Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волновые Расчет

Проведенные эксперименты свидетельствуют о большой точности волнового расчета, учитывающего местные деформации.  [c.437]

Волновые расчеты, целью которых является определение высоты ветровых волн и их набега на откосы сооружений мостовых переходов, выполняют в соответствии со СНиП П-57-82 Нагрузки и воздействия на гидротехнические сооружения (волновые, ледовые и от судов) . Этой же главой СНиП регламентируется учет воздействия льда на сооружения мостовых переходов.  [c.252]


Рассматривая волновой расчет продольного удара ( 4), мы установили, что при ударе о стержень жесткого груза, движущегося со скоростью о. изменение напряжений в сечении стержня характеризуется разрывными кривыми, причем величина разрывов равна  [c.577]

Этот физически противоречивый результат показывает, что вблизи каустик пользоваться лучевой картиной для определения величины поля нельзя. Теория волн в локально-однородных средах, из которой мы фактически исходили до сих пор при нахождении поля в медленно меняющейся среде, оказывается непригодной для расчета поля вблизи каустик. Здесь необходим точный волновой расчет. Такой расчет показывает, что лучи можно строить для всей среды, не обращая внимания на то, что они касаются каустик нельзя только вычислять плотность энергии вблизи каустик, исходя из степени расширения или сужения лучевых трубок. На каустиках лучи как бы испытывают полное отражение по другую сторону от каустики звуковое поле представ ][яет собой экспоненциально убывающую волну, локально представляемую неоднородной волной, бегущей вдоль каустики.  [c.303]

Кинематические и силовые расчеты планетарных и волновых передач приведены в гл. 9 и 10 настоящего пособия. Расчеты ременных и цепных передач из-за недостатка места здесь не даны. Их следует выполнять по учебнику Детали машин [6].  [c.30]

РАСЧЕТ И КОНСТРУИРОВАНИЕ ВОЛНОВЫХ ПЕРЕДАЧ  [c.168]

В настоящем издании (4-е — 1985 г.) приведен анализ результатов расчета передач на ЭВМ и рекомендации по выбору варианта для конструктивной проработки учтены изменения в методике расчета зубчатых и червячных передач, валов, подшипников качения, планетарных и волновых передач, при конструировании корпусных деталей и др., произошедшие со времени выхода в свет предыдущего издания.  [c.2]

Таким образом, показано, что предлагаемый метод расчета параметров динамической механики разрушения (КИН, G, v). при соответствующем выборе шага интегрирования Ат позволяет довольно надежно и достаточно просто осуществлять указанную процедуру с учетом волновых явлений и перераспределения полей напряжений по мере развития трещины.  [c.252]

Геометрический расчет зацепления волновых передач [23  [c.196]

Расчеты на прочность и выносливость элементов волновых  [c.198]

Общепринятых методик расчета на предотвращение отмеченных видов разрушений пока нет, однако большинство исследователей в качестве основных критериев работоспособности волновых передач принимают прочность и выносливость гибкого колеса и долговечность подшипников генератора.  [c.198]


Последовательность проектировочного расчета одноступенчатого волнового зубчатого редуктора  [c.206]

Проверочные расчеты волнового редуктора состоят в проверке по формуле (8.16) выносливости оболочки гибкого колеса и опр где-лении срока службы гибкого подшипника, для чего можно использовать методику, изложенную в [291,  [c.206]

Расчет волновых зубчатых передач от личается от расчета обычных зубчатых передач тем, что учитывает изменения первоначальной формы зубчатых венцов и генератора волн от упругих деформаций.  [c.223]

Для иллюстрации метода приведем ряд примеров расчетов. Вместо величины волнового сопротивления будем приводить коэффициент волнового сопротивления с.  [c.127]

Результаты расчетов максимального коэффициента сопротивления в плоскопараллельных течениях изображены на рис. 3.49. Величина коэффициента волнового сопротивления с в плоскопараллельном случае и аргумент в, использованный на этой фигуре, определены формулами  [c.173]

Если бы волновая функция данного атома отличалась от водородного только масштабом, то величина а была бы одинакова при любом выборе Е. При проведении расчетов атомных структур Д. Хартри [34] показал, что в зависимости от выбора Е изменение а может достигать двух-трех единиц. Поэтому если нам необходимо  [c.57]

Расчет на прочность волновых передач. В кинематических волновых передачах зубья колес испытывают напряжения, поэтому размер модуля выбирают исходя из конструктивных соображений. Наиболее напряженной деталью является гибкое колесо, тонкая стенка которого испытывает растягивающие и сжимающие напряжения от изгиба и сдвигающие от кручения. Подробные сведения о геометрии, кпд, конструкциях и расчете деталей волновых передач приведены в литературе [6, 11, 20, 35]. Здесь ограничимся лишь некоторыми рекомендациями по этим вопросам [35].  [c.239]

Элементарные расчеты показывают , что голограмма восстанавливает ту из волн, участвовавших в ее образовании, которая отсутствовала при восстановлен пи волнового фронта. Пусть на фотопластинке сходятся две когерентные волны с плоскими фронтами (рис. 8.2). Углы падения первой и второй волн обозначим соответственно через ii и ц.  [c.207]

Ф2 (О определяются свойствами источников 51, 5а и для теоретического расчета необходимы определенные предположения о процессе испускания света. Примем следующую простую схему для этого процесса точечный источник испускает последовательность волновых цугов с равными длительностями Т и равными амплитудами а, а фазы различных цугов принимают совершенно случайные, независимые друг от друга значения.  [c.97]

Пусть испускаемое атомом излучение представляет собой последовательность волновых цугов, амплитуды которых изменяются по случайным причинам, но фаза не модулируется. Расчет показывает, что в этом случае степень когерентности имеет вид (см. упражнение 21)  [c.98]

В 33 мы уже упоминали, что постулат Френеля, служащий для характеристики вторичных волн, интерференция которых объясняет все процессы распространения волн, являлся некоторой гипотезой, догадкой Френеля. Проведение расчетов по методу Френеля и сравнение их с опытом показывают, что гипотезу эту надо несколько изменить ввести дополнительный фактор, учитывающий наклон вспомогательной поверхности к направлению действия, обосновать добавочными рассуждениями отсутствие обратной волны и изменить начальную фазу вторичных волн на Если первые два дополнения привлекаются из соображений более или менее наглядных, то опережение фазы считается иногда чем-то таинственным , как выразился Рэлей в своей Волновой теории света . Конечно, поскольку постулат Френеля является не чем иным, как некоторым рецептом, дающим общий метод решения задач волновой оптики, то очевидно, что и видоизменение этого постулата не представляет ничего особенного просто более тщательный анализ показывает, что надо пользоваться несколько иным рецептом решения волновых задач, обеспечивающим лучшее согласие с опытом.  [c.170]

Для аналитического расчета интенсивности света, распространяющегося по разным направлениям за щелью, напишем выражение для волны, посылаемой каждым элементом волнового фронта, и просуммируем действие всех элементов. Амплитуда волны, обусловленной одним таким элементом, пропорциональна его ширине йх, т. е. равна Сйх. Множитель С определится из условия, что по направлению ф = О амплитуда волны, посылаемой всей щелью, равна Аа, т. е. СЬ = Ад или С = Ад/Ь. Таким образом, световое  [c.175]


Грубые оценки интервала применимости приближения слабофазового объекта [см. (13.6) и (13.12)] подтвердили Гринтон и Каули [171], которые провели подробные п-волновые расчеты интенсивностей изображения для моделей контрастированных биологических объектов, воспользовавшись вычислительными методами, изложенными в конце гл. 11.  [c.298]

Включение более чем одного пучка в систематический ряд отражений приводит к более сложному профилю интенсивностей полос и более сложному изменению этого профиля в зависимости от толщины и ориентации кристалла и дефокусировки. Ранние расчеты, относящиеся к профилю таких полос, выполнили Ниерс [320] и Мияке и др. [306]. Более сложные п-волновые расчеты, относящиеся к изображению кристаллов с высоким разрешением, сделали Олпресс и др. [2] и Анстис и др. [6].  [c.308]

Общие положения. Генеральные размеры проектируемых мостовых переходов определяются расчетом и не могут быть назначены произвольно. К генеральным размерам (параметрам) мостовых переходов, определяемым в результате выполнения комплекса гидрологических, морфометрических, русловых, гидравлических и волновых расчетов, относятся отверстия мостов, глубина заложения фундаментов промежуточных опор по условиям размыва, расчетные судоходные горизонты (РСГ) и подмостовые габариты, минимально допустимые отметки низа конструкций пролетных строений, проезжей части мостов, верха под-ферменников, бровок подходных насыпей, а также размеры регуляционных сооружений и конструкций укреплений.  [c.251]

Более точная теория параметрических излучающих антенн, принципиально отличающаяся от теории Вестервельта, была разработана на основе точного волнового расчета нелинейных взаимодействий в дифрагирующих пучках в работах Р. В. Хохлова и его учеников. Использование метода медленно изменяющегося профиля волны в сопровождающей системе координат, наряду с методом параболического уравнения Леонтовича — Фока, приведшего, как известно, к новой области теории — так называемой квазиоптике (области, промежуточной между волновой и геометрической опти- кой — акустикой), позволило получить упрощенные уравнения, описывающие поведение ограниченных пучков нелинейных волн (о чем шла речь в гл. 3). Весь этот круг вопросов подробно изложен в книге [261.  [c.105]

Асимптотика отраженного поля при падении сферической волны с учетом возможного сближения полюса и перевальной точки впервые была построена Зоммерфельдом (126, гл. 6] и впоследствии исследовалась многими авторами (см. (259, 264, 297], (260, гл. 5]). Чисто лучевая теория эвукового поля в воде от излучателя в воздухе изложена в (396].Точный волновой расчет поля в воде в точке, лежащей на той же вертикали, что и излучатель в воздухе, приведен в работе (544], Отличие от лучевой теории заметно лишь на таких частотах, когда удаление как излучателя, так и приемника от поверхности воды не превышает длины волны. Отражение сферической звуковой волны от пористой среды, моделируемой поглошаю-щим жидким полупространством, рассматривалось в работах (355, 493] в более ранних работах (289, 346] использовалась модель импедансной границы. В статье (457] получено рекуррентное соотношение между козффициентами полного асимптотического разложения звукового поля в зтой задаче, главным членом которого служит формула (12.54). Сопоставление теоретических результатов с экспериментальными данными и более полную библиографию читатель найдет в работах (289, 457, 493].  [c.264]

Мы видим, что эта часть звукового потенциала при углублении в воду экспонепцнально затухает. Однако при малых D амплитуда этой волны может во. много раз превышать амплитуду волны (32.20), соответствующей геометрической оптике, так как последняя пропорциональна D. Задача о преломлении сферической волны в случае, когда нижняя среда обладает большей скоростью распространения, рассматривалась также в работе [1. )9]. Чисто лучевая теория звукового поля в воде от излучателя, расположенного в воздухе, рассмотрена также в [172]. Точный волновой расчет поля в воде в точке, лежащей на одной и той же вертикали, что и излучатель в воздухе, сделан М. Вайнштейном [264] для разных частот. Отличие от геометрической теории заметно лишь на таких частотах, когда удаление как излучателя, так и приемника от поверхности воды составляет длину волиы или меньше. В этой же работе учтено н влияние отражающего дна.  [c.196]

Тепловой режим волновой передачи рассчитывается по известным зависимостям для других передач (см., например, тепловой расчет червячного редуктора, гл. 2). Допускаемая температура масла для редукторов общего назззачения [/] = 70... 80 С. Коэффициент теплоогдачи принимают для закрытых небольших помещений при отсутствии вентиляции Кугк8...12, для помещений с интенсивной вентиляцией KJK  [c.176]

Данное пособие поможег учащимся техникумов выполнить расчеты зубчатых, червячных, планетарных и волновых передач, расчегы валов, подшипников качения, научиг их конструировать зубчатые и червячные колеса, червяки, подшипниковые узлы, валы, корпусные детали, ознакомиг со способами смазывания и с уплотнениями. Учащиеся приобретут знания по выполнению рабочих чертежей деталей. Весь процесс работы над проектом последовательно показан в пособии на примерах расчега и конструирования цилиндрических, конических, червячных и планетарных передач.  [c.393]

Настоящее издание отличается от предыдущего следующим введены главы, посвященные методике расчета. убчазззх и червячных передач, модшинииков качения расчета и конструирования планетарных и волновых передач г-тава Выполнение чертежей деталей дополнен материалами по оформлению рабочих чертежей звездочек цепных передач и корпусных деталей.  [c.3]

В четвертое издание учебника по сравнению с предыдущим внесены следующие изменения. Все формулы представлены так, что остаются справедливыми для любой системы единиц физических величин. В справочных данных и примерах расчета используется только Международная система единиц. Расчеты на ресурс распространены на зубчатые (шлицевые) соединения в соответствии с ГОСТ 21425—75 и на клиноременные передачи — ГОСТ 1284.3—80. В расчетах на ресурс зубчатых передач и подшипников качения использована общая методика по типовым графикам нагрузки. Дана современная методика расчета конических передач с круговыми зубьями, Использована теория вероятности при расчетах прессовых соединений, подшипников скольжения и качения, также результаты современных исследований прочности волновых передач и передач Новикова. Внесены изменения в методику изложения некоторых разделов курса. Все эти изменения связаны с быстрым развитием отечественной науки в области машиностроения, которому уделяется первостепенное внимание в планах нашей партии и правительства, в решениях XXVI съезда КПСС.  [c.3]


В книге изложены общие вопросы курсового проектироваЕшя деталей машин, теоретические основы и практические рекомендации по расчету и конструированию ременных, цепных, фрикционных, зубчатых, волновых и планетарных передач. Расчет и конструирование выполнены в соответствии с требованиями ГОСТов и стандартов СЭВ.  [c.2]

Недостатками волновых передач являются невозможность o(ie -печеиия осуществления малого передаточного числа в передачах со стальными гибкими зубчатыми колесами, несколько более сложный расчет, конструирование и изготовление.  [c.196]

Тепловой расчет волнового редуктора выполняется так же, как и для зубчатых и червячных редукторов (см., например, гл. 1, ч 2). В случае несоблюдения теплового баланса на корпусе волнозого редуктора предусматривают охлаждающие ребра, при этом уч )ты-вается только половина их площади. Для охлаждения редук ора может быть использован также и вентилятор, который устанавливается на быстроходном валу.  [c.204]

В дополнение к исследованиям Нуссельта академик П. Д. Капица показал, что движение пленки может иметь волновой характер и теплонроводимость такой пленки в среднем на 21% выше, чем пленки, имеющей ламинарное движение. Поэтому при практических расчетах рекомендуют следующие формулы определения среднего значения коэффициента теплоотдачи для вертикальной стенки  [c.453]

За исходный параметр геометрического расчета передач в 1ут-рсннего и внешнего деформирования принимается величина максимальной относительной деформации гибкого колеса Wfjr,. Уравнение д 1я определения расчетного числа зубьев условпоТо колеса в1> водится на основе уравнения срединной линии деформированного гибкого колеса (см. Шувалов С. А., Волков А. Д. Деформация гибкого зубчатого колеса волновой передачи двумя дисками, Известия вузов. № 10, 1974)  [c.431]

Гипотеза де Бройля и атом Бора. Гипотеза о волновой природе электрона позволила дать принципиально новое объяснение стационарным состояниям в атомах. Для того чтобы понять это объяснение, выполним сначала расчет длины дебройлев-ской волны электрона, движущегося по первой разрешенной круговой орбите в атоме водорода. Подставив в уравнение де Бройля выражение для скорости электрона на первой круговой орбите, найденное из правила кпантования Бора  [c.340]

Следует иметь в виду, что все проведенные расчеты и построения дифракционных картин справедливы лишь для источника со сферическим волновым фронтом с равномерным распределением энергии по фронту (дифракция Френеля). Если источник достаточно мал, т.е. может считаться точечным, то результаты эксперимента близки к расчетным данным. Но при ипменении условий опыта согласие с рассмотренной теорией уже не наблюдается. Так, например, на рис. 6.12 приведена копия оригинальной фотог рафии, полученной при дифракции лазерного излучения на крае экрана. В этом случае наблюдается очень четкая дифракционная картина, но отношение интенсивностей максимумов и минимумов существенно отличается от распределения, приведенного на рис. 6.11, так как для лазерного излучения распределение энергии по сферическому волновому фронту нельзя считать равномерным.  [c.267]

Плоская волна проникает в профилированный штрих, причем отдельные его элементы создадут запаздывание по фазе, так как волновая поверхность достигнет разных участков штриха в различные моменты времени. Это запаздывание по фазе с.ледует учитывать при расчете дифракционной картины. Оно приводит к тому, что функцию (sinu/i )2 в выражении (6.49) нужно заменить другой, более сложной функцией, зависящей от геометрии штриха. Соответственно изменится и распределение интенсивности между главными максимумами. Второй множитель в соотношении (6.49), определяющий взаимодействие элементарных дифрагировавших пучков, останется практически прежним.  [c.299]

Так, например, общепринято представление о свободном электроне кик о частице. Действительно, существование такого электрона можно заф Иксировать соответствующими приборцми, приспособленными для регистрации заряженных частиц. Но вместе с тем можно эксперимента.тьно выявить волновые свойства свободного электрона, которые опись[ваютсн волнами де Бройля и используются в технике при расчете электронного микроскопа.  [c.462]

Достоинством ИК-спектрального метода является возможность качественной идентификации фуллеренов с целью их обнаружения в исследуемом объекте. Это относится и к сложным смесям соединений, содержащих молекулы фуллеренов, т. е. для обнаружения фуллеренов при помощи данного метода не требуется предварительной очистки образца. В [132, 133] разработаны специальные методики для качественной и количественной идентификации фуллеренов С60 в железоуглеродистых сплавах. В [125] оптимизирован ИК-спектральный метод количественного определения фуллеренов С60 в сложных многокомпонентных смесях углеводородных соединений в растворах I4. Обосновано, что наиболее подходящей полосой поглощения для построения градуировочного графика является длинноволновая полоса поглощения СбО при 528 см" (рис. 5,16). Предложен метод расчета интенсивностей характеристических полос поглощения фуллерена С60 посредством их усреднения для полос при минимальном (528 см" ) и максимальном (L429 см" ) волновом числе. Показано, что данный метод применим для поглощающих слоев исследуемых растворов разной толщины.  [c.229]

Рис. 9.8. к расчету дифракции волны с амплитудой колебаний, и.чменяющейся по волновому фронту (а), фотографии поперечного сечения лазерного пучка с гауссовым распределением интенсивности при разных расстояниях между плоскостью наблюдения и лазером (б, в, г) и фотография, полученная при ограничении лазерного пучка щелью (<3).  [c.185]


Смотреть страницы где упоминается термин Волновые Расчет : [c.4]    [c.170]    [c.431]    [c.492]   
Курсовое проектирование деталей машин Издание 2 (1988) -- [ c.103 , c.104 , c.105 , c.106 , c.107 , c.113 , c.114 , c.115 , c.116 ]

Детали машин Издание 3 (1974) -- [ c.337 , c.339 , c.342 ]



ПОИСК



587 — Расчет по замерам тензометров 550 — Расчет по замеренным деформациям при ударе — Расчет волновой

Анализ волнового уравнения и расчет скорости звука

Аналитический расчет волновых параметров пленки жидкости при заранее заданном профиле скорости

Волновой метод расчета усилий и деформаций при ударе по цилиндрическим винтовым пружинам

Волновой метол расчета усилий н деформаций при ударе по цилиндрическим винтовым пружинам

Волновые зубчатые передачи Геометрический расчет генераторов волн

Волновые зубчатые передачи Геометрический расчет генераторов волн волновой деформации

Волновые зубчатые передачи Геометрический расчет генераторов волн характеристики основных деталей

Волновые передачи зубчатые — Генераторы волн деформации также Расчет волновой зубчатой передачи

Гука) пружин при ударе — Расчет Волновой метод

Критерии работоспособноПроектировочный расчет волновой зубчатой передачи с приближенным зацеплением

Критерии работоспособности и расчет волновых передач

Л Расчет прямоугольных и круглых волново

Мотор-редукторы волновые — Пример расчета

Обтекание профиля крыла в закритической области. Расчет волнового сопротивления по методу Г. Ф. Бураго

Пример расчета волнового мотор-редукт ора промышленного робота

Пример расчета волновой зубчатой передачи

Пример расчета волновой передачи

Программа расчета волновых процессов в устройствах . иа СПЛ

Проектировочный расчет волновых передач

Расчет активных поверхностей зубьев волновых передач

Расчет валов волновых

Расчет волновой зубчатой передачи — КПД передачи

Расчет волновой зубчатой передачи — КПД передачи смещения производящего контура

Расчет волновой передачи по основным критериям работоспособности

Расчет волновых передач

Расчет волновых процессов в устройствах на СПЛ

Расчет гибкого колеса волновой зубчатой передачи по полубезмоментной теории

Расчет и конструирование волновых передач

Расчет модели волновой картины

Расчет на прочность идолговечность основных деталей волновых зубчатых передач

Расчет планетарной и волновой передач

Расчет редуктора с зубчатым волновым соединением

Редуктор волновой многорядный одноступенчатый с прямым зубом 251 — Расчет зубчатых карданов 251 — Связи избыточные

Тарабасов Н. Д. К вопросу о расчете гибкого колеса волновой механической передачи

УСКОРЕНИЕ - УШКИ РЕССО пружин при ударе — Расчет Волновой метод

УСКОРЕНИЕ пружин при ударе - Расчет Волновой метод

Удар Расчет Упрощенные по пружинам — Расчет — Волновой

Удар Расчет по пружинам ¦— Расчет — Волновой

Усилия в сечениях плоских пружин при ударе — Расчет—Волновой метод

Усилия — Измерение — Расположение цилиндрическим — Расчет волновой

Численный расчет волновых параметров пленки жидкости при взаимодействии с ней газового потока



© 2025 Mash-xxl.info Реклама на сайте