Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Режимы обработки при шлифовании

С технологией, режимами обработки при шлифовании и строгании широким резцом направляющих на продольно-строгальном станке можно познакомиться на Уралмашзаводе им. Орджоникидзе с технологией, режимами обработки при шлифовании и фрезеровании направляющих тяжелых станков, без съема станины с фундамента, — на Коломенском заводе тяжелых станков, харьковском тепловозостроительном заводе им. Малышева и ленинградском Кировском заводе.  [c.175]

Реально применяемые режимы обработки при шлифовании намного превышают нормальные, для достижения высокой производительности шлифование ведется на грани прижога. Это сильно осложняет внедрение приборов активного контроля станки с приборами дают удовлетворительную точность при производительности меньшей чем при обычной ручной работе. Этим можно объяснить большое число неудачных попыток внедрения приборов.  [c.405]


РЕЖИМЫ ОБРАБОТКИ ПРИ ШЛИФОВАНИИ  [c.211]

Здесь были изложены общие правила при выборе шлифовальных кругов. В справочниках по режимам резания при шлифовании [128] приведены характеристики шлифовальных кругов для более конкретных условий обработки.  [c.533]

Характеристики шлифовальных кругов для различных условий обработки приведены в справочниках по режимам резания при шлифовании.  [c.424]

Средства активного контроля предназначены для управления режимом обработки деталей в зависимости от результатов измерений размеров деталей. Их подразделяют на средства, измеряющие размер деталей в процессе обработки и переключающие режимы обработки при достижении заданного размера, и на средства, измеряющие размеры готовых изделий и регулирующие положение режущего инструмента относительно обрабатываемой поверхности (подналадчики). Наибольшее распространение средства активного контроля получили на заключительных операциях обработки деталей — шлифовании, хонинговании.  [c.207]

Влияние режима шлифования и размера обрабатываемой плоскости на точность обработки. Изменение режима резания при шлифовании, в частности продольной скорости стола и подачи на глубину, может вызвать изменение усилий шлифования, что в свою очередь влияет на точность формы изделия.  [c.98]

Влияние станка и режима обработки. При большой мощности станка целесообразно применять повышенные режимы шлифования и более твердые абразивные инструменты во избежание их ускоренного износа.  [c.29]

Средние значения показателей режимов обработки при круглом, внутреннем и плоском шлифовании приведены в табл. 121—125.  [c.257]

При шлифовании пластмасс используют универсальные металлорежущие станки круглошлифовальные, плоскошлифовальные, ленточно-шлифовальные и др. Режимы резания при шлифовании назначают из условий обеспечения максимальной производительности при высоком качестве обработки.  [c.81]

Наклепывание поверхности происходит в результате многократных ударов по ней шариков, размещенных в быстровращающемся диске, от метод целесообразно применять для местного наклепа участков небольшой протяженности. После обработки твердость наклепанного слоя повышается на 20—60% при этом чем выше исходная твердость материала, тем меньше эффект наклепа. Шероховатость поверхности после обработки понижается. Шероховатость обточенных или шлифованных поверхностей с Яа = 2,5 0,4 мкм после наклепывания шариками уменьшается до Яа = 0,63 -ь 4-0,16 мкм. Большое значение имеет выбор режима обработки при  [c.138]


Режимы обработки при плоском шлифовании  [c.759]

Вредное влияние микронеровностей поверхности во многих случаях смягчается пластической деформацией, вызываемой в поверхностном слое механической обработкой и распространяющейся на некоторую глубину, зависящую от режимов резания и, в частности, от величины подачи. При грубой обточке она может достигать 1 мм и более, а при шлифовании и полировании измеряется сотыми долями миллиметра и микрометрами. Пластическая деформация поверхностного слоя может повысить предел выносливости на 10—20 %.  [c.672]

Взаимосвязь макронапряжений с технологическими факторами. Технологические факторы (методы и режимы обработки, геометрия и износ режущего инструмента, СОЖ и др.) оказывают большое влияние на величину и знак остаточных напряжений. Точение обычно вызывает появление растягивающих напряжений величиной до 30—70 кгс/мм , глубина распространения их находится в пределах от 50 до 200 мкм в зависимости от условий обработки. При фрезеровании возникают как растягивающие, так и сжимающие напряжения, последние более характерны для попутного фрезерования жаропрочных сплавов. Фрезерование титановых сплавов чаще всего сопровождается образованием сжимающих напряжений. В процессе шлифования, как правило, создаются растягивающие напряжения. Величина и знак макронапряжений после механического полирования зависят от предшествующей обработки, но в большинстве случаев полирование способствует наведению незначительных сжимающих напряжений (до 20— 30 кгс/мм ).  [c.57]

Интенсификация режимов обработки применением более широких и высокоскоростных кругов (подача при шлифовании прямо пропорциональна ширине круга), кругов большого диаметра, внедрением глубинного метода шлифования и т. д.  [c.25]

Интенсификация режима обработки не должна сопровождаться ухудшением качества поверхности. Особенно опасен перегрев, появление при шлифовании прижогов, т. е. участков с пониженной твердостью, и трещин. При шлифовании непосредственно на поверхности может образоваться зона вторичной закалки, под которой располагается слой отпущенного металла с постепенным переходом к исходной твердости. Температурное воздействие в процессе шлифования связано со структурными преобразованиями в слое, появлением внутренних напряжений. При большой глубине распространения тепла величина вторично-закаленной зоны невелика, тепло нижележащих слоев способствует отпуску поверхностного слоя с образованием в нем напряжений растяжения. Их формированию благоприятствует наличие в структуре аустенита. Прижоги и трещины возникают чаще всего при чрезмерно большой поперечной подаче (глубине шлифования), а также при большом биении круга или детали. Прижогов можно избежать, если увеличить, окружную скорость вращения детали или продольную подачу. При скоростном шлифовании выделяется больше тепла число оборотов детали берется более высоким, охлаждение круга необходимо усилить. Больше  [c.27]

Из устройств активного контроля размеров на последних операциях наибольшее распространение на отечественных заводах и автоматических линиях машиностроения находят пневматические измерительные системы управления. Это положение объясняется тем, что пневматические измерительные системы надежнее, чем другие системы, сохраняют высокую точность в цеховых условиях вследствие их малой чувствительности к вибрации, изменению температуры, влиянию на результат измерения охлаждаю-ш ей жидкости при измерениях в зоне обработки изделия и др. Вместе с тем пневматические измерительные системы обладают существенным недостатком — повышенной инерционностью, которая вызывает рост динамических погрешностей измерений по мере форсирования режимов обработки изделий на автоматах при врезном шлифовании. Эффективность компенсации динамических погрешностей измерений в режиме слежения за обрабатываемым размером изделия зависит в значительной мере от удачного выбора параметров и варианта схемы компенсации [1].  [c.99]


Многие детали современных машин работают в различных коррозионных средах при большом числе перемен напряжений. Влияние методов и режимов обработки на коррозионно-усталостную прочность значительно сильнее, чем это же влияние на выносливость стали на воздухе. Предел выносливости образцов диаметром 20 мм определяли на базе 5- 10 циклов. Сравнительному испытанию были подвергнуты образцы, изготовленные токарной обработкой (шероховатость поверхности образцов соответствовала 5-му классу чистоты поверхности по ГОСТу 2789— 59) и шлифованные (9-й класс чистоты поверхности). Выносливость стальных образцов, изготовленных точением, меньше выносливости шлифованных образцов.  [c.404]

В начале обработки при черновом шлифовании контакты 7 к 10 замкнуты под действием пружины. По мере снятия припуска измерительный стержень опускается, нажимает планкой 12 на рычаг //, поворачивает его и размыкает контакты 7 ч Ю в момент, соответствующий окончанию чернового шлифования. При этом подается команда на изменение режима работы станка и гаснет зеленая сигнальная лампочка 4. В процессе дальнейшей обработки при достижении окончательного размера замыкаются контакты 6 и 10, подается команда на окончание обработки и загорается красная сигнальная лампочка. Обе сигнальные лампочки расположены в корпусе измерительного устройства.  [c.188]

Средства активного контроля при внутреннем шлифовании устанавливают как на станках, не имеющих автоматической подачи, так и на автоматизированных станках. В первом случае изменение режима обработки и отключение станка при достижении заданного размера детали осуществляется оператором, пользующимся шкалой показывающего прибора. Во втором случае управление циклом работы станка осуществляется посредством выдачи в схему управления станком дискретных электрических команд. Шкала в таких Приборах имеет вспомогательное значение и служит в основном для настройки прибора.  [c.204]

Образцы из нержавеющих сталей перед обкаткой подвергали термической обработке по оптимальным режимам, точению и шлифованию. Обкатку производили на токарном станке в самоцентрирующемся трехроликовом приспособлении в два прохода при продольной подаче 0,07 мм/об. При упрочнении образцов диаметром рабочей части 10 мм диаметр роликов составлял 40 мм, радиус закругления профиля 5 мм. В качестве смазки применяли машинное масло. Для получения сопоставимых результатов обкатку производили, меняя только давление на ролик в пределах 400—2000 Н при неизменных остальных параметрах.  [c.159]

При шлифовании на бесцентрово-шлифовальных станках в зависимости от режимов резания и характеристики круга точность обработки может достигать 2-го класса, а шероховатость поверхности — 7—10-го классов чистоты.  [c.295]

При эксплуатации металлорежущего станка на дне картера скапливаются мелкодисперсная стружка, окислы металлов, смолистые соединения и грязь, способствующие преждевременному старению и расслоению смазочно-охлаждающих жидкостей (СОЖ). Эти процессы ускоряются при шлифовании, а также при обработке на станке попеременно черных и цветных металлов Необходимо заменять СОЖ в предусмотренные графиком сроки. Срок эксплуатации СОЖ зависит от ее состава и свойств, от режима работы станка, числа рабочих смен в сутки, загрузки станка, обрабатываемого на нем материала н инструмента, способа подвода, количества н периодичности долива жидкости.  [c.53]

При электроэрозионном шлифовании в зависимости от режима обработки образуются трещины различной глубины. Так, при I/ = = 19 б /к. 5. = 120 а они достигают 220 ж/с, а при I .a. = Ъ а отсутствуют вообще.  [c.457]

Шлифование хромированных деталей с применением абразивного (алмазного) инструмента является, практически, единственным способом их механической обработки. Несоблюдение условий и режимов шлифования ведет к отслаиванию покрытия или образованию шлифовочных трещин и прижогов, вероятность появления которых значительно выше, чем при шлифовании деталей без хромового покрытия.  [c.333]

Рекомендуемые инструмент и режимы резания при обработке шлифованием деталей, восстановленных нанесением различных металлопокрытий  [c.345]

Выкрашивание режущих пластинок инструмента в процессе обработки деталей вызывает микроповреждения поверхности и возникновение усталостных трещин при эксплуатации машины. При выборе геометрии инструмента и режимов обработки обращают внимание на величину и глубину залегания остаточных напряжений растяжения или сжатия, от которых зависит выбор припусков при последующих операциях механической обработки. Отрицательное воздействие растягивающих остаточных напряжений тем больше, чем ближе к поверхности детали они возникают. Возникающие напряжения юстично уменьшаются при термической обработке. При шлифовании деталей преобладающее влияние температурного фактора над силовым является главной причиной формирования остаточных напряжений растяжения (до 600 МПа). Они снижаются при применении мягких шлифовальных 1фугов (обработка лопаток), абразивных лент. При полировании также могут возникать сжимающие остаточные напряжения (до 300 МПа).  [c.344]

Влияние величины растягивающих остаточных напряжений и метода шлифования на характер распределения кривых выносливости проверено при испытании образцов, обработанных абразивными кругами и лентой на оптимальных режимах. Установлено, что при шлифовании стали ЗЗХЗСНМВФА сплошными и прерывистыми кругами в поверхностном слое формируются растягивающие остаточные напряжения соответственно около 1000 и 550 МПа, при шлифовании лентой — 200 МПа. Этим напряжениям соответствуют кривые 3—1 на рис. 4.16,6, анализ которых показывает, что для принятых условий и режимов обработки процесс шлифования снижает выносливость стали тем больше, чем больше возникающие, растягивающие напряжения. Например, при напряжении 200 МПа (шлифование лентами) снижается предел выносливости до 720 МПа против исходного 750 МПа.  [c.103]


Режимы обработки при круглом шлифовании (внутреннем щему оборудованию. При проектировании и эксплуатации ( следует устанавливать подачу на глубину на 1 дв. ход. и наружном) указаны применительно к существую-станкоа, предназначенных для алмазной обработки,  [c.76]

Микроструктурный анализ излома образцов по трещине показал, что поверхностный слой после термообработки обезуглероживается на глубину до 0,2 мм. Вследствие структурной неоднородности высокопрочных сталей [17] окалина на поверхности имеет вид оспин. Поверхностный слой с такими дефектами оказывает существенное влияние на выносливость деталей Удаление окалины и обезуглероженного слоя абразивной лентой на легких режимах способствует повышению выносливости образцов до 1,5 раза. Например, если предел прочности черных образцов после упрочняющей термообработки составлял 52 кгс/мм2 (рис. 31, а, кривая 1), то после удаления окалины и обезуглероженного слоя — 75 кгс/мм (кривая 2). Влияние величины остаточных напряжений растяжения и метода шлифования на характер распределения кривых выносливости было проверено при испытании образцов, обработанных абразивными кругами и лентой на оптимальных режимах. Установлено, что при шлифовании образцов из стали 40ХЗСМВФЮ сплощными и прерывистыми кругами в поверхностном слое формируются остаточные напряжения растяжения соответственно около 100 и 55 кгс/мм , при шлифовании лентой 20 кгс/мм . Этим напряжениям соответствуют кривые 3, 2 и 1 (рис. 31,6), анализ которых показывает, что Для принятых условий и режимов обработки процесс шлифования снижает выносливость стали тем больше, чем больше возникающие напряжения растяжения. Например, при напряжении 20 кгс/мм (шлифование лентами> снижается предел выносливости до 72 кгс/мм против исходнога 75 кгс/мм . При шлифовании прерывистыми и обычными кругами остаточным напряжениям растяжения 55 и 100 кгс/мм соответствует снижение предела выносливости до 49 и-38 кгс/мм . Однако с уменьшением числа циклов нагружений степень влияния остаточных напряжений уменьшается. Если при 2-105 циклов нагружений выносливость образцов относительно исходной составляет при шлифовании лентой, прерывистым и обычным кругом соответственно 97, 66 и 53% (табл. 13), то при Л = 0,6-105 она составляет соответственно 106, 87 и 75%.  [c.66]

При обдирке снимается слой металла толшиной в 1 —1,5 мм. В процессе шлифования толщина снимаемого слоя колеблется в пределах 0,08—0,1 мм. Доводкой обеспечивают получение поверхностей высокой чистоты (от 7 до 8-го класса). и при этом снимают слой всего лишь в 0,01—0,03 мм. Производительность анодно-механической обработки зависит от электрических режимов обработки при доводке она колеблется от 1 до 3 мм Умин и при обдирке — до 120—200 мм"/мин. Существенным преимуществом заточки твердосплавного инструмента перед обычной абразивной заточкой является получение поверхности лучшего качества при высокой производительности.  [c.83]

Подачами являются перемеш,ения заготовки или инструмента вдоль или вокруг координатных осей. Выражения и размерности подач определяются схемами шлифования. Глубина резания t (мм) определяется толщиной слоя материала, срезаемого за один проход. Оптимальные режимы резания выбирают по справочным данным. Для расчета элементов ишифовальных станков, конструирования приспособлений для работы на них и оценки точности обработки необходимо знать силы резания. Силу резания Р, возникающую при шлифовании в зоне контакта круга и заготовки, для удобства расчетов разлагают по координатным осям на три составляющие (рис. 6.92) тангенциальную Р , радиальную Ру и осевую Р . Составляющую Ру используют в расчетах точности обработки, Р — необходима для проектирования механизмов подач шлифовальных станков, Р используют для определения мощности электродвигателя шлифовального круга.  [c.361]

Величина и знак остаточных напряжений после механической обработки зависят от обрабатываемого материала, его структуры, геометрии и состояния режущего инструмента, от эффективности охлаждения, вида и режима обработки. Величина остаточных напряжении может быть значительной (до 1000 МПа и выше) и оказывает существенное влияние на эксплуатационные характеристики деталей машин, их износостойкость и прочность. Выбором метода и режима механической обработки можно получить поверхностный слой с заданной величиной и знаком остаточных напряжений. Так, при точении закаленной стали 35ХГСА резцом с отрицательным передним углом 45° при скорости резания 30 м/мин, глубине резания 0,2-0,3 мм было получено повышение предела выносливости образцов на 40-50% и обнаружены остаточные сжимающие напряжения первого рода, доходящие до 600 МПа [25]. При шлифовании закаленной стали в поверхностном слое были обнаружены остаточные сжимающие напряжения до 600 МПа [26]. В некоторых случаях напряжения первого рода создаются намеренно в целях упрочнения. Например, для повышения усталостной прочности. Такой эффект получают наложением на поверхностный слой больших сжимаюп их напряжений путем обкатки поверхности закаленным роликом или обдувкой струей стальной дроби. Такой прием позволяет создать остаточные напряжения сжатия до 900-1000 МПа на глубине около 0,5 мм [25].  [c.42]

Стремление получить поверхнрстный слой с наилучшими эксплуатационными характеристиками привело к применению различных технологических процессов финишной обработки, таких как шлифование, суперфиниш, полирование, абразивная доводка и др. При этом на строение поверхностного слоя и его геометрические и физические параметры оказывает влияние не только вид технологического процесса окончательной обработки, но и режимы обработки, обусловливающие сложные процессы формирования данного рельефа (см. гл. 10, п. 5).  [c.77]

В пределах одного метода на возможность возникновения дефектов основное влияние оказывают обычно режимы обработки (см. рис. 17). Например, при шлифовании имеется опасность при-жогов — местных изменений структуры поверхностного слоя металла, как следствие высоких мгновенных температур, возникающих в зоне резания, В зоне прижога происходят структурные изменения, например, в виде отпуска металла или закалки с отпуском, изменение микротвердости и возникновение остаточных напряжений. Для каждого материала имеется температура прижого-  [c.469]

Термообработка заметно снижает и степень наклепа по сравнению с образцами, не проходившими термообработку. Так, при шлифовании с шероховатостью поверхности у5 снижение степени наклепа в сплавах ЭИ617, ЭИ826 и ЭИ929 составляет соответственно 75, 65 и 50%, а при шлифовании с шероховатостью поверхности у9—V10 степень наклепа снижается в среднем на 50—20%, что указывает на уменьшение деформационного упрочнения поверхностного слоя. Глубина наклепа при данном режиме термообработки остается без изменений, т. е. такой, какой она была после механической обработки. Изменений в шероховатости поверхности после термообработки не обнаружено.  [c.193]

Детали из стеклопластиков, обработанные шлифованием, имеют большую надежность в работе, чем обработанные лезвийным инструментом. При шлифовании стеклопластика АГ-4В-алмазными кругами АСП16 на бакелитовой связке Б1 при -ЮО -ной концентрации алмаза на плоскошлифовальном станке Съем достигал 9—10 гс/мин при удельном расходе алмаза 0,005 мгс/гс. Поверхность при этом была лишена прижогов, трещин и других дефектов, ее шероховатость соответствовала 6-му классу чистоты. Обработка велась на режиме поперечная подача 2,4 мм/дв.ход продольная подача 8 м/мин глубина 0,3 мм и скорость вращения круга 30 м/с [41].  [c.46]


Образцы, обработанные шлифованием, имели при температуре 20° С предел выносливости 43,4 кгс/мм и при температуре 400° С 39,8 кгс/мм . Изменение предела выносливости при обработке резанием происходит в результате действия наклепа, остаточных напряжений, изменения микрогеометрии, структурных изменений и дефектов поверхностного слоя, характер и величина которых также зависят от метода и режимов обработки. Так, например, основным видом повреждения при грубых режимах шлифования и работе без охлаждения является прижог, который получается в виде характерных строчек. При этом снижаются твердость и микротвердость поверхности, а в поверхностном слое возникают значительные растягивающие остаточные напряжения. Дефекты, возникающие в результате шлифования цементованных образцов из стали 12Х2Н4А, снижают предел выносливости до 50 %.  [c.403]

Изделия можно обрабатывать шлифованием, электроэрозией и ультразвуком. Для черновой обработки наибольшее применение находят электро-эрозионные методы (химический и искровой), а для чистовой обработки — шлифование. В [8] рекомендуют проверенные режимы электроэрозионной черновой обработки (табл. 20) и чистовой обработки шлифованием (табл. 21). Производительность электрохимической обработки у РЗМ выше, чем при обработке сплавов альнпко, так как растворение РЗМ протекает более интенсивно. Производительность обработки шлифованием, напротив, значительно ниже, так как из-за большой хрупкости РЗМ за один ход шлифовального стола можно снимать слой толщиной 0,005 мм (при шлифовании альнико 0,01—0,02 мм). Прошивание отверстий электроискровым методом не рекомендуется из-за опасности их растрескивания.  [c.97]

Шлифование пластин для контроля их на трещины. При шлифовании металлокерамических твёрдых сплавов наждачными порошками с раствором GUSO4 получаются равномерные матовые поверхности, на которых совершенно отсутствуют штрихи, риски и царапины. На таких повер хностях легко обнаружить имеющиеся трещины и другие дефекты (раковины, неоднородности) при осмотре через лупу или микроскоп с небольшим увеличением. Поэтому способ химико-механического шлифования используют при сортировке пластинок, поступающих в напайку, для обнаружения трещин, появившихся или в процессе изготовления сплава от неправильного режима спекания, или при его дальнейшей обработке. Наличие трещин на пластинах обусловливает выкрашивание режущих кромок резцов, оснащённых твёрдыми сплавами, и преждевременный выход из строя.  [c.57]

Выбор технологического процесса обработки определяется не только необходимостью получения заданного класса чистоты, но и созданием определенного качества поверхностного слоя. В зависимости от режимов резания, применяемых при точении, фрезеровании, шлифовании и других видах обработки, изменяются физико-механические свойства поверхностного слоя. Скоростное точение, например, способствует упроченению поверхностного слоя. При шлифовании возможны структурные изменения поверхностного слоя и появление прижо-гов . Получили развитие упрочняющие технологические процессы обкатка шариками, роликами, обдувка дробью, также резко изменяющие состояние поверхностного слоя.  [c.142]

Во многих технологических задачах зависимости между параметрами приводят к функциям типа позиномов. Так, при построении операций при врезном шлифовании на одно-и многокруговых шлифовальных полуавтоматах ставилась задача выбора режимов обработки, которые обеспечивают минимальное время обработки при достижении заданной точности. С учетом ограничений по суммарным значениям радиальных сил, по суммарной мощности, необходимой для резания, и ограничения, обеспечивающего размерную стойкость круга при черновой обработке, формулируется следующая задача геометрического программирования  [c.220]

При оценке влияния метода окончательной обработки рабочих поверхностей деталей на предел выносливости следует иметь в виду, что предел выносливости часто зависит от предществующей финишной обработки. Окончательная обработка поверхности механическим полированием, обдувкой дробью и обкаткой роликами полностью ликвидирует влияние на усталостную прочность предществующих видов обработки при одинаковой микрогеометрии финишной обработки. Многие детали современных машин работают в различных коррозионных средах при больших циклах перемен напряжений. Влияние методов и режимов обработки на коррозионную усталостную прочность значительно сильнее, чем это же влияние на выносливость стали на воздухе (рис. II). Предел усталости а 1 образцов диаметром 20 мм определялся на базе 50-10 циклов. Сравнительному испытанию были подвергнуты образцы после токарной обработки, чистота поверхности которых соответствовала V 5 (ГОСТ 2789—59) и после шлифования с чистотой поверхности, соответствующей V 9. Выносливость в воздухе стальных  [c.411]

Температурные деформации деталей при обработке с применением средств активного контроля удобно определять по изменению показаний отсчетного устройства после прекращения обработки. Рассеяние температурных деформаций деталей при шлифовании зависит от стабильности условий и режимов шлифования, главным образом от постоянства режущей способности шлифовального круга. Степень влияния температурных и силовых деформаций узлов станка на точность обработки при нуль-детекторной и однодетекторной схеме измерения зависит от характера измерительной размерной цепи [1]. При двухдетекторной схеме измерения полностью исключается влияние на размеры деталей размерного износа режущего инструмента, температурных и силовых деформаций узлов станка.  [c.198]


Смотреть страницы где упоминается термин Режимы обработки при шлифовании : [c.386]    [c.66]    [c.608]    [c.51]    [c.404]   
Смотреть главы в:

Станочник широкого профиля Изд3  -> Режимы обработки при шлифовании



ПОИСК



2.212 Режимы обработк

2.212 Режимы обработк обработки

581 — Режимы обработки

Обработка шлифованием

Режимы Шлифование — Режимы

Режимы термической обработки деталей шлифования тонкого

Шлифование тонкое — Режимы обработки



© 2025 Mash-xxl.info Реклама на сайте