Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вывод приближенных уравнений из уравнений теории упругости

Различные способы вывода приближенных уравнений из уравнений теории упругости могут отличаться друг от друга видом аппроксимирующих функций и характером аппроксимации.  [c.11]

Вывод приближенных уравнений из уравнений теории упругости  [c.226]

Общая схема вариационного вывода одномерных приближенных моделей стержней из уравнения теории упругости заключается в следующем. Делаются предположения (гипотезы) о зависимости смещений от поперечных координат в текущем сечении стержня (рассмотрение ведется в лагранжевых координатах)  [c.32]


Поэтому при выводе приближенных, или инженерных уравнений колебаний вырожденных вязкоупругих систем мы также будем исходить из трехмерной линейной теории вязкоупругости применительно к сплошным средам, проявляющим мгновенную упругость, при этом зависимость компонентов тензора напряжений от компонентов тензора деформаций будем принимать в виде больцманов-ских соотношений типа (1.20) или (1.21).  [c.227]

Первый вариационный принцип для энергии использовался при выводе интегралов, из которых получаются дифференциальные уравнения теории упругости, но он имеет более широкое применение, благодаря тому что с его помощью можно найти приближенные выражения для деформации упругих балок, пластинок и. других тел во многих важных для приложений случаях, когда проинтегрировать дифференциальные уравнения и найти точное решение невозможно. Швейцарский математик Вальтер Ритц ), к сожалению, скончавшийся в раннем возрасте, показал, как можно находить такие приближенные решения. Например, в случае изгиба пластинки он предложил представить уравнение ее изогнутой поверхности в виде суммы конечного числа членов  [c.151]

Теория оболочек является асимптотической теорией, существенно опирающейся на малость относительной толщины Л. С этим обстоятельством связаны положенные в основу вывода двухмерных уравнений гипотезы Кирхгофа-Лява и их модификации [80] для случая больших деформаций оболочек из нелинейно-упругого материала. Система двухмерных уравнений теории оболочек является сингулярно возмущенной — она содержит малый параметр Л при старших производных. В результате асимптотического анализа этой системы (главным образом, в линейном приближении) получены решения многих задач статики (см. [13, 52] и др.), динамики [3, 5, 14, 30, 89] и устойчивости [16, 65, 67, 71].  [c.328]

В этой главе приводятся необходимые для дальнейшего изложения соотношения из теории поверхностей и их деформаций, уравнения равновесия теории оболочек, соотношения упругости и некоторые приближенные варианты этих уравнений и соотношений. С выводом и подробным обсуждением этих уравнений можно познакомиться по монографиям [21, 29, 32, 37, 40, 80, 87, 136] и многим другим.  [c.16]

Из проекционной трактовки вывода уравнений теории оболочек на основе уравнений трехмерной теории упругости следует, что вид, свойства, устойчивость приближенного решения и сходимость его к точному обусловливаются надлежащим выбором координатных вектор-функций I,-, ifi.  [c.16]


В 1757 г. в работе О силе колонн Эйлер вернулся к теории продольного изгиба. Прежде всего он дал более правильное толкование абсолютной упругости Ек , установив, что она должна иметь размерность силы, умноженной на квадрат длины. Далее он предложил более простой вывод формулы (5) для критической силы, исходя из приближенного дифференциального уравнения оси стержня  [c.167]

Метод асимптотического интегрирования обобш ен также для вывода уравнений динамики пластинок при больших перемещениях (Л. Я. Айнола, 1965, 1966). Результаты показывают, что известные уравнения мембранной теории Кармана, линейной теории изгиба с плоским напряженным состоянием и чисто линейной теории являются при определенных условиях нагрузки асимптотическими приближениями уравнений геометрически нелинейной теории упругости. Указанные выше исследования должны представлять интерес в отношении методики — уравнения движения и граничные условия выводятся из требования, чтобы вариация соответствующего функционала равнялась нулю с требуемой асимптотической точностью.  [c.264]

Выводу приближенных уравнений и их анализу посвящены, в частности, работы [23 43 73 103]. Обширные исследования в этом направлении проведены У. К. Нигулом и его сотрудниками [4 64— 67], которые определили области применимости приближенных уравнений, сопоставив численные результаты, вытекающие из уравнений теории упругости и из приближенных уравнений.  [c.12]

Пластиной называется тело, ограниченное двумя плоскостями Z = h и цилиндрической поверхностью, образующие которой параллельны оси z. В плоскости z = О, называемой срединной плоскостью, выбираются произвольным образом координаты Ха (а = 1,2). Предполагается, что размеры пластины в плане значительно больше, чем толщина 2h (рис. 12.4.1). Так же, как в 2.1, где речь шла о стержнях, будем принимать за 1[аимень-ший поперечный размер наименьшее расстояние между касательными к контуру пластины. Под контуром пластины понимается контур сечения цилиндрической поверхностью плоскости Z = 0. Так же, как теория изгиба балок, теория пластин может быть построена при помощи любого из вариационных принципов. Если при выводе уравнения изгиба мы отправлялись от вариационного принципа Лагранжа, то здесь мы примем за основу вариационный принцип Рейснера (не в силу каких-то его преимуществ, а для иллюстрации метода). Дело в том, что в физически нелинейной теории пластин, изготов- Рис. 12.4.1 ленных из нелинейно-упругого или пластического материала, реализация вычислений на основе принципа Лагранжа приводит к очень большим трудностям, тогда как принцип Рейснера позволяет получить приближенное решение задачи относительно просто.  [c.395]

Первая из этих проблем теоретически исследована в работе Стройка [113], в которой получены удобные для применения приближенные уравнения для вычисления комплексных модулей по характеристикам свободных колебаний в произвольных линейных вязкоупругих образцах. Предлагается также метод оценки точности полученного решения. Один из важных результатов относится к точности самих уравнений, обычно используемых для определения комплексных модулей эти уравнения выводятся из элементарного дифференциального уравнения свободных. колебаний, получающегося из соответствующего уравнения для упругого материала при замене упругих постоянных комплексными модулями и податливостями. Хотя в большинстве случаев такое уравнение не является точным, Стройк установил, что для вязкоупругих материалов с малыми тангенсами углов потерь, таких, например, как аморфные полимеры при температуре ниже Tg, эта элементарная теория дает результаты, хорошо согласующиеся с истинными характеристиками.  [c.181]

В научной литературе встречается много приближенных уравнений, описывающих колебания вырожденных систем [8, 22, 23, 30], которые основаны на тех или иных предпосылках физического характера о поведении продольных и поперечных усилий по сечению в вырожденной системе и других механических величин. Затем появились различные уточнения классических уравнений колебаний, зачастую не согласующиеся между собой. В последние годы для вывода приближенных уравнений колебаний вырожденных систем стали применяться математические подходы, основанные на приближенном решении точной трехмерной задачи теории упругости или вязкоупругости с заданными начальными и граничными условиями, характеризующими как геометрию вырожденной системы, так и условия закрепления границ этих систем [22, 23, 43]. Однако каким бы из подходов не пользоваться, всегда должно выполняться очевидное условие — приближенные дифференциальные или инте-гродифференциальные уравнения колебаний должны принадлежать к уравнениям гиперболического типа [8].  [c.226]


Из-за авторского предпочтения приближенные уравнения задачи теории упругости будут часто выводиться из принципа виртуальной работы, поскольку он остается справедливым независимо от соотношений напряжения — деформации и суш,ество-вания потенциальных функций. Приближенный метод решения, использующий принцип виртуальной работы, будет называться обобш.енным методом Галеркина ). Для консервативных задач теории упругости результаты, получаемые с помощью сочетания принципа виртуальной работы и обобщенного метода Галеркина, эквивалентны результатам, получаемым с помощью сочетания принципа стационарности потенциальной энергии и метода Ре-лея—Ритца.  [c.21]

Первое существенное замечание состоит в следующем. В классической теории кинетическое уравнение в пределе слабого взаимодействия представляет собой дифферешщальное уравнение относительно переменной р. Такая его форма обусловлена тем, что в случав слабого взаимодействия отклонение траекторий частиц при столкновениях очень мало. Как показано в разд. 11.6, предложенный Ландау вывод уравнения, пол вшего его имя, из уравнения Больцмана основан именно на этой идее. В квантовых системах не существует подобной эквивалентности между пределом слабого взаимодействия и пределом малого отклонения. В квантовой механике даже слабый потенциал взаимодействия может привести к очень сильной передаче импульса вследствие принципа нвопрвделвнности Гейзенберга. Квантовый аналог полного уравнения Больцмана по форме точно совпадает с уравнением (18.8.1) это уравнение известно под названием уравнения Юлинга — Уленбека. Единственное отличив от (18.8.1) состоит в том, что функция W связана с точным сечением рассеяния для упругих столкновений, соответствующих заданному межмолеку-лярному потенциалу. Сечение рассеяния (18.8.2) соответствует первому отличному от нуля приближению для точного сечения рассеяния, т. е. первому борновскому приближению ).  [c.251]

При выводе уравнения (ос) величина h рассматривается как малая. Но большая или малая глубина потока есть понятие относительное мы говорим, что поток — малой глубины, если эта глубина мала по сравнению с длинами волн, распространяющихся на поверхности Поэтому теория Лагранжа есть теория длинных волн, как и принято ее сейчас называть. Сам Лагранж приписывал ей чрезмерную общность он ссылается на то, что волнение на поверхности жидкости ненамного проникает в ее глубь (в океанах, например, на глубине около 30 м почти не ощутимы самые мощные бури), и поэтому полагал, что можно считать волны распространяющимися на поверхности потока 272 незначительной глубины. Однако теория и опыт показывают, что выводы Лагранжа применимы как хорошее приближение лишь при малых глубинах. Во всяком случае теория Лагранжа является первой успешной попыткой гидродинамического анализа одного из видов волн на поверхности тяжелой жидкости. Вместе с работами о колебаниях упругих тел она составляет основное, что дал XVIII в. в теории колебаний и волн.  [c.272]

Все этн гипотезы предполагафт, что напряжения и деформации, действительно вызываемые данной нагрузкой в теле дайной формы, могут быть тем или иным путем вычислены. Единственный известный метод вычисления этих величии состоит в применении математической теории упругости или каких-либо более или менее приближенных практических форму основанных на выводах этой теории. Предположим, что на тело действует данная система нагрузок, и мы можем решить уравнения упругого равновесия при данных граничных условиях. Тогда можно определить напряжения и деформацию в каждой точке тела и найти главные напряжения и главные удлинения. Пусть будет Т наибольшее главное напряжение, S—наибольшая разность главных напряжений, е — наибольшее главное удлинение. Через обозначим разрушающее напряжение, полученное из испытаний на растяжение. По гипотезе наибольших напряжений Т не должно быть больше некоторой части Г . Согласно гипотезе наибольшей разности напряжений, S не должно быть больше некоторой доли Т . Наконец, согласно гипотезе наибольших удлинений, е не должно превышать  [c.132]

Основы теории волн в упругом цилиндрическом стержне были созданы Похгаммером и Кри еще в конце прошлого века. Было установлено наличие различных форм собственных волн. В дальнейшем исследования по распространению нестационарных волн в элементах упругих конструкций проводились, как правило, на основе приближенных уравнений, которые получали из соответствующих уравнений статики. Добавление к этим уравнениям инерционных членов позволило построить решения задач о распространении волн, однако некоторые выводы при этом оказались в противоречии с результатами теории упругости. Так, скорость распространения возмущений при динамическом изгибе стержня, определенная по уравнению Бернулли — Эйлера, не имеет верхнего предела, в то время как по теории упругости она должна быть ограничена скоростью продольных волн в сплошной среде. Упомянутое уравнение вообще не позволяет установить наличия фронтов волн. Скорость продольной волны, определяемая приближенным уравнением продольных колебаний стержня, хотя и ограничена, но не совпадает с соответствующей скоростью из теории упругости (см. 35).  [c.10]

Исследование деформации упругих систем, как известно, заключается в составлении дифе-ренциального уравнения, характеризующего рассматриваемую деформацию, и затем в разыскании решения этого уравнения, удовлетворяющего известным граничным условиям рассматриваемой задачи. В то время как составление диференциальных ур-ий производится без особых затруднений помощью приложения к частным случаям общих выводов теории упругости, решение этих уравнений часто оказывается сопряженным с затруднениями чисто математич. характера, к-рые или не могут быть разрешены или приводят к результатам, мало пригодным для практич. использования вследствие слон -ности или отсутствия необходимой наглядности. Решение таким путем новых задач, могущих встретиться в инженерной практике, далеко выходя из рамок обычных расчетов и принимая характер научно-исследовательской работы, оказывается обычно невыполнимым в обстановке практической деятельности инженера. Применение метода потенциальной энергии, как известно, дает возможность более просто получить приближенное решение задачи, избегнув необходимости интегрирования соответствующего ей диференциального уравнения. Однако те же результаты, но гораздо проще, можно получить, и не прибегая к методу потенциальной энергии, а применив метод непосредственного интегрирования диференциального ур-ия помощью бесконечных рядов. Сущность этого метода заключается в том, что заранее задаемся подходящим видом искомой функции, входящей в диференциальное ур-ие рассматриваемой задачи, после чего, подставляя ее в это ур-ие, определяем входящие в нее неизвестные параметры. Под подходящим видом ф-ии в данном случае разумеется такой вид ее, при к-ром полностью удовлетворяются вытекающие для нее из условий задачи граничные условия и к-рый по возможности точно отвечает действительному виду этой ф-ии чем ближе к действительности окажется выбранный вид подходящей ф-ии, тем ббльшую точность будет иметь полученное решение. Т. к. любая из интересующих нас ф-ий м. б. представлена с любой точностью соответствующим тригонометрич. рядом Фурье, то, задаваясь подходящей ф-ией в виде такого ряда, будем получать в таком же общем виде и искомые решения задачи, к-рые затем м. б. вычислены с любой степенью точности. Получающееся таким путем общее решение очевидно представляет собой выраженную в виде ряда Фурье ф-ию, отве-  [c.97]


До открытия общих уравнений существовала теория кручения и изгиба балок, ведущая свое начало от исследований Галилея и соображений Кулона. Проблемы, являющиеся предметом этих теорий, принадлежат к числу наиболее важных по своему практическому значению, так как многие проблемы, с которыми приходится иметь дело инженерам, в грубом приближении сводятся к вопросам сопротивления балок. Коши был первым исследователем, который пытался применить общие уравнения к проблемам этого рода и, хотя его исследование о кручении прямоугольной призмы 85] оказалось ошибочным, оно все же имело большое сторическое значение, так как он установил, что поперечные сечения не остаются Плоскими, Значение его исследований для практических приложений было невелико. Практические руководства первой половины прошлого столетня содержат теорию кручения, которая приводит к выводам, принадлежащим, как мы уже указывали. Кулону этот вывод состоял в том, что сопротивление кручению равно произведению упругой постоянной на величину угла закручивания, отнесенного к единице длины (степень кручения), и на момент инерции поперечного сечеиия. В отношении изгиба практические руководства этого времени следовали теории Бернулли-Эйлера (в действительности принадлежащей Кулону), согласно которой сопротивление изгибу связано только с растяжением и сжатием продольных волокон. Сен-Венану принадлежит заслуга приведения проблемы кручения и изгиба балок в связь с общей теорией. Он учитывал трудность нахождения общих решений и настоятельную необходимость получения в практических целях какой-либо теории, которая могла бы служить для определения деформаций в сооружениях ему было вполне ясно также, что только в очень редких случаях можно знать точное распределение нагрузки, приложенной к части какой-либо конструкции это привело его к размышлениям о методах, применявшихся к решению частных задач до того, как были получены общие уравнения. Таким образом о пришел к изобретению полу-обратного метода, который носит его имя. Многие из обычных допущений и выводов, оказываются верными, по крайней мере, в большинстве случаев следовательно, сохраняя некоторые из этих допущений и выюдов, можно упростить уравнения и получить их решения правда, пользуясь этими решениями, мы не можем удовлетворить любым наперед заданным граничным условиям однако же граничные условия практически наиболее важного типа могут быть удовлетворены.  [c.32]

Клебш з) заимствовал из теории Геринга-Кирхгофа приближенные выводы относительно напряжений и деформаций в малой части пластинки, ограниченной вертикальными плоскими сечениями, и получил уравнения равновесия пластинки, выраженные в проекциях упругих усилий и моментов. Его уравнения распадаются на две группы одна группа содержит растягивающие и гори, зонтальные перерезывающие упругие усилия, а другая группа — упругие пары и вертикальные упругие усилия. Уравнения второй группы относятся к изгибу пластинки, и их форма такова, что если соотношения, при помощи которых упругие пары выражаются через деформацию срздней поверхности, известны, то можно определить вертикальные перерезывающие силы и получить уравнение для прогиба пластинки. Выражения для упругих пар можно получить из теории Кирхгофа. Клебш нашел решение своего уравнения для случая круглой пластинки, защемленной по краям и нагруженной произвольным образом. Кельвин и Тэт сделали невозможными какие-либо дальнейшие сомнения по поводу теории, относящейся к уравнениям равновесия, выраженным в проекциях упругих усилий и пар. Эти ученые отметили, что в случае чистого изгиба выражения для упругих пар могли бы быть получены из теории изгиба балки Сен-Венана объединение двух граничных условий Пуассона в одном условии Кирхгофа они объяснили с т чки зрения прин ципа упругой равнозначности статически эквивалентных систем нагрузок Позднейшие исследования содействовали устранению последних затруднений, связанных с теорией Кирхгофа - ). Одно из препятствий к дальнейшему прогрессу состояло в отсутствии точных решений задач об изгибе пластинок, аналогичных тем, которые были получены fH-Венаном для балок. Те немногие решения, которые были получены подтверждают основной вывод теории, который не был строго доказан, а именно, вид выражений для упругих пар через кривизну средней поверхности.  [c.41]


Смотреть страницы где упоминается термин Вывод приближенных уравнений из уравнений теории упругости : [c.37]    [c.187]    [c.38]   
Смотреть главы в:

Нестационарные упругие волны  -> Вывод приближенных уравнений из уравнений теории упругости



ПОИСК



Вывод

Вывод уравнений

Вывод-вывод

Приближенная теория

Теории Уравнения

Теория упругости

Упругость Теория — см Теория упругости

Уравнения Уравнения упругости

Уравнения теории упругости

Уравнения упругого КА

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте