводимость градуировки показаний

Термометр, воспроизводимость градуировки постоянного давления

Термометр, воспроизводимость градуировки стандартный

Термометр, воспроизводимость градуировки характеристики

Термометр, воспроизводимость градуировки чувствительность

Термометр, воспроизводимость градуировки чувствительный элемен

Точка затвердевания воспроизводимость

Точка тройная воспроизводимость

Шкала температур абсолютная термодинамическая (Кельвина) воспроизводимость



© 2025 Mash-xxl.info Реклама на сайте