Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Определения и общие уравнения

Определения и общие уравнения................... 22  [c.10]

ОПРЕДЕЛЕНИЯ И ОБЩИЕ УРАВНЕНИЯ  [c.22]

Так как значения q и <72 находятся по формулам (7. 8) и (7. 9), то термический к.п.д. цикла Карно может быть определен по общему уравнению (7. 4), т. е.  [c.118]

Какие общие расчетные зависимости известны в теории смесей н как они получаются (определение концентрации, средний молекулярный вес, пересчет концентраций, основные схемы смешения и общие уравнения, характеризующие каждую из этих схем). Дайте выводы и математические формулировки соотношений, характеризующих газовые смеси.  [c.107]


Теория контактных напряжений и деформаций имеет большое практическое значение, и поэтому формулы для определения размеров площадки контакта, сближения соприкасающихся тел и наибольшего давления получили широкое распространение. Но обоснование применяющихся формул почти не приводится в массовой литературе и заменяется ссылками на общие курсы теории упругости или на работы А. Н. Динника [12] и Н. М. Беляева [5, 6, 7] . Изучение этих материалов осложняется, в свою очередь, наличием в них малознакомых широким инженерным кругам математических уравнений теории потенциала и общих уравнений теории упругости.  [c.381]

Расчет нагрузки на элемент каркаса и общее уравнение расчета напорных рукавов. Если при определении К перейти от 7 т и Го к и 2, получим (при ц = 0,5)  [c.141]

Применение критерия устойчивости к первой группе частных решений. Применим определения и общие методы последнего параграфа к рассмотренным частным случаям движения бесконечно малого тела. Первоначальные диференциальные уравнения ( 152) имеют вид  [c.268]

В уравнения (13.19) и (13.20) входят моменты трения, которые определяются из уравнений (13.18), но так как реакции All за и / 34 неизвестны и подлежат определению, то из уравнений (13.19) и (13.20) не могут быть непосредственно определены и составляющие и F j . Таким образом, задача сводится к совместному решению всех шести уравнений равновесия, которые в общем случае могут быть составлены для звеньев 2 и 5. Совместное решение такой системы уравнений приводит к чрезвычайно громоздким вычисления.м, поэтому для практических расчетов лучше применять способ последовательных приближений, к изложению сущности которого мы и перейдем.  [c.259]

Умножая уравнение (8-99) на общее число молей и используя определение г по уравнению (8-97), можно выразить общую избыточную свободную энергию в функции чисел молей отдельных компонентов  [c.260]

Наиболее важным и общим методом расчета изменения изобарно-изотермического потенциала AGr является определение его из данных химического равновесия по уравнению изотермы химической реакции.  [c.18]

Для определения постоянных А и В уравнения (33) нужно AGf и АНт для данной группы соединений отнести к одному и тому же количеству простого вещества, общего для всех соединений, и построить график AGt = / (A f)  [c.25]

Уравнение (16.]) содержит два неизвестных напряжения а, и пе. Для их определения, придерживаясь общего плана решения статически неопределимых задач, рассмотрим еще геометрическую и физическую стороны задачи.  [c.445]


Изложенные выше понятия о проекте ЭМП и процессе проектирования позволяют с помощью обобщенной модели и ее уравнений перейти к общей теоретической постановке задачи проектирования. При этом необходимо абстрагироваться от физического содержания понятий и оперировать только их математическими символами и свойствами. Поступая таким образом, проект можно рассматривать в виде математического объекта или системы, однозначно определяемой заданием определенного числа параметров, под которыми понимаются все проектные данные. Учитывая зависимость некоторых проектных данных от времени, в общем случае проект ЭМП следует представлять в виде динамической многопараметрической системы. Такой подход позволяет для проектирования использовать математический аппарат синтеза многопараметрических динамических систем.  [c.68]

Приведение сил инерции к силе, равной главному вектору, и паре сил, момент которой равен главному моменту, является одним из важных этапов решения задач динамики несвободной систе.мы материальных точек в случае применения метода кинетостатики, либо общего уравнения динамики (см. ниже 5), а также при определении динамических давлений на ось вращающегося твердого тела (см. ниже 3). Отметим, что с силами инерции связаны формальные методы решения задач. Все упомянутые далее задачи могут быть решены несколько проще без применения сил инерции. В этой книге излагаются методы решения задач с использованием сил инерции лишь потому, что эти методы, в силу сложившихся исторических традиций, еще довольно распространены в инженерной практике. В динамике нет таких задач, которые не могли бы быть решены без применения сил инерции. В дальнейшем неоднократно дается сравнение методов решения задач с использованием и без использования сил инерции.  [c.342]

Из общего уравнения динамики вытекают дифференциальные уравнения движения системы материальных точек, в которые не входят силы реакций идеальных связей. Возможно решение как прямых (определение сил по заданному движению), так и обратных задач (определение движения по заданным силам) динамики. При решении обратных задач приходится интегрировать составленную систему дифференциальных уравнений движения. Заметим, что использование общего уравнения динамики является формальным методом составления дифференциальных уравнений движения системы. Этот метод является менее удобным и менее эффективным по сравнению с применением уравнений Лагранжа второго рода (читатель сможет в этом убедиться, ознакомившись с содержанием следующего параграфа).  [c.414]

Удобство применения общих теорем динамики заключается в возможности упростить интегрирование дифференциальных уравнений движения системы. Однако эти общие теоремы могут (как показано выше) применяться только в некоторых случаях. Удобно и то, что в формулировки общих теорем динамики не входят внутренние силы, определение которых обычно связано со значительными трудностями (это замечание о внутренних силах в равной мере относится к дифференциальному уравнению вращения твердого тела вокруг неподвижной оси, дифференциальным уравнениям плоского движения твердого тела и динамическим уравнениям Эйлера). Лишь в формулировку теоремы об изменении кинетической энергии системы материальных точек входят не только внешние, но и внутренние силы (в частном случае неизменяемой материальной системы, например абсолютно твердого тела, и в этой теореме фигурируют только внешние силы).  [c.544]

Используя общие уравнения статики, можно дать динамическое определение твердого тела или характеристику уравновешенности определенных сил, имеющее место только для твердого тела. Это определение следующее абсолютно твердое тело находится в равновесии, если на него действуют две силы, имеющие одну и ту же линию действия, равные по величине и противоположные по направлению.  [c.116]

Совокупность динамических и кинематических уравнений Эйлера является системой шести нелинейных дифференциальных уравнений первого порядка относительно ф, гр, 0 и сот,, со . При заданном моменте внешних сил М и известных начальных условиях определение движения тела сводится к указанной системе дифференциальных уравнений. В общем виде эта задача не решена. Однако несколько частных случаев движения тела около неподвижной точки всесторонне исследованы и уравнения их проинтегрированы. Среди них наиболее простой и широко применяемый в технике случай движения симметричного гироскопа, для которого А = В.  [c.180]


Применение общего уравнения динамики для определения внешних воздействий и параметров механических систем  [c.316]

Вывод дифференциальных уравнений движения машины и уравнении для определения динамических усилий. Уравнения движения составим с помощью общих теорем динамики. Осво-  [c.96]

Основная сложность при решении уравнений заключается в том, что задачи статики стержней относятся к двухточечным краевым задачам, когда решение должно удовлетворять определенным условиям в начале и в конце интервала интегрирования, в отличие от одноточечных краевых задач — задач Коши, когда все условия, которым должно удовлетворять решение, известны в начале интервала интегрирования. Поэтому хорошо разработанные методы решения систем дифференциальных линейных (и нелинейных) уравнений для одноточечных задач использовать для решения двухточечных задач в общем случае нельзя. В настоящее время имеется ряд методов численного решения линейных двухточечных задач (имея в виду стержни), которые получили распространение в расчетной практике метод начальных параметров, метод прогонки [2], метод конечных элементов [15]. Точное аналитическое решение линейных уравнений равновесия стержня, например (1.112) — (1.115), возможно только для случая, когда элементы матрицы Ах— постоянные числа [этот случай будет рассмотрен в 5.2, где изложены теория и методы расчета винтовых стержней (цилиндрических пружин)]. Для уравнений с переменными коэффициентами возможны только численные или приближенные методы решения.  [c.61]

Переходим к определению момента и векторов и Общее решение уравнения (5.100) можно представить в следующей  [c.213]

В примере (рис. 6.7) уравнение Бернулли позволило определить приращение давления только в одной точке обтекаемого контура. В остальных точках обтекаемого контура получить давление, действующее на тело, из уравнения Бернулли нельзя. Для определения эпюры давлений р (рнс. 6.8) надо решать общие уравнения движения жидкости с учетом ее взаимодействия с твердым телом. К сожалению, получить теоретически аэродинамические силы, особенно с учетом реальных свойств жидкости или газа (сжимаемости, вязкости) и режимов обтекания, для разных профилей сечений стержня не представляется возможным. Поэтому основную роль при определении аэродинамических сил имеют экспериментальные исследования, которые полностью подтверждают сделанный качественный вывод о том, что аэродинамические силы зависят от квадрата скорости потока.  [c.237]

Рассмотрим движение твердого тела, закрепленного в одной точке. В этом случае тело не может совершать поступательного движения, так как скорость одной его точки всегда равна нулю, и движение можно представить как вращение вокруг мгновенной оси, которая изменяет свое положение и в теле, и в пространстве, но все время проходит через неподвижную точку тела. Мы могли бы выбрать три неподвижные оси, проходящие через эту точку, и написать уравнения моментов (13.25) относительно этих трех осей. Однако положение этих осей в теле, вообще говоря, будет изменяться, и связь между моментами импульса относительно трех осей и скоростями точек тела будет сложной. С другой стороны, если мы выберем оси, жестко связанные с телом, то связь между моментами импульса относительно этих осей и скоростями точек тела будет достаточно простой, но определение характера движения этих осей окажется сложной задачей. Поэтому мы не будем рассматривать в общем виде задачу о движении тела, имеющего одну закрепленную точку, а ограничимся только специальным, но важным случаем, когда тело быстро вращается вокруг мгновенной оси, а требуется определить, как будет двигаться эта ось под действием внешних моментов.  [c.446]

Для определения натяжения в ветви нити 1—2 мысленно разрежем нить и заменим ее действие на груз реакцией Tj-a (рис. 211). Общее уравнение динамики  [c.303]

Если задача теории пластичности решается в напряжениях, то для их определения в общем случае нужно решить уравнения (10.24) и систему из шести нелинейных дифференциальных уравнений в частных производных, которая является обобщением уравнений Бельтрами — Митчелла. Ввиду громоздкости названные уравнения  [c.305]

Применение термодинамических потенциалов и, I, Р, Ф для анализа процессов изменения состояния тела и определения производимой при этом работы и количества полученной телом теплоты представляет собой наиболее общий метод термодинамического анализа. Общность и универсальность этого метода объясняются тем, что знание хотя бы одного из термодинамических потенциалов позволяет определить как термическое, так и калорическое уравнения состояния тела, а следовательно, и все основные термодинамические свойства тела и характеристики происходящего с ним процесса.  [c.159]

Связь между плотностью, температурой и давлением устанавливается уравнением состояния, которое для реальных жидкостей и газов выводится в кинетической теории. Однако ввиду сложности общего уравнения состояния и затруднительности определения входящих в него констант, для качественного анализа свойств этих сред пользуются приближенными теоретическими или эмпирическими уравнениями. Получило широкое применение, например, уравнение Ван-дер-Ваальса  [c.14]

Таким образом, решение задачи изгиба пластинок сводится к определению в области, совпадающей с ее сечением, некоторого частного решения неоднородного бигармонического уравнения и общего решения уже однородного уравнения.  [c.282]


Круглая пластинка, шарнирно-опертая по контуру, несет равномерно-распределенную нагрузку. Определить максимальные прогиб и моменты, составив общие уравнения для их определения.  [c.152]

Определение угла нутации. Обратимся теперь к дифференциальным уравнениям (35 ). Принимая во внимание оба первых интеграла (44), (45) и общие уравнения (35 ) (достаточно третьего), легко выделить уравнение для определения переменного з==соз6 и свести задачу к интегрированию уравнения первого порядка типа  [c.113]

Гамильтона. Как было сказано в п. 7, мы должны доказать, что если ДЛЯ определенного движения М системы, по отношению ко всем синхронно-варьированным движениям, имеющим одни и те же конфигурации на концах промежутка, справедливо (15), то в силу этого, как необ одимое следствие, будет справедливо и общее уравнение динамики (13).  [c.400]

При анализе некоторых полей течения в гл. 5 предполагалось вначале, что кинематика движения предопределяется известными граничными условиями и, вообще говоря, физической интуицией-Следующей стадией было вычисление поля напряжений на основании соответствующего уравнения состояния. В гл. 5 рассматривалось общее уравнение для простой жидкости с затухающей памятью, но эти стадии в методике остаются, по существу, теми же самыми, если даже предполагается, что имеет место более частное уравнение состояния. Действительно, тип уравнения состояния, которое могло бы быть использовано, часто подсказывается кинематическим типом течения, о котором известно, что он хорошо описывается определенным типом уравнения состояния. Третьей стадией расчета будет подстановка полей скоростей и напряжений в уравнения движения и определение полей давления и некоторых параметров кинематического описания, которые еще не были определены на первой стадии.  [c.271]

Современное состояние механики многофазных сред характеризуется интенсивным развитием теоретических и экспериментальных исследований. Разработаны и математически описаны некоторые идеализированные модели движения таких сред. Возможные модели и соответственно совокупности описывающих зти модели уравнений довольно многочисленны. Очевидно, решения разных задач должны основываться на существенно различных допущениях и упрощающих предпосылках. Следовательно, оправданы стремления создать и математически описать модель, которая для определенного круга задач дает наилучшие результаты в ограниченных пределах при.менения. В рамках каждой модели наиболее простыми оказываются решения квази-одно.мерных задач. Следует отметить, что наиболее законченный ВР1Д и.меет и соответствующий раздел механики гомогенных сред (одномерное движение жидкости и газа). Естественно, что и в книге oy в одномерной трактовке представлены наиболее законченные решения. Вместе с тем широко развернуты теоретические исследования, имеющие целью получить наиболее общие уравнения, описывающие движение многофазной (многокомпонентной) среды полидисперсной структуры при наличии теплообмена, фазовых переходов, с учетом метастабильности и неравновесности процесса. Такие уравнения получены и для некоторых частных случаев решены.  [c.5]

Мы рассмотрим здесь ангармонические эффекты третьего порядка, происходящие от кубических по деформации членов в упругой энергии. В общем виде соответствующие уравнения движения оказываются очень громоздкими. Выяснить же характер возникающих эффектов можно с помощью следующих рассуждений. Кубические члены в упругой энергии дают квадратичные члены в тензоре напряжений, а потому и в уравнениях движения. Представим себе, что в этих уравнениях все линейные члены перенесены в левые, а все квадратичные — в правые стороны равенств. Решая эти уравнения методом последовательных приближений, мы должны в первом приближении вовсе отбросить квадратичные члены. Тогда останутся обычные линейные уравнения, решение Uo которых может быть представлено в виде наложения монохроматических бегущих воли вида onst-е определенными соотношениями между (О и к. Переходя к следующему, вгорому, приближению, надо положить и = и,, + Uj, причем в правой стороне уравнений (в квадратичных членах) надо сохранить только члены с Uq. Поскольку Uq удовлетворяет, по определению, однородным линейным уравнениям без правых частей, то в левой стороне равенств члены с Uq взаимно сокращаются. В результате мы получим для компонент вектора Uj систему неоднородных линейных уравнений, в правой части которых стоят заданные функции координат и времени. Эти функции, получающиеся подстановкой Uq в правые стороны исходных уравнений, представляют собой сумму членов, каждый из которых пропорционален множителю вида [(к,-к,) г-(й)1-(о,)/] или где tt i, (02 и к , — частоты и волновые векторы каких-либо двух монохроматических волн первого приближения.  [c.145]

Книга состоит из десяти глав. По охватываемому материалу I Vi главы соответствуют в целом традиционным курсам механики. Задачи остальных четырех глав связаны с тематикой спецкурса Методы интегрирования канонических систем . В отличие от лагранжева формализма гамильтонов подход позволяет в принципе найти решение как каноническое преобразование начальных данных, не обращаясь непосредственно к уравнениям. В этом аспекте канонический формализм является мощным рабочим методом, позволяющим получить приближенное решение широкого круга физических и математических задач [1]. Рассмотрены проблемы, относящиеся к интегр ированию нелинейных уравнений, преобразованиям Дарбу и Фрелиха, ВКБ-приближению, определению собственных векторов и собственных значений, гамильтоновой теории специальных функций. Дополнительные преимущества дает метод удвоения переменных, позволяющий использовать канонический формализм для решения нового класса задач алгебраических и трансцендентных уравнений, сингулярио-возму-щенных уравнений, построению Паде-аппроксимантов, обращению интегралов и т. д. Широта диапазона рассматриваемых проблем обусловлена возможностью приведения к гамильтоновой форме нелинейных систем общего вида и универсальностью используемых методов интегрирования.  [c.3]

Следует, однако, заметить, что запросам инженерной практики и, в частности, техники железнодорожного строительства и строительства мостов в XVIII—XIX вв. в большей мере отвечали простые решения задач, касающихся деформации стержней и стержневых систем. Вопросы расчета деформируемых систем составили направление, которое теперь известно как теория сооружений, или строительная механика. В строительной механике вопросы расчета стержневых систем в конце XIX и первой трети XX вв. были доведены до высокой степени совершенства и сыграли существенную роль в развитии техники в этот период. Теория упругости также развивалась в названный период, но ее уравнения и общие решения из-за сложности не могли служить непосредственно рабочим аппаратом инженера и представляли собой в большинстве случаев решение определенных научных вопросов.  [c.7]

Для определения (в общем ниде) деформаций рмбиваем стержень на три участка и составляем уравнения для крутящего момента и углов закручивания по участкам  [c.128]

Второй способ расчета приводит к большим допустимым нагрузкам, нежелп первый (при а = 30° на 19%). Заметим, что для определения предельного состояния системы, т. е. нагрузки Р , нет необходимости прослеживать поведение системы в упругой области и последовательность перехода ее элементов в пластические состояния. В данном случае в предельном состоянии все три стержня текут, поэтому достаточно положить Ni = Ni — N3 — a F и составить уравнение равновесия, мы получим формулу (2.5.5). Так получилось вследствие симметрии системы, вообще же, для возможности общего течения достаточно, чтобы напряжения достигли предела текучести в двух стержнях. В случае, изображенном на рис. 2.3.3, заранее не известно, какой стержень потечет первым, какой вторым и который из трех остается упругим. Поэтому, казалось бы, для такой задачи необходимо повторить проделанный выше анализ, который, естественно, окажется более сложным вследствие асимметрии системы. Но в предельном состоянии могут быть только три воз-люжности  [c.57]


Для механики сплошной среды вообще и механики деформируемого твердого тела в частности аппарат теории тензоров является естественным аппаратом. В большинстве теорий выбор системы координат, в которых ведется рассмотрение, может быть произвольным. Проще всего, конечно, вести это рассмотрение в ортогональных декартовых координатах. Очевидно, что доказательство общих теорем и установление обнщх принципов при написании уравнений именно в декартовых координатах не нарушает общности. Что касается решения задач, то иногда бывает удобно использовать ту или иную криволинейную систему координат. Однако при этом почти всегда речь идет о простейших ортогональных координатных системах — цилиндрической или сферической для пространственных задач, изотермической координатной сетке, порождаемой конформным отображением, для плоских задач. В некоторых случаях, когда рассматриваются большие деформации тела, сопровождаемые существенным изменением его формы, система координат связывается с материальными точками и деформируется вместе с телом. При построении соответствующих теорий преимущества общей тензорной символики, не связанной с определенным выбором системы координат, становятся очевидными. Однако в большинстве случаев эти преимущества используются при формулировке общих уравнений, не открывая возможности для решения конкретных задач. Поэтому мы будем вести основное изложение в декартовых прямоугольных координатах, случай цилиндрических координат будет рассмотрен отдельно.  [c.208]

Таким образом, в общем случае течений излучающего многокомпонентного химически реагирующего газа необходимо решать одно скалярное уравнение неразрывное и для всей смеси в целом, ц — v — 1 скалярных уравнен т сохранения массы компонентов, v уравнений для концентраций химических элементов, одно векторное уравнение (или три скалярных) для определения компонент скорости, одно скалярное уравнение сохранения энергии, интегродиффе-ренциальное уравнение для определения спектргльной плотности энергетической яркости, р, — 1 векторных уравнений (или Зр — 3 скалярных) для определения плот ности диффузионного потока компонентов с учетом двух алгебраических соотношений для с и Ja, уравнение состояния  [c.186]


Смотреть страницы где упоминается термин Определения и общие уравнения : [c.87]    [c.159]    [c.270]    [c.44]    [c.280]    [c.130]   
Смотреть главы в:

Введение в небесную механику  -> Определения и общие уравнения



ПОИСК



554, 555—557, 559—561 определение упругого усилия и момента, 554 потенциальная энергия — при деформации общего вида, 41, 557, 55Н уравнения равновесия —, 561—563 уравнения колебания — 41, 565 граничные

Начальные напряжения общие уравнения для их определения

Общее уравнение статики. Условия равновесия системы. Определение реакций связей

Общие определения

Общие уравнения

Общие уравнения для определения потери напора при равномерном движении

Применение общего уравнения динамики для определения внешних воздействий и параметров механических систем

Уравнения для определения



© 2025 Mash-xxl.info Реклама на сайте