Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения движения и классические интегралы

Стационарные решения цепочки уравнений Боголюбова и первые интегралы движения системы классических частиц. Теор. и мат. физ., 1983, 55, № 1, 78—87  [c.281]

В заключение этого параграфа сделаем следующее общее замечание о законах сохранения. Формулировка каждого из этих законов имеет следующий вид некоторое выражение, зависящее от координат точек и их скоростей, при движении системы не меняется . Эти выражения не зависят от ускорений точек и в этом смысле являются первыми интегралами уравнений движения. В дальнейшем (см. гл. VII) мы вернемся к понятию первый интеграл и дадим его точное определение. Там же будет показано, что найденные выше первые интегралы — законы сохранения — являются следствиями основного предположения классической механики об однородности и изотропности пространства и об однородности времени (см. гл. VII). Отложив поэтому уточнение этого понятия до гл. VII, мы в 7 настоящей главы на важном примере продемонстрируем, как классическая механика использует законы сохранения для того, чтобы упростить (а в некоторых случаях и решить) дифференциальные уравнения, описывающие движение.  [c.77]


Кроме трех классических интегралов интеграла сохранения кинетического момента относительно оси Oz, интеграла энергии и тривиального интеграла (III. 17), легко найти четвертый интеграл уравнений движения.  [c.428]

Случай Ковалевской. В п. 24 уже говорилось, что интегрирование уравнений (34 ), (35 ) движения тяжелого твердого тела, закрепленного в одной своей точке, приводится к квадратурам всякий раз, когда удается определить еще один интеграл, кроме классических интегралов живых сил и момента количеств движения.  [c.165]

О задаче трех и более тел. Задача п тел (п 2) состоит в следующем. В пустоте находятся п материальных точек, взаимодействующих по закону всемирного тяготения Ньютона. Заданы начальные положения и скорости точек. Требуется найти положения всех точек как функции времени. Эта задача не решена до сих пор. Более того, показано, что даже в случае трех тел помимо классических интегралов, существование которых следует из общих теорем об изменении количества движения, кинетического момента и кинетической энергии, дифференциальные уравнения движения не имеют других интегралов, которые выражались бы через алгебраические или через однозначные трансцендентные функции координат и скоростей точек.  [c.244]

Замечания по теореме Гамильтона — Якоби. Эта изящная теорема, доказанная в 16.2 и 16.4, имеет фундаментальное значение как для теории, так и для приложений. До сих пор, исследуя динамическую систему какого-либо частного вида, мы составляли уравнения движения, после чего задача сводилась к интегрированию этих уравнений. Совершенно иначе обстоит дело в методе Гамильтона — Якоби. Как только найден один полный интеграл уравнения Гамильтона в частных производных, сразу могут быть написаны интегралы уравнений движения. Вопрос заключается лишь в том, насколько просто может быть найден полный интеграл. Однако, как будет показано, для большей части задач классической механики нахождение полного интеграла не вызывает каких-либо затруднений.  [c.290]

Как известно, дифференциальные уравнения задачи п тел допускают десять классических интегралов шесть интегралов количества движения, три интеграла площадей и один интеграл энергии, которые соответствуют законам сохранения количества движения, кинетического момента и механической энергии системы. Эти интегралы обладают тем свойством, что они алгебраически содержат координаты и скорости точек. На вопрос, существуют ли другие подобные интегралы, отвечает теорема Брунса  [c.108]


Как известно из классической механики, систему из N частиц в случае пренебрежения их пространственной структурой (т. е. когда частицы рассматриваются как материальные точки) можно описать при помощи ЗМ дифференциальных уравнений, которым соответствуют 6Л интегралов движения, т. е. величин, сохраняющихся при изменениях, происходящих в системе. Полное число интегралов движения, естественно, задается тем, что в каждый момент времени система определяется ЗМ координатами и ЗА импульсами частиц (см., например, [1]). Среди 6А интегралов движения ) не все играют одинаковую роль. Чтобы выяснить эту роль, рассмотрим изолированную систему, т. е. систему, которая не подвержена действию внешних сил ). Для такой системы имеется десять интегралов движения, которые соответствуют физическим величинам, всегда сохраняющимся при любом произвольном взаимодействии между частицами системы во время движения. Эти величины, по крайней мере, в принципе можно измерить на опыте в рамках классической механики. 10 интегралов движения можно представить, в соответствии с их физическим смыслом, следующим образом 10 = 4-1-3-2. Цифра 4 соответствует закону сохранения  [c.9]

Интегралы, называемые действие , используются в двух направлениях для описания свойств движения и при составлении уравнений движения [51]. Интересна роль действия в теориях, граничащих с классической механикой. Например, в обосновании взаимоотношения классической и квантовой физики [54] действие используется как математический объект, позволяющий проводить квантование, а в перспективе — и вторичное квантование [106]. Понятие о действии является основой утверждений в форме принципов.  [c.27]

Это утверждение полезно сравнить с результатом работы [177], где рассмотрен случай, когда Д состоит из тг + 1 векторов Аь. .., а +1, причем любые тг из них линейно независимы. В [177] показано, что критерием алгебраической интегрируемости системы (4.2) является именно выполнение условия (4.7). Следствие 1 утверждает, что в этом случае критерием интегрируемости по Биркгофу также является (4.7). Зга ситуация аналогична имеющей место в классической задаче о вращении тяжелого твердого тела с неподвижной точкой уравнения движения алгебраически интегрируемы в том и только том случае, когда они имеют полный набор независимых полиномиальных интегралов.  [c.388]

При произвольно заданных телах и законах действующих сил уравнения движения системы (9.8) — (9.10) не допускают каких-либо первых интегралов. Однако в некоторых случаях эта система уравнений, так же как и система уравнений движения системы материальных точек, может иметь первые интегралы, аналогичные классическим интегралам задачи многих тел, элементарные частицы которых взаимно притягиваются по закону Ньютона, что было показано нами в первой нашей книге.  [c.408]

Десять классических интегралов (8.11), (8.13) и (8.14) уравнений поступательно-вращательного движения -fl тел в абсолютной системе координат позволяют, конечно, понизить порядок системы (8.7) на десять единиц.  [c.395]

В основу настоящей книги положен курс лекций по классической механике, читавшийся автором на физическом факультете Московского государственного педагогического института им. В. И. Ленина на протяжении последних 20 лет. Книга написана в полном соответствии с новой программой по курсу теоретической физики для физических специальностей педагогических институтов, утвержденной Министерством просвещения СССР в 1977 г., в которой механика рассматривается как первый и важнейший раздел единого курса теоретической физики. Поэтому в книге особое внимание уделено принципиальным вопросам классической механики — ее основным понятиям и законам принципам относительности и причинности законам сохранения и их связи с симметрией пространства-времени вариационным принципам механики и общим методам получения первых и вторых интегралов уравнений движения методам качественного исследования поведения механических систем и ее связи с другими разделами современной физики.  [c.3]

Этот пример показывает, что ничего нового по сравнению с уравнениями Лагранжа канонические уравнения движения не представляют. Действительно, и уравнения (33.11), и уравнения (33.14) совпадают с соответствующими уравнениями движения Лагранжа и Ньютона, а остальные уравнения (т. е. уравнения (33.12), (33 15)) являются следствиями определения обобщенных импульсов. И вообще, трудно указать такую динамическую задачу, которую нельзя было бы решить, пользуясь уравнениями Лагранжа, и для решения которой следовало бы обратиться к каноническим уравнениям движения (33.4). Действительное преимущество метода Гамильтона, если говорить о самой классической механике, состоит в том, что он позволяет существенно упростить рассмотрение некоторых общих проблем механики (например, проблемы отыскания интегралов движения). Но главное преимущество метода Гамильтона состоит все-таки в том, что он дает необходимую математическую основу для построения квантовой механики и статистической физики.  [c.191]


В главе 2 изложена классическая задача двух тел. Приводятся интегралы уравнений движения в центральном поле притяжения и подробно анализируются основные типы орбит. Показана связь времени с положением на орбите.  [c.7]

Соотношение (111.67b) является четвертым алгебраическим интегралом дифференциальных уравнений (III. 12) и (III. 14), не зависящим от времени. По теореме о последнем множителе Якоби задача сводится к квадратурам. Отметим, что задача С. В, Ковалевской приводится к квадратурам гиперэллиптического типа. Характер движения тела в случае Ковалевской гораздо сложнее, чем в случаях Эйлера и Лагранжа. В то время как в упомянутых двух классических случаях общие свойства движения твердого тела исследованы очень подробно, этого нельзя сказать о случае Ковалевской. Трудности, связанные с анализом движения тела в последнем случае, заставляют даже обратиться к экспериментальному изучению проблемы ).  [c.453]

Рассмотрим классическую задачу о движении электрона при следующих начальных условиях пусть в момент г = О он находится в начале координат и скорость его равна нулю. Находим сразу первые интегралы уравнений (11.5.7) и (11.5.8)  [c.212]

Уравнения (8.7) выражают принцип сохранения движения центра масс и называются поэтому, как и в классическом случае, интегралами движения центра масс. Действительно, обо-  [c.340]

Лучше сказать, что в общем случае нам неизвестны никакие другие интегралы уравнений (8.7), кроме десяти классических. Отметим, что эти десять интегралов получены независимо друг от друга В. В. Белецким и Г. Н. Дубошиным. См. Г. Н. Дубошин, О дифференциальных уравнениях поступательно-вращательного движения, Астрон. журн. 35, вып. 2, 1958, и В. В. Белецкий, Некоторые вопросы поступательно-вращательного движения твердого тела в ньютоновском поле сил. Сб. Искусственные спутники Земли , Изд-во АН СССР, 1963.  [c.393]

Для консервативных систем один из интегралов уравнений движеиия есть интеграл энергии И = Е. Тогда, если проинтегрировать систему уравнений Гамильтона, то время можно ввести квадратурой. Это важная особенность классической механики и она дальше будет рассмотрена подробнее. Пока отмечу, что при таком пути интегрирования уравнений движеиия произвольная постоянная /q может входить в интегралы движения только как аддитивная составляющая в виде (/ - Iq). Тогда мож Ю ввести функцию 5 = = JF+ //(/-/q), которую называют характеристической функцией.  [c.100]

Уравнения движения и классические интегралы. Предположим, что рассматриваемые три тела, которые мы будем считать материальными точками, находятся в точках Ро, Рх, Р2 и имеют массы то, т.1, т.2 соответственно. Обозначим расстояние Р0Р1 через Г2, расстояние Р0Р2 через гх и расстояние Р1Р2 через го. Если мы теперь положим  [c.260]

Вернемся к динамике твердого тела. Теорема С. В. Ковалевской о мероморфных общих решениях была существенно усилена А. М. Ляпуновым [42] и Г. Г. Аппельротом [43], доказавшим, что общее решение уравнений движения тяжелого твердого тела вокруг неподвижной точки представляется однозначными (е частности, мероморфными) функциями времени только в классических случаях Эйлера, Лагранжа и Ковалевской. В этих случаях дополнительные интегралы, как и классические интегралы, являются многочленами, т. е. рассматриваемые как функции многих комплексных переменных, они однозначны в прямом произведении комплексных плоскостей. Эти результаты указывают на целесообразность расширения задачи Пенлеве какова связь между существованием новых однозначных интегралов и однозначностью общего решения  [c.128]

Эта задача не решена до сих пор. Более того, показано, что даже в случае трех тел помимо классических интегралов, существование которых следует из общих теорем об изменении количества движения, кинетического момента и кинетической энергии, дифферепци-альиые уравнения движения не имеют других интегралов, которые выражались бы через алгебраические или через однозначные транс-цепдентные функции координат и скоростей точек.  [c.205]

Алгебраические первые интегралы. Случай Гесса. В случаях Эйлера, Лагранжа и Ковалевской последний из первых интегралов, приводящий к интегрированию посредством квадратур уравнений движения тяжелого твердого тела с одной закрепленной точкой (п. 24), является, как и интегралы живых сил и моментов, алгебраическим относительно неизвестных функций. Поэтому естественно, что предпринимались общие исследования вопроса о том, допускают ли и в каких случаях динамические уравнения тяжелого твердого тела, закрепленного в одной точке, помимо двух классических интегралов, какой-нибудь новый алгебраический интеграл, относительно переменных р, 1 f, Yu Тэ> Ifs Однако глубокое исследование Гюссона ), выполненное в более изящной форме Бургаттив), привело к заключению, что, помимо рассмотренных ранее случаев Эйлера, Лагранжа и Ковалевской, не существует других алгебраических интегралов, кроме интегралов живых сил и моментов.  [c.168]

Вместе с развитием неголономных связей и теории общего их вида приобретают значение новые методы в поисках решений классических задач аналитической механики. Такие новые методы базируются, можно сказать, на двух теоремах. Первая теорема высказана в работах П. В. Воронца в первых десятилетиях нашего века в следующей формулировке каждый первый интеграл уравнений движения некоторой механической системы может считаться уравнением связи, наложенной на систему с соответствующими реакциями, равными нулю . Действительно, примем данный первый интеграл за связь и составим уравнения движения с множителем. Далее, учитывая, что первый интеграл тождественно удовлетворяет левым частям всех уравнений с множителем, мы придем к тому, что данный множитель должен быть равен нулю. Обратная же теорема должна читаться следующим образом. Положим, дана механическая система с заданными, пусть идеальными в смысле Лагранжа — Даламбера, связями и активными силами. Имеются динамические дифференциальные уравнения данной системы. Положим, требуется найти янтеграл заданного вида для дайной системы уравнений. Тогда, 1при-няв данный интеграл за уравнение дополнительной связи, будем составлять уравнения движения с подобной связью. Интеграл же может быть любой аналитической структуры, поскольку мы умеем уже составлять уравнения движения при связях любой, если можно так сказать, неголономности. Далее, если мы решим расширенную систему уравнений движения, т. е. уравнений с множителем вместе с уравнением связи, то могут быть две возможности находятся уравнения движения системы, т. е. обобщенные координаты основной задачи в функциях времени и вместе с ними определяется множитель в функции времени. Но, если при каких-либо параметрах системы, или предполагаемого первого интеграла, или при некоторых начальных данных, множитель обратится в ноль, то тогда действительно уравнение связи окажется первым интегралом данной задачи. Возьмем, к примеру, классическую задачу о движении твердого тела вокруг неподвижной точки. Мы знаем, с каким трудом добывались решения этой задачи и как, по существу, их мало. Всего три случая — общего решения, да и общность относится только к начальным условиям, а на другие параметры — распределение масс и положение центра тяжести — налагаются определенные условия. Частных интегралов больше, но все они находились с трудом (вспомним, например, случай Гесса). Данные же методы наиболее естественны нри выяснении вопроса, является ли заданная связь -первым интегралом уравнений движения данной системы как свободной.  [c.13]


В случае, разобранном С. В. Ковалевской, так же как и в ранее известных, система уравнений движения имеет дополнительный первый интеграл, что и обеспечило возможность их интегрирования в квадратурах. При этом оказалось, что в некоторых естественных переменных переменные Эйлера-Пуассона) во всех случаях интегрируемости дополнительные интегралы являются многочленами, так же как и классические первые интегралы. Таким образом, общее решение представляется мероморфными функциями времени как раз в тех случаях, когда существует новый алгебраический интеграл. Этот результат, естественно, поставил общую задачу о связи между существованием алгебраических интегралов аналитических систем дифференциальных уравнений и мероморфностью общего решения. На важность этой задачи впервые обратил внимание Пенлеве [41].  [c.126]

Проблема точного интегрирования уравнений динамики — одна из самых популярных тем исследования, начиная со знаменитых Математических начал натуральной философии Ньютона. Руководящей идеей в этом круге вопросов является общая идея симметрии. При решении задачи о центральном движении Ньютон уже использовал соображения симметрии факторизуя орбиты группы вращений, он свел эту задачу к изучению движения по прямой в потенциальном поле. Впоследствии Лагранж и Якоби заметили, что классические интегралы задачи многих гравитирующих тел связаны с инвариантностью уравнений движения относительно группы преобразований Галилея. Это фундаментальное наблюдение обобщено Эмми Нётер каждой группе преобразований, сохраняющих действие по Гамильтону, отвечает интеграл уравнений движения. Верно и обратное фазовый поток уравнений Гамильтона, в которых гамильтонианом служит известный интеграл, переводит решения исходных уравнений движения в решения тех же уравнений. На этой идее основано доказательство известной теоремы Лиувилля о полной интегрируемости уравнений Гамильтона фазовые потоки инволютивных интегралов попарно коммутируют и порождают абелеву группу симметрий максимально возможной размерности на многообразиях их совместных уровней.  [c.6]

В рамках этого круга идей в работах Ковалевской, Клебша, Чаплыгина, Стеклова и других авторов был решен ряд новых задач механики, некоторые из которых весьма нетривиальны. Стоит отметить, что в этих классических работах не использовалась гамильтонова структура уравнений движения. Условия интегрируемости и само интегрирование уравнений динамики основаны на методе интегрирующего множителя Эйлера — Якоби. Напомним, что для этого автономная система п дифференциальных уравнений должна иметь интегральный инвариант и обладать п —2 независимыми интегралами. Из-за этого обстоятельства не была замечена интегрируемость ряда задач динамики. Самый яркий пример—задача  [c.11]

Отметим, что L—Л-представление найдено почти во всех проинтегрированных задачах классической механики. Найдены также различные алгебро-геометрические конструкции, проясняющие причины существования скрытых законов сохранения. Наличие L—Л-представления помогает не только найти первые интегралы, но и осуществить явное интегрирование уравнений движения. Обсуждение различных аспектов современной теории интегрирования гамильтоновых систем можно найти в [32], [65], [136].  [c.145]

И если применительно к классическим моделям идеальной и вязкой жидкости первый этап успешно давно решен — уравнения Эйлера и Навье — Стокса выглядят обманчиво просто, то второй и третий этапы встречают до сих пор огромные трудности. Эти трудности связаны прежде всего с нелинейностью основных уравнений движения. ГГрименительно к идеальной жидкости Г.Гельмгольц установил [ 135], что все возможные интегралы уравнений Эйлера делятся на два широких класса,отвечающих так называемому потенциальному и вихревому движению.Г.Гельмгольц детально исследовал основные общие свойства интегралов вихревого движения и, по словам  [c.6]

Первые 6 лекций Якоби посвящает изложению основных принципов механики принципу сохранения движения центра тяжести системы, принципу живой силы, принципу площадей и принципу наименьшего действия. С 10-ой лекции Якоби развивает теорию множителя" систем обыкновенных дифференциальных уравнений, являющуюся обобщением теории эйлеров-ского интегрирующего множителя. Якоби показывает каким образом можно в целом ряде случаев построить с помощью последнего множителя" всю систему п независимых интегралов. Изложив подробно теорию этого множителя, Якоби затем применяет ее к решению ряда механических задач. С 19-ой лекции Якоби, исходя из вариационного принципа Гамильтона, излагает тот метод интегрирования уравнения с частными производными первого порядка, который известен под названием метода Якоби-Гамильтона". В следующих лекциях этот метод примендется к ряду задач, взятых главным образом из области небесной механики. В 26 лекции Якоби излагает теорию эллиптических координат и показывает их приложение к разысканию геодезических линий эллипсоида, к задаче построения карт, к выводу основной теоремы Абеля и проч. Наконец, последние лекции Якоби посвящены изложению его классических методов интегрирования нелинейных уравнений в частных производных первого порядка.  [c.4]


Смотреть страницы где упоминается термин Уравнения движения и классические интегралы : [c.12]    [c.12]    [c.159]    [c.234]    [c.5]    [c.307]    [c.507]    [c.512]    [c.140]   
Смотреть главы в:

Динамические системы  -> Уравнения движения и классические интегралы



ПОИСК



Газ классический

Интеграл движения

Интеграл уравнений

Интегралы уравнений движения

Классические интегралы

Классические уравнения движения

Классическое движение



© 2025 Mash-xxl.info Реклама на сайте