Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дополнительные указания к расчетам

Дополнительные указания к расчетам. 1. Приведенные выше формулы для расчета прочности деталей основаны на предположении, что давление распределяется равномерно по поверхности контакта.  [c.89]

Дополнительные указания к расчетам. 1. Приведенные выше формулы для расчета прочности деталей основаны на предположении, что давление распределяется равномерно по поверхности контакта. Действительная эпюра давлений в направлении длины втулки представляется некоторой кривой, приближенный характер которой изображен на рис. 7.6. Здесь наблюдается концентрация давлений (напряжений) у краев отверстия, вызванная вытеснением сжатого материала от середины отверстия в обе стороны.  [c.111]


Дополнительные указания к расчетам  [c.108]

Дополнительные указания по расчету подробно изложены в DIN 4024, пп. 2.26, 2.31 и 2.32, так что достаточно иметь возможность обратиться к ним.  [c.302]

Таким образом, учет фактора надежности при проектировании магистральных газопроводов существенно влияет на их оптимальные параметры и технико-экономические показатели. Повышение надежности и стабильности поставок газа достигается за счет комбинации мероприятий, из которых одни обеспечивают повышение надежности функционирования самого газопровода, другие — снижение дефицита, возникающего при авариях на линейной части и станциях газопровода, за счет общесистемных оперативных резервов. Косвенным эффектом комплекса рекомендуемых мероприятий является повышение коэффициента использования мощностей, экономия резервного топлива у потребителей ЕСГ, получающих дополнительные количества газа при авариях на газопроводе. Действующие методические указания для расчета экономического эффекта регламентируют сопоставление затрат на рекомендуемые технические мероприятия с альтернативным вариантом, приводящим к тем же результатам. Экономическая эффективность по газопроводу Уренгой — Ужгород была подсчитана для каждого этапа строительства и составила более 11 млн руб./год по первому этапу и около 43 млн руб./год — по второму.  [c.202]

В предлагаемом методе при добавлении нового пролета (аналогично тому, как в расчете крутильных колебаний по методу цепных дробей при присоединении дополнительной массы к кру-тильно колеблющейся системе) сложность расчетов не возрастает в геометрической прогрессии, как при применении прямого классического метода, ведущего к решению определителей высокого порядка. При выполнении расчетов по изложенному методу при добавлении каждого нового пролета вычисления увеличиваются всего лишь на две простые операции (нахождение жесткости на поворот на одной опоре и определение по соответствующему частотному уравнению жесткости на поворот на другом конце участка). Изложенный метод последовательных приближений обладает быстрой сходимостью. Чтобы воспользоваться указанным процессом, необходимо рассчитывать систему в такой последовательности, чтобы последний пролет имел возможно простое частотное уравнение, т. е. желательно, чтобы в последнем пролете не было нагрузки. Поэтому ротор, представленный на фиг. 61, начали считать с консольного участка, загруженного диском.  [c.147]


Указания к нормативам для расчета припусков на обработку литых заготовок. Нормативы для расчета припусков на обработку литых заготовок не распространяются на припуски, связанные со спецификой технологии производства отливок (припуски, компенсирующие коробление черных отливок напуски, упрощающие конфигурацию заготовок и сглаживающие местные углубления, переходы и уступы дополнительные припуски на верхние по положению при заливке поверхности и т. п.).  [c.471]

Документ предназначен для расчета и кодирования информации, используемой при разработке управляющей программы к станкам с программным управлением (ПУ) Документ предназначен для указания дополнительной информации к технологическим процессам (операциям) по наладке средств технологического оснащения. Применяется при многопозиционной обработке для станков с ПУ, при групповых методах обработки и т. п.  [c.285]

Стандарт устанавливает метод расчета геометрических параметров зубчатой передачи и зубчатых колес, приводимых на рабочих чертежах в соответствии с ГОСТом 2.403—68. Расчет определяет номинальные размеры передачи и колес (без допусков). Индекс относится к ще-стерне, индекс — 2 — к колесу если индекс отсутствует, то имеется в виду любое зубчатое колесо передачи. При отсутствии дополнительных указаний везде, где упоминается профиль зуба, имеется в виду главный торцовый профиль зуба, являющийся эвольвентой основной окружности диаметра  [c.344]

На практике теория неупорядоченных систем применяется к идеализированным моделям сплавов. Даже в случае сплава малой концентрации примесный атом (это относительный термин) может, вообще говоря, отличаться по размеру от замещаемого атома, так что вблизи него решетка несколько искажается. Замена может также повлиять на распределение электронов в непосредственной близости от примесного атома например, при замене иона Си+ ионом Хп++ последний, имея большую валентность, вызывает вблизи себя появление дополнительного экранирующего заряда. Расчет указанных эффектов даже для изолированных примесей представляет собой важную задачу теории твердого тела этих вопросов мы здесь касаться не будем. Иными словами, не выясняя, откуда это известно, примем, что при замене атома А атомом В в данном узле решетки изменяются значения характерных для данного атома параметров — массы, констант упругой связи с соседями, волновых функций и энергий связанных электронов, поперечного сечения рассеяния и т. д. Все эффекты, связанные с локальным искажением решетки или с экранированием электронами, считаются уже учтенными в самом определении понятия замещения .  [c.18]

Максимальный тормозной мо1 Ы1т механизма передвижения крана или тележки, если не заданы дополнительные требования к величине замедления, может быть при практических расчетах определен, исходя из отсутствия буксования ходовых колес по рельсам, по уравнению (56) при максимально допускаемых величинах замедления, указанных в табл. 26.  [c.293]

Использование критерия хрупкого разрушения в виде (2.1) во многих случаях позволяет прогнозировать несущую способность различных конструкционных элементов в частности, результаты расчета по условию (2.1) весьма удовлетворительно соответствуют экспериментальным данным при испытании образцов с концентраторами [101] в случае реализации довольно больших пластических деформаций по достижении условия oi = = S (ef), где ef — интенсивность пластической деформации. Однако применение критерия хрупкого разрушения в виде (2.1) для прогнозирования условий разрушения образцов с острыми концентраторами или трещинами связано со значительными трудностями. В частности, моделирование температурной зависимости критического коэффициента интенсивности напряжений Ki T) на основе условия (2.1), как будет показано в подразделе 4.2, не позволяет адекватно описать экспериментальную кривую. Указанные обстоятельства приводят к необходимости дополнительного анализа условий хрупкого разрушения. Такой анализ на основе физических процессов, контролирующих хрупкое разрушение материала, представленный ниже, позволил дать новую формулировку необходимого условия хрупкого разрушения— условия зарождения микротрещин скола — и предложить физическую интерпретацию зависимости критического напряжения хрупкого разрушения S от пластической деформации [75, 81, 82, 127, 131].  [c.60]


На рис. 6.6, а представлено семейство кривых 1-3 к -1) в зависимости от величины для различных значений параметра 7,. Расчет jV, N" произведен с использованием физических свойств воды и водяного пара в состоянии насыщения при р = 1 бар. Кроме того, принято X = 10 Вт/(м К) 5 = 10 мм i>o = 2 °С. Параметр Bi в этих условиях изменяется за счет изменения расхода охладителя G. Полному испарению этого расхода охладителя и перегреву его внутри пористой стенки до 350 °С соответствует значение внешнего теплового потока <7, указанное на дополнительной оси абсцисс.  [c.138]

В обоих указанных выше методах задача решается применительно к двухмерному потоку в естественной системе координат. Использование сетки естественных координат затрудняет применение счетно-решающих машин. Причина заключается в том, что от приближения к приближению меняются очертания и положение в пространстве первоначально выбранной линии тока, а это требует изменения при каждом приближении геометрических параметров расчетных точек. Поэтому при расчете поля скоростей по уравнениям, записанным в естественной системе координат, следует либо после проведения машиной одного приближения вводить новую информацию о положении расчетной точки, что увеличивает время работы машины и ручное время, необходимое для подготовки дополнительной информации, либо вводить перед началом расчета увеличенный объем информации, дающий возможность интерполированием получить геометрические параметры расчетной точки от приближения к приближению. Это занимает значительный объем памяти счетной машины и требует также большой подготовительной работы.  [c.93]

Усилия, возникающие в зацеплении колес, вызывают деформацию не только зубьев, но и валов и опор, что приводит к неравномерному распределению нагрузки вдоль контактной линии зубьев, а также к дополнительным динамическим нагрузкам. Такое же влияние оказывают неизбежные погрешности изготовления и монтажа деталей передачи. При расчетах с целью учета влияния указанных факторов номинальную нагрузку умножают на коэффициент нагрузки К, который в свою очередь определяется произведением трех коэффициентов К = К К К .  [c.259]

В разработанных Академией наук СССР и одобренных Госпланом СССР руководящих указаниях по использованию замыкающих затрат на топливо и энергию [23] последние определены как взаимосвязанные удельные экономические показатели, характеризующие экономическую оценку народнохозяйственных расходов для обеспечения дополнительной потребности в разных видах топлива и энергии по районам страны. Эти показатели в 1985 г. были определены применительно к новым условиям перспективного развития ЭК (на 20-летнюю перспективу). Они обеспечивают получение в многочисленных (причем заранее неизвестных) частных технико-экономических расчетах тех же вариантов решения, которые дало бы их рассмотрение при оптимизации энергетического баланса в целом.  [c.65]

Отсутствует единый подход к определению длительности вынужденного простоя. В Германии и Швейцарии отмечают начало и окончание состояния простоя оборудования с указанием длительности его в часах. В Великобритании, кроме того, учитывают недо-отпуск электроэнергии и мощности. В Швеции фиксируют время начала и окончания ремонта, трудозатраты на ремонт (чел-ч). Во Франции регистрируют вынужденные остановы с длительностью более 24 ч, в Австрии дополнительно отмечают число пусков. Ущерб потребителей (в денежном выражении) при отказах оборудования, как правило, не регистрируют, хотя отдельные энергокомпании изучают этот вопрос, проводя специальные исследования. В большинстве стран мира при расчете средних показателей надежности оборудования в выборку включают данные за первый год эксплуатации, в Бельгии этого не делают, а в Канаде средние показатели надежности оборудования вычисляют как с учетом отказов в первом году эксплуатации, так и без их учета.  [c.375]

Результаты расчета по выражению (2.21) приведены в табл.2.5. Отклонение экспериментальных (рисунки 2.6 и 2.7) и расчетных данных объясняется формализацией формы при расчете осколка (принимаем кубическую форму), отсутствием учета явлений, связанных с относительной близостью свободной поверхности к источнику нагружения, существенным статистическим разбросом свойств материала (особенно образцов горных пород). Однако несмотря на указанные факторы сходимость результатов расчета и эксперимента следует считать удовлетворительной. Учитывая, что только прочностные свойства материала могут изменяться в несколько раз, дополнительное уточнение расчетных выражений теряет смысл.  [c.92]

Вышеизложен практический подход к выбору размеров резонансного преобразователя. В том случае, когда имеется полная информация по исходной механической системе, указанные размеры получают расчетом согласно полученным в данной работе выражениям. Для случаев, когда имеющихся данных по механической системе достаточно лишь для проведения ее частотного расчета, размеры преобразователя определяют исходя из предварительно назначаемого сдвига значений собственных частот и возможной дополнительной подстройки системы за счет изменения этих параметров. Для такого подхода разработана методика проведения подбора искомых величин.  [c.101]

При проведении пуско-наладочных работ на котле совершенно естественно могут выявляться некоторые отклонения действительного положения уровня воды от расчетного. Эти отклонения происходят от неправильной оценки паропроизводительности контура, включенного на циклоны, неточной оценки гидравлических сопротивлений в трубопрово.дах от циклона, барабана, сепа-рационных устройств внутри барабана и т. п. Поэтому очень часто при пуске и наладке котлов возникает необходимость корректировать расхождение уровней путем установки дополнительных сопротивлении на различных участках соединительных паропроводов (между циклонами и сборным коллектором или между последним и барабаном). Дросселирование отдельных участков наиболее просто достигается путем установки шайб соответствующего диаметра. Для удобства смены шайб при подборе необходимого сечения целесообразна установка заранее по проекту на соответствующем трубопроводе двух фланцев с проставкой, взамен которой легко может быть установлена шайба необходимого сечения. Предварительно диаметр указанной шайбы определяется расчетом исходя из выявившейся величины расхождения уровня, которую следует скорректировать в дальнейшем размер шайбы уточняется экспериментально при наладке работы котла. Следует иметь в виду, что всякий пуск котла после проведения каких-либо ремонтных работ, связанных с изменениями тех или иных поверхностей нагрева экранов или переделками внутрибарабанных сепарационных устройств, соединительных трубопроводов к выносным циклонам, должен обязательно сопровождаться необходимым контролем за положением уровня воды в циклонах при различных нагрузках котла.  [c.170]


В справочнике обстоятельно рассмотрены большинство используемых в настоящее время моделей надежности. Априорному анализу надежности отводится сравнительно мало места. Тем, кому потребуется произвести расчет надежности сложных резервированных систем (невосстанавливаемых или с восстановлением) и решать специальные задачи резервирования, необходимо будет воспользоваться дополнительной литературой, указанной в конце первого тома. Для получения сведений о методах априорного анализа постепенных отказов, расчета вероятности невыхода за границы поля (объема) допусков совокупности параметров изделия, определяющих его работоспособность а заданном интервале времени, также придется обратиться к другим источникам. Нет в справочнике указаний на методы оптимального синтеза системы из ненадежных элементов, обладающей заданными показателями надежности. Наконец,  [c.9]

В работе [6] с целью преодоления указанного затруднения все искомые в сопряжениях элементов перемещения и усилия разделены на две части на величины, непрерывные в сопряжениях либо меняющиеся при переходе через сопряжение на заданную величину, и величины, претерпевающие в сопряжении разрыв на неизвестную величину. Первые неизвестные (их число в рассматриваемых конструкциях может превосходить 40—60) весьма удобно определяются с использованием рекуррентных формул метода начальных параметров по заданным краевым условиям путем сведения исходной краевой задачи к задаче с начальными данными. Вторые неизвестные (число неизвестных разрывов обычно не превосходит пять — восемь) определяются при помощи дополнительных условий, по которым в разрывных сопряжениях некоторые из искомых величин либо известны (нанример, изгибающий момент в идеальном шарнире), либо связаны линейными зависимостями с неизвестными разрывами (например, связь опорной реакции с прогибом упругой опоры). Для этого должны быть известны дополнительные коэффициенты местной жесткости конструкции или податливости присоединенных к ней упругих элементов, которые задаются при расчете в виде диагональной матрицы, каждый диагональный коэффициент которой характеризует одно из разрывных сопряжений независимо от остальных.  [c.76]

На основании этого можно было ожидать, что в указанных пределах изменения безразмерного параметра б приближенные решения позволяют получить данные о напряженном состоянии в зонах конических отверстий с достаточной для инженерных расчетов точностью. Однако, как было отмечено выше, максимальная величина дополнительного радиального давления на поверхности отверстия позволяет судить лишь о порядке погрешности приближенного решения. Для установления действительной величины погрешности решений было проведено экспериментальное исследование распределения напряжений в зоне конического отверстия в пластине, нагруженной равномерным всесторонним растяжением, методом фотоупругости с ирименением замораживания [6]. Модель была изготовлена из оптически чувствительного материала ЭД5-М и нагружалась путем размораживания приклеенного к ней кольца, вырезанного из диска из того же материала, предварительно замороженного при равномерном радиальном сжатии [10].  [c.113]

Поэтому в конце книги помещены написанные нами два дополнительных обзора. Первый Вычисление инвариантных интегралов в особых точках представляет собой краткий ответ на указанные вопросы, а также охватывает ряд крупных работ по данной теме, появившихся после выхода в свет книги. Во втором Расчет энергетического интеграла методом эквивалентного объемного интегрирования представлен вычислительный подход к определению инвариантного интеграла с использованием метода конечных элементов для решения краевой задачи.  [c.7]

Соотношения (6.20) принципиально не отличаются от исходного уравнения (6.19), поскольку, начиная с третьего уравнения, содержат произведения случайных функций i (д ) Wi (х), i х) ( ) и т. д, что приводит к необходимости на каждом шаге анализа вводить дополнительные гипотезы о распределении функций Wj (л ). С повышением номера приближения возрастают аналитические трудности и объем вычислений, так что при практических расчетах обычно ограничиваются первыми двумя членами ряда. Предлагаемые в данной работе спектральной и вариационный методы не имеют указанных недостатков.  [c.177]

Хотя переход к рассмотренной форме представления показателей точности не изменяет (и не может изменить) единственно важный для аналитической практики контроль точности каждого среднего результата измерений по данным воспроизведения аттестованных характеристик СО, введение дополнительных показателей точности в документы на методики выполнения измерений и связанный с этим дополнительный объем расчетов целесообразны. В соответствии с установленным в СССР порядком результаты измерений с применением технических средств могут использоваться при условии оценки их погрешности с необходимой точностью. Согласно методическим указаниям Госстандарта МИ 1317—86, совместно с результатом измерений должны быть представлены характеристики погрешности или ее статистические оценки. Внесение погрешности результатов измерений химического состава, например, в сертификаты на готовую продукцию в настоящее время, по-видимому, преждевременно, так как может привести к возникновению определенных конфликтных ситуаций, особенно, если статистическая оценка погрешности окажется выше, чем различие между результатами измерений и нормированным допуском на содержание компонента. Не исключено, что дальнейшая проработка этого вопроса потребует определенного уточнения требований к качеству продукции, однако в настоящее время оно не учитывается действующей нормативно-технической документацией на марки черных металлов.  [c.34]

Нетрудно видеть, что в выражениях (2.5) для угловых аберраций пятого и седьмого порядков также есть члены, соответствующие проективному преобразованию, однако в них есть и дополнительные члены, учитывающие реальный ход световых лучей при наличии аберраций. Ясно, что координаты точки плоскости М, в которую попадает луч, проходящий через точку Л( , т)) плоскости М, за счет аберраций будут несколько отличаться от тех, которые дает проективное преобразование. Начиная с пятого порядка, это отличие необходимо учитывать. В соотношениях (2.5) для Fgj, F учтено влияние аберраций третьего порядка в плоскости М, а для F , F — аберраций третьего и пятого порядков. Экстраполируя эту закономерность, приходим к выводу, что для вычисления по результатам лучевого расчета волновой аберрации в новой плоскости с точностью до k-TO порядка малости необходимо рассчитывать ход лучей с точностью АО k — 2-го порядка, причем численное значение волновой аберрации с указанной точностью сохраняется вдоль каждого из прослеженных световых лучей. Вдоль реального светового луча (ход которого рассчитывают с учетом аберраций всех порядков) сохраняется точное численное значение волновой аберрации, что соответствует смыслу данного в п. 1.3 определения волновой аберрации.  [c.42]

В тексте, как правило, не делается ссылок на дополнительную литературу. Имеется в виду, что подробные сведения но всем вопросам, изложенным в курсе сопротивления материалов, имеются в настоящее время в энциклопедическом трехтомнике, иапнсанно.м С. Д. Пономаревым и др., Расчеты на прочность в машиностроении (Машгнз, 1956 — 1959 гг.). Поэтому читателю, желающему углубить свои знания в том или ином разделе курса, следует обратиться преисде ВС610 к указанному руководству, где дано и расширенное толкование всех вопросов, и подробные указания на существующую литературу.  [c.7]


С учетом трения в поступательных кинематических парах, кроме нормальных к поверхностям направляющих реакций, будут действовать силы трения, направленные вдоль цаправляющих в сторону, противоположную относительной скорости элементов пары. Во вращательных кинематических парах появятся моменты сил трения, направления которых будут противоположны относительным угловым скоростям звеньев, образующих кинематическую пару. Следовательно, определению реакций в кинематических парах с учетом сил трения должен предшествовать кинематический расчет механизма. С учетом указанных обстоятельств в уравнениях равновесия должны быть учтены дополнительные факторы. Так, например, в структурной группе второго вида (рис. 21.9) появятся моменты сил трения Мта во вращательной паре А и Мтв в паре В и сила трения Рте в поступательной паре С. Поэтому уравнение равновесия (21.2) приобретает вид  [c.262]

Использование указанных комплексов не только упрощает расчеты, но и позволяет в каждом конкретном случае выбрать правильный подход к их осреднению в данном термодинамическом процессе, избежать дополнительную ошибку при построении комплекса по осредненным величинам, например ( .ДА.кДж гНПй)  [c.35]

Указанная система уравнений решалась на ЭВМ методом Рун-ге—Кутта для случая равномерного вдува воздуха в нагретый воздушный поток, закрученный на входе. Результаты расчета одного из вариантов представлены на рис. 9.3 (линии — расчет, точки — эксперимент). Сравнение опьиных и расчетных данных позволяет заключить, что изложенный метод расчета позволяет получать надежные результаты. Не анализируя подробно структуру потока в условиях вдува (см. гл. 3), отметим следующее. Коэффициент трения при малых значениях Ке ,/ уменьшается по длине канала, что обусловлено снижением поверхностного трения вследствие вдува. При возрастании Кец,/Ёё згвеличение расхода газа в канале вследствие подвода дополнительной массы приводит к падению темпа уменынения с /2 и даже к его возрастанию в конце канала при Ке ,/ Ке = 0,01. Анализ интенсивности теплообмена подтверждает вывод о том, что пористое охлаждение позволяет существенно снизить тепловой поток в стенку канала в условиях закрутки потока. Зная изменение Ке , Ке и, Ф по длине канала, далее нетрудно (аналогично течению  [c.179]

Технологически указанную выше идею задержки роста трещины реализуют путем расположения в отверстие втулки. Их необходимо устанавливать в отверстие под крепежные элементы и приклеивать к отверстию или выполнять круговые канавки вокруг отверстия, в которые входит бурт втулки при ее запрессовке. Чтобы полностью перекрыть зону трещины, следует приклеить еще боковую накладку или расположить по ее поверхности конусообразные канавки со вставками, как это показано на рис. 8.52. Вставку следует закрепить болтом, совмещая отверстие во вставке, с отверстием, в котором располагают втулку. Все это суп1ествен-но снижает интенсивность напряженного состояния материала в районе трещины, как показали расчеты методом конечных элементов, и приводит к резкому снижению темпа роста трещины. Поверхность отверстия, как и зона трещины по свободной поверхности элемента конструкции, может быть после обнаружения трещины упрочнена любым из известных способов. Это создает весьма высокий уровень сжимающих напряжений и способствует дополнительному снижению темпа последующего роста трещины.  [c.461]

Расчет труб в упругой стадии с учетом пространственной работы сооружения позволяет с некоторой погрешностью оценить изменение распределения сил в таких конструкциях по сравнению с полученным из консольного расчета сооружения. В процессе строительства и эксплуатации подобных сооружений в них образуется система трещин, которая снижает жесткость их горизонтальных и вертикальных сечений, что ведет к дополнительному изменению в распределении меридиональных сил Л м. Так как точная теория расчета труб с учетом влияния трещин не разработана, то проводились расчеты трубы, в которых уменьшалась толщина ее стенки б. Установлено, что уменьшение толщины стенки ведет к росту дополнительных нормальных меридиональных сил. Вместе с тем в расчетах труба принималась защемленной в жестком недеформируемом фундаменте. В расчете, учитывающем деформации фундамента и основания, значения дополнительных меридиональных сил N , снизятся. По-видимому, целесообразно провести широкое экспериментальное и теоретическое исследование пространственной работы таких сооружений с учетом их действительной формы, влияния трещин и неупругих свойств бетона, деформаций фундаментов и основания, а также других их конструкционных особенностей (отверстия, диафрагмы и т. д.) до детального изучения этих вопросов расчетные значения дополнительных меридиональных сил Л/ , получяемых из расчетов, не учитывающие указанные факторы, целесообразно увеличивать на 25 7о-  [c.299]

Учет продольной жесткости шпилек в затянутом фланцевом соединении. Выше рассматривался расчет конструкции на затяг фланцевого соединения, для которого усилия в шпильках были заданными, и потому податливости шпилек могли не учитываться. Напряженное и деформированное состояние от затяга шпилек считается начальным состоянием для последующих расчетов на внешнюю нагрузку, например затяг нажимных винтов узла уплотнения, внутреннее давление в корпусе, нагрузки от неравномерного нагрева конструкции. При действии этих нагрузок в шпильках возникают дополнительные неизвестные усилия АР, а контактные сопряжения становятся зависимыми аналогично сопряжениям (см. рис. 3.2). В сопряжениях А к В кв точке С имеются неизвестные разрывы AQ , А и АР. Осевое усилие АР создает в точке С неизвестный внешний изгибающий момент ДЛ1 =ЛРбк> вызванный переносом осевого усилия с радиуса / ш на радиусЛд. При выводе формулы (3.2) было показано, что для определения неизвестных разрывов А , Ад , AAf должны рассматриваться зависящие от них величины Af и Здесь И к - радиальное перемещение нажимного кольца в точке А от распорного усилия AQ , момента АМ , вызванного дополнительным усилием АР в шпильках, и внешней нагрузки . Л/ — изгибающий момент, возникающий после указанного выше переноса усилия АР и равный  [c.138]

Иногда при расчете процессов тепло-и массообмена, например, в контактных аппаратах кондиционирования воздуха, используют разности t — tx, d — йж [26]. Эти разности имеют ту особенность, что они могут менять свой знак в одном и том же процессе тепло-и массообмена. Например, разность d — dm меняет знак при нагреве воды от температуры ниже точки росы начального состояния воздуха до температуры, которая меньше начальной температуры воздуха по смоченному термометру, но больше температуры точки росы. Это ослох<няет расчет, так как возникает необходимость в разделении реактивного пространства аппарата на отдельные участки и т. д. В то же время разности — d и ttA — tx никогда не меняют знака и ими удобно пользоваться в расчетах. Другие разности, d — d,K и t — U, тоже не меняют знака, но при определении dx необходимо учитывать дополнительные условия (влияние скачка влагосодержания, изменение температуры в пограничном слое жидкости и др.), а температура газа t не определяет его энтальпии. Разделение же и взаимо-увязка теплообмена по явной и скрытой теплоте делается обычно при упрощающих предпосылках об отсутствии указанного сложного распределения потенциалов в пограничном слое, что в конечном итоге приводит к эмпирическим формулам и узким диапазонам их применения. Поэтому рекомендуется использование разностей d — d, U — tx-  [c.37]

Изложенные положения о регулярном тепловом режиме в большинстве практичесюих случаев оправдываются как для простых, так и для геометрически сложных тел. Однако могут иметь место некоторые отклонения от них. Так, в [Л. 6] отмечается, что сложные тела со слабыми тепловыми связями отдельных частей в целом очень долго не входят в регулярный режим, хотя в этих частях тела и имеет место регулярный тепловой режим, причем темп охлаждения оказывается различным в зависимости от координат точки и времени. Регулярный режим может долго или вообще не наступать в телах простой геометрической формы, если начальное распределение температуры описывается второй собственной i функцией (см. табл. 2-1). Наоборот, регулярный режим практически наступает мгновенно в теле сложной формы, если начальное распределение температуры подобно первой собственной функции. Отмечая указанные особенности влияния начальных условий на время наступления регулярного режима, Дульнев Г. Н. предложил к признакам этого режима ввести дополнительное условие, состоящее в том, что избыточная температура различных точек тела при регулярном режиме сохраняет один И тот же знак (Л. 7]. Теория регулярного режима была разработана в работах Г. М. Кондратьева, Г. Н. Дульнева Л. 8] и др. Она широко используется в различных расчетах и при проведении экспериментальных исследований.  [c.65]


Впервые горелки Мосэнергопро-екта производительностью 3 ООО— 4 000 м 1ч природного гава были испытаны на котле ТП-170 при переводе одной из московских электростанций на газовое топливо. На основании эксплуатационного опыта IB конструкцию были внесены некоторые усовершенствования, после чего данными горелками были оснащены многие котлы производительностью 170—230 г/ч, работающие в системе Мосэнерго. В рекомендациях по применению горелок рассматриваемой конструкции о бычно акцентировалась необходимость принимать скорость истечения газа Шг из отверстий горелочного насадка с таким расчетом, чтобы значения параметра п.не выходили из пределов примерно от 0,8 до 1,0. Параметр п представляет собой отношение динамических напоров воздушного и газового потоков, т. е. и — = Ув в/уг г, где аУд —средняя скорость воздушного потока в узком сечении амбразуры, ув и уг — удельные веса воздуха и газа (соответственно). Поскольку значения w-в в котельных горелках обычно составляют 25—35 м1сек, то скорость истечения газа из отверстий в соответствии с указанными рекомендациями не должна быть больше 40— 45 м1сек. Позже была опубликована дополнительная рекомендация по поводу того, что угол раскрытия конической амбразуры не должен превышать 7°, а положение перфорированного насадка по отношению к амбразуре следует уточнять в процессе пуско-наладочных испытаний котла на газовом топливе [Л. 98].  [c.113]

Для подтверждения высказанного предположения проведена серия первопринципных расчетов нитридов А1, Оа, содержащих примесные комплексы ОаК (2Ве, 2Mg + О), (2Ве, 2Mg + 81), (2Ве, 2Mg + Н), (2С + О), АШ (2С + О), где примеси располагались в соседних узлах решетки матрицы [80—84]. Например, в системе GaN Mg изолированный дефект (Mg) генерирует набор локализованных состояний с энергией активации 0,2 эВ. Дополнительное введение химически активных донорных центров (О, Н) приводит к возникновению новых межатомных взаимодействий (в комплексах [2Mg(0, Н)]) и понижению энергии акцепторных примесных состояний по схеме рис. 2.13. Кроме того, указанные взаимодействия в значительной мере редуцируют энергию кулоновского отталкивания одноименно заряженных примесных ионов, увеличивая тем самым растворимость дефекта в матрице, что позволяет регулировать число носителей, а замена дальнодействующего кулоновского рассеяния на короткодействующее рассеяние на комплексах повышает их подвижность.  [c.55]

Линейная (жесткая) система вихрей строится довольно просто и не требует существенных затрат времени на вычисления, но она представляет собой наиболее грубое приближение к реальной системе вихрей. В условиях полета, когда элементы вихрей быстро отходят от диска винта (при больших скоростях полета вперед, которым соответствуют большие углы пкл наклона плоскости концов лопастей, или при больших скоростях набора высоты), взаимодействием вихрей с лопастями можно пренебречь, и модель жесткого следа оказывается приемлемой. ГГостроение полужесткой модели не требует дополнительной вычислительной работы, так как в ней используется лишь информация об индуктивных скоростях на диске винта. Допуш,е-ние о том, что элементы вихрей переносятся со скоростью, равной скорости на диске винта, справедливо лишь в течение небольшого промежутка времени после схода вихря с лопасти и это допущение определенно нарушается, когда к указанному элементу вихря подходит следующая лопасть. Таким образом модель полужесткого следа в общем не дает особого улучшения по сравнению с предыдущей. Когда вихри проходят вблизи лопастей, деформация вихрей в следе существенно влияет на нагружение лопастей, и необходимо применять модель свободного следа. Расчет деформации вихрей требует определения индуктивных скоростей не только на диске винта, но и на каждой пелене, так что приходится выполнять очень большой объем вычислительной работы. Использование модели предписанной формы следа ограничено необходимостью проведения измерений для рассматриваемого винта и заданных условий полета. Выбор модели следа определяется, как правило, компромиссом по соображениям точности и экономичности вычислений. Возможности экономичного решения ряда задач на основе модели свободного следа в настоящее время отсутствуют, так что используется модель жесткого следа. Здесь имеет значение и то обстоятельство, что повышение точности путем учета деформаций вихрей не может быть реализована до тех пор, пока существенные усовершенствования не будут введены в остальные элементы расчетной модели.  [c.674]


Смотреть страницы где упоминается термин Дополнительные указания к расчетам : [c.20]    [c.44]    [c.389]    [c.421]    [c.6]    [c.259]    [c.149]    [c.56]    [c.181]    [c.135]    [c.350]   
Смотреть главы в:

Детали машин Издание 3  -> Дополнительные указания к расчетам



ПОИСК



Дополнительные указания по расчетам и основы расчета специальных конструкций

Указания

Указання по расчету



© 2025 Mash-xxl.info Реклама на сайте