Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные задачи динамики твердого тела

Основные задачи динамики твердого тела  [c.293]

ОСНОВНЫЕ ЗАДАЧИ ДИНАМИКИ ТВЕРДОГО ТЕЛА  [c.493]

Другим крупнейшим ученым этого периода является П. Л. Чебышев (1821 —1894), известный своими многочисленными математическими исследованиями и трудами по прикладной механике он явился основоположником отечественной шко лы теории механизмов и машин. Большое внимание современников привлекли к себе исследования С. В. Ковалевской (1850—1891), завершившиеся решением одной из труднейших задач динамики твердого тела до нее законченные результаты в этой области удалось получить только Эйлеру и Лагранжу. Особое значение для дальнейшего развития естествознания и техники имело творчество ученика П. Л. Чебышева, виднейшего математика и механика А. М. Ляпунова (1857—1918), создателя основ современной теории устойчивости равновесия и движения. На основные результаты и идеи Ляпунова опираются труды большого числа его учеников и последователей, способствовавших дальнейшему развитию этой области науки.  [c.16]


Эти знаменитые уравнения описывают изменение со временем положения мгновенной угловой скорости вращения П относительно системы координат, связанной с телом. Они решают лишь часть динамической задачи о свободном вращении твердого тела и должны быть дополнены описанием движения системы координат, связанной с телом относительно системы неподвижных осей. Эта задача, как и ряд других задач динамики твердого тела, выходит за рамки данной книги, посвященной основным принципам механики и обращающейся к приложениям лишь для иллюстрации применения этих основных принципов. Для дальнейшего изучения этой темы читатель отсылается к учебникам, указанным в библиографии.  [c.130]

Книга содержит обзорные и оригинальные статьи ведущих российских ученых по основным разделам нелинейной механики. Излагаются вопросы составления и анализа уравнений движения механических систем с различными связями (в том числе и с односторонними с учетом ударных явлений), в различных силовых полях (в том числе при наличии сил сухого трения). Обсуждаются вопросы корректности тех или иных моделей механики, вопросы интегрируемости и детерминированного хаоса, вопросы устойчивости и теории возмущений. Исследуются разнообразные конкретные механические системы задача трех тел с учетом их несферичности или упругости, задачи динамики космических аппаратов, задачи динамики твердых тел в различных силовых полях (в том числе с учетом ударных взаимодействий и сил сухого трения), задача динамики твердого тела со струнным приводом, орбитальные тросовые системы и т. д.  [c.3]

Использование методов топологического анализа к интегрированию задач динамики твердого тела, а именно изучение перестроек торов Лиувилля при прохождении через критические значения, впервые предложено М. П. Харламовым [170] и получило свое развитие в теории топологических инвариантов, созданной для классификации интегрируемых гамильтоновых систем с двумя степенями свободы. Почти все известные результаты, полученные с помощью этой техники, представлены в недавно вышедшей книге [25]. Комплексные методы, в основном приводящие к тем же результатам, пропагандируются в книге М. Оден [134].  [c.16]

Здесь мы вкратце изложим основные определения и результаты, необходимые для задач динамики твердого тела. Отметим также, что само развитие теории пуассоновых структур во многом было стимулировано динамикой волчков, так как последняя позволяет сделать абстрактные формулировки многих теорем более наглядными и естественными.  [c.27]


Встречающиеся в этой книге системы в основном являются консервативными (т. е. обладают интегралом энергии) и гамильтоновыми. Имеется также ряд интересных задач динамики твердого тела, которые уже не являются гамильтоновыми. При этом они могут оставаться консервативными. Такого сорта системы возникают в неголономной механике и связаны с качением твердого тела по поверхности при условии полного отсутствия проскальзывания. В фазовом пространстве таких систем, как правило, не обладающих инвариантной мерой, могут существовать нетривиальные притягивающие множества, т. е. инвариантные многообразия, к которым стремится движение с произвольными начальными условиями. Поведение системы может обладать достаточно экзотической динамикой, имеющейся, например, у кельтских камней.  [c.255]

Полностью решить динамическую задачу, применяя методы статики, можно далеко не всегда. Наиболее э( х )ективно применяется принцип Даламбера при решении первой основной задачи динамики, заключающейся в определении сил, если известен закон движения материальной точки, находящейся под их воздействием. Эта задача с формальной точки зрения напоминает задачи статики, так как именно в статике и рассматривается вопрос об определении некоторых неизвестных сил, приложенных к точке или к абсолютно твердому телу. Поэтому в тех случаях, когда в задачах динамики неизвестными являются силы, включая и силы инерции, такие задачи можно эффективно решать посредством принципа Даламбера.  [c.421]

Теория такого рода имеет и другие приложения. Во-первых, она включает в область теоретической механики задачи, которые неразрешимы методами статики или динамики твердого тела. Простейший пример такой задачи дан на рис. 1. Два жестких бруса А, В, соединенных тремя параллельными стержнями а, Ь, с, подвержены действию сил Р так, как показано на рисунке. Одни только теоремы статики не дают нам возможности сказать, как нагрузка распределится между стержнями. Ясно, что ответ зависит от относительной жесткости стержней. Основным требованием является равенство удлинений всех трех стержней.  [c.8]

В статике нами были рассмотрены условия равновесия систем сил, приложенных к абсолютно твердому телу, и условия, при которых твердое тело находится в покое. Задание движения твердого тела и определение скоростей и ускорений точек твердого тела было рассмотрено в кинематике. При изучении динамики твердого тела встают более с южные задачи. Эти задачи делятся на две основные группы. К одной группе относятся задачи, в которых по заданному движению твердого тела требуется определить систему сил, под действием которых происходит это движение. К другой группе относятся задачи, в которых по заданным силам, действующим на твердое тело, требуется при определенных начальных условиях найти закон движения тела, а для несвободного тела найти также реакции связей.  [c.293]

При описании движения твердого тела используются различные системы переменных. Каждая система имеет свои преимущества и недостатки для каждой конкретной задачи. Так для поиска первых интегралов, исследования некоторых вопросов устойчивости и топологического анализа наиболее удобными являются такие переменные, в которых уравнения полиномиальны (или даже однородны). Для численного интегрирования, кроме простой системы дифференциальных уравнений желательно иметь наименьший порядок системы. Для качественного изучения, применения методов теории возмущений и нелинейной нормализации необходимы системы канонических переменных, наиболее отражающие специфику невозмущенной задачи. Здесь мы приводим основные наборы переменных, используемые в динамике твердого тела. На практике, особенно в приложениях к гироскопической технике, также используются различные комбинации и модификации этих систем, обладающих более специальными свойствами.  [c.39]

Понятие конечного элемента служит тем звеном, которое объединяет основы механики сплошных сред и современные методы численного анализа и дает инструмент для получения количественной информации о нелинейных процессах. Хотя основное внимание уделено решению задач механики твердого тела, материал излагается таким образом, что результаты могут быть применены и в ряде других областей математической физики, таких, как динамика разреженных газов или теория электромагнетизма.  [c.4]


В этой главе рассмотрено несколько простейших типовых задач, при решении которых можно использовать теоремы динамики для точки и системы материальных точек — теорему об изменении количества движения, теорему об изменении кинетической энергии и основной закон динамики для вращательного движения твердого тела (А. И. Аркуша, 1.56 и 1.58).  [c.320]

Решение второй задачи динамики для криволинейного движения свободной точки. Изложение методов решения второй задачи динамики составляет, по существу, основное содержание всех разделов динамики точки и динамики механической системы, в частности, твердого тела. Для материальной точки, как уже было сказано, эта задача состоит в том, чтобы по заданным силам, действующим на точку, массе точки и начальным условиям движения точки (начальному ее положению и начальной скорости) определить закон движения этой точки.  [c.456]

Гидравлика и аэродинамика (техническая гидромеханика) — это наука об основных законах движения жидкостей (как капельных, так и газообразных), а также об их силовом взаимодействии с твердыми телами. Техническая гидромеханика является инженерной дисциплиной, так как ее выводы направлены на решение технических задач. Возникла она на основе двух отраслей науки эмпирической гидравлики и теоретической гидродинамики. Указанные дисциплины (так же как аэродинамика и газовая динамика) в настоящее время могут рассматриваться как разделы механики жидкости.  [c.5]

Рассмотрением вращательных движений и условий равновесия тел полностью заканчивается изучение механики твердого тела. Из основных данных опыта было получено определение самого механического движения, найдены условия, при которых могут возникать или изменяться движения тел. Найдены физические величины, которые позволяют определить состояние движения любого тела, а также величины, которые характеризуют взаимодействия тел, вызывающие движения, и, наконец, сформулированы фундаментальные законы динамики, которые дают возможность решать любые задачи о механических движениях тел.  [c.283]

Переходя теперь к динамике систем частного вида, мы замечаем, что XIX век подвинул еще далее задачи о движении твердого тела благодаря преимущественно вышеупомянутому гео.метрическому направлению, но в основном астрономическом вопросе, т. е. в задаче о движении материальных точек под действием взаимного тяготения, ученые встретились с непреодолимыми трудностями. Несмотря на всевозможные новые методы интеграции, предлагаемые школой аналитиков, несмотря на обширные труды перво-  [c.318]

Применяя теорему о кинетической энергии в задачах, относящихся к динамике системы, очень часто приходится вычислять кинетическую энергию движущегося твердого тела найдем выражения для кинетической энергии твердого тела в следующих двух основных случаях  [c.489]

В задачах программированного контроля по динамике студент должен показать знание и умение вычислять основные динамические характеристики материальной точки и твердого тела (количество движения, момент количества движения или кинетический момент относительно точки или оси, кинетическую энергию). Примером может служить карточка программированного контроля по теме Теорема об изменении кинетического момента системы материальных точек относи тельно точки или оси  [c.15]

Далее можно рассмотреть задачи о движении- абсолютно твердого тела. Здесь следует предварительно вывести формулы для кинетической энергии тела, ввести моменты инерции. Наконец, последний раздел посвящается изложению основных теорем динамики. Здесь изложение не отличается от обычного, и мы на нем, не останавливаемся.  [c.75]

Теоретическая механика, изучающая движение и равновесие материальных тел под действием сил, является научной основой целого ряда современных технических дисциплин. Сопротивление материалов, гидромеханика, теория упругости, динамика самолета, ракетодинамика и другие технические дисциплины существенно дополняют и расширяют основные положения и законы классической механики твердого тела, изучая новые классы задач механики и в ряде случаев вводя в рассмотрение новые физические свойства тел. Уравнения теоретической механики, полученные для абсолютно твердых тел, являются необходимыми, но недостаточными для изучения движения и равнове- сия деформируемых тел.  [c.18]

Кинетика изучает движение и равновесие материальных тел под действием сил. Основной задачей кинетики является определение законов механического движения тел при известных действующих силах. Отдел механики, в котором изучается движение материальных тел под действием сил, обычно называют динамикой. Отдел механики, в котором изучается равновесие материальных тел под действием сил, называют статикой. Динамика и статика, рассматриваемые совместно, составляют кине тку. Такое совместное рассмотрение полезно для изложения, так как многие выводы статики можно получить как частные случаи из уравнений динамики. Доказательства многих теорем выигрывают и в строгости, и в ясности при совместном рассмотрении проблем движения и проблем равновесия. Необходимые и достаточные условия равновесия твердых тел нельзя получить без знания законов динамики.  [c.43]

Но в некоторых задачах динамики твердого тела в согласии с тем, что говорилось в общем случае в п. 3 предыдущей главы, оказывается удобным относить основные уравнения к осям, движущимся не только в пространстве, но также и в теле. Закон движения этих осей, смотря по обстоятельствам, выбирается наиболее подхо-  [c.148]


По форме уравнения Аппеля (10), как показывается ниже, ничем не отличаются от уравнений Эйлера—Лагранжа (1.13). Применение тех или иных уравнений— вопрос вычислительного удобства. Пользование уравнениями Эйлера — Лагранжа предполагает предварительное нахождение трехиндексных символов кинетическая энергия должна вычисляться без учета наличия неголономных связей, что усложняет структуру этого выражения само написание уравнений требует внимания в расстановке индексов. При применении уравнений Аппеля основная трудность состоит в вычислении энергии ускорений требуется внимание, чтобы не упустить слагаемых, содержащих квазиускорения. При рассмотрении неголономных систем дело облегчается возможностью учитывать наличие этих связей. Не следует переоценивать значения правил (4.10.4) и (4.10.12) составления энергии ускорений 5 по кинетической энергии Т, так как применение второго из них требует знания трехиндексных символов и выражения Г, вычисленного при отброшенных связях, а применение первого для составления уравнений Аппеля в форме (5.18) воспроизводит выкладки, которые надо проделать при написании уравнений Лагранжа второго рода (если неголономные связи отсутствуют). Важное значение имеют в задачах динамики твердого тела правила составления 5, данные в п. 4.11. Уравнения Аппеля легко запоминаемы, а процесс  [c.397]

Уравнения (1.1) не являются инвариантными относительно произвольных координатных преобразований. Кроме того, при записи основных уравнений динамики твердого тела в виде (1.1) они теряют алгебраичность и приобретают особенности, не связанные с существом задачи (см. 4 п. 2). Прежде чем привести уравнения движения в более приемлемой форме, сохраняющей основные свойства канонической записи, остановимся на инвариантном изложении гамильтоновой механики.  [c.28]

Цель этого параграфа - предложить достаточно простое, хотя и не исчерпывающее, изложение того, что обычно называют бифуркацией рождения предельного цикла из слабого фокуса, а также ее приложений к задачам динамики твердого тела, взаимодействующего с сопротивляющейся средой. Исторически это восходит к работам Пуанкаре [196, 197] (1892 г.). Эта тема также обсуждалась A.A. Андроновым [3-13], начиная с 1930 г. Основные же работы Хопфа по данному вопросу появились в 1942 г. Хотя термин бифуркация Пуанкаре-Андронова-Хопфа (сюда иногда даже включают Фрид-рихса) бьш бы более точным, в западной литературе более распространен термин бифуркация Хопфа . Причиной этого является то, что самый существенный вклад Хопфа - обобщение результата с двумерного случая на высшие размерности.  [c.175]

Аналитическая форма механики, развитая Эйлером и Ла-гранжем, существенно отличается по своим методам и принципам от механики векторной. Основной закон механики, сформулированный Ньютоном произведение массы на ускорение равно движущей силе ,— непосредственно применим лишь к одной частице. Он был выведен при изучении движения частиц в поле тяготения Земли, а затем применен к движению планет под воздействием Солнца. В обоих случаях движущееся тело могло рассматриваться как материальная точка или частица , т. е. можно было считать массу сосредоточенной в одной точке. Таким образом, задача динамики формулировалась в следующем виде Частица, которая может свободно перемещаться в пространстве, находится под действием заданной силы. Описать движение в любой момент времени . Из закона Ньютона получалось дифференциальное уравнение движения, и решение задачи динамики сводилось к интегрированию этого уравнения Если частица не является свободной, а связана с други ми частицами, как, например, в твердом теле или в жидкости то уравнение Ньютона следует применять осторожно. Не обходимо сначала выделить одну частицу и определить силы которые на нее действуют со стороны остальных, окружа ющих ее частиц. Каждая частица является независимым объектом и подчиняется закону движения свободной частицы Этот анализ сил зачастую является затруднительным Так как природа сил взаимодействия заранее неизвестна приходится вводить дополнительные постулаты. Ньютон полагал, что принцип действие равно противодействию известный как его третий закон движения, будет достаточен для всех проблем динамики. Это, однако, не так. Даже в динамике твердого тела пришлось ввести дополнительное предположение о том, что внутренние силы являются цен-  [c.25]

Н. Е. Жуковский принадлежал к числу немногих ученых, которые с одинаковым успехом работали и над отвлеченными теоретическими вопросами, и над практическими задачами, выдвигавшимися современной ему техникой. Основные работы Н. Е. Жуковского относятся к динамике твердого тела, к устойчивости движения и гидромеханике. Однако наибольшую известность доставили ему работы по теоретической и экспериментальной аэродинамике он справедливо считается основоположником теории авиации. В начале девятисотых годов он организует аэродинамические лаборатории при механическом кабинете Московского университета, в Кучино под Москвой и в Московском высшем техническом училище. В 1Ш8 г., после Великой Октябрьской социалистической революции при его участии 0ыл организован Центральный аэрогидродинамический институт в Москве, Полное собрание сочинений Н. Е. Жуковского в десяти томах впервые было издано в 1937 г. Прим. ред.)  [c.55]

Книга включает в себя элементы теории скользящих векторов, геометрическую и аналитическую статику, динамику материальной точки и системы материальных точек, динамику твердого тела, аналитическую динамику, элементы теории удара и элементы специального принципа относительности Эйнштейна. В основу кинематики положено понятие сложного движения, базирующееся на теории скользящих векторов. В статике большое внимание уделено методу возможных перемещений. В динамике точки более подробно изучаются центральные движения и относительные движения. При изложении основных теорем динамики системы материальных точек автор следовал методам Н. Е. Жуковского и Н. Г. Че-таева, продолжавших идеи Лагранжа. Это направление проходит через весь курс и особенно подчеркивается при рассмотрении решений задач. В раздел аналитическая дина-  [c.7]

В XVIII в. начинается интенсивное развитие в механике аналитических методов, т. е. методов,- основанных на применении дифференциального и интегрального исчислений. Методы решения задач динамики точки и твердого тела путем составления и интегрирования соответствующих дифференциальных уравнений были разработаны великим математиком и механиком Л. Эйлером (1707—1783). Из других исследований в этой области наибольшее значение для развития механики имели труды выдающихся французских ученых Ж. Даламбера (1717—1783), предложившего свой известный принцип решения зйдач динамики, и Ж. Лагранжа (1736—1813), разработавшего общий аналитический метод решения задач динамики на основе принципа Даламбера и принципа возможных перемещений. В настоящее время аналитические методы решения задач являются в динамике основными.  [c.7]

Для изучения поступательного движения твердого тела вводится понятие материальной точки [1]. Это позволяет сделать динамику материальной точки физически ощутимой, облегчает анализ упражнений и сопоставление с опытными данными аксиоматически вводимых принципа относительности Галилея, принципа детерминированности и законов Ньютона. Анализируются ограничения на форму законов механики и физики, следующие из принципов относительности и детерминированности [5, 67]. Ставятся основные задачи механики. Выявляются преимущества различных систем криволинейных координат для описания движения точки. Доказываются основные теоремы механики и сообщаются основные приемы, применяемые для исследования движения. Как основа качественного анализа поведения механических объектов подробно изучаются фазовые портреты осцилляторов. На их примере демонстрируется влияние потенциальных и диссипативных сил, а также резонансные явления различных типов [37]. Изучается динамика материальной точки, стесненной связями [61].  [c.11]


С развитием гироприборостроения классические задачи динамики движения твердого тела около неподвижной точки отошли на второй план, уступив место задачам, выдвигаемым техникой гироприборостроения, развитие которых в основном относится к началу XX столетия.  [c.9]

Подводя итоги, укажем, что в теории оболочек, так же как и во всех задачах механики сплошных сред твердого деформируемого тела (т. е. задачах, в которых рассматриваются тела из материала, непрерывно распределенного по всему объему), мы интересуемся прежде всего выявлением связей между нагрузками, напряжениями, деформациями и перемещениями. Разумеется, при этом могут быть включены в рассмотрение и другие физические величины, например температура в задачах о тепловых напряжениях, а также время и масса в инерционных нагрузках в задачах динамики, но более удобно сконцентрировать наше внимание на упомянутых выше четырех основных величинах, а другие физические величины принимать ва внимание только либо при определении этих четырех, либо на основе связей между ними. Для удобства эти величины и вид связей между рими выписаны в табл. 1.2.  [c.16]

Длительности нестационарных процессов, в которых необходимо исследование температурной динамики, лежат в очень широком интервале, который можно грубо ограничить рамками от 10 до 10 с. В наиболее быстрых исследуемых процессах, дляш,ихся в течение фемто-и пикосекунд, само понятие температуры требует суш,ественных уточнений и оговорок, поскольку веш,ество в таких процессах не находится в состоянии термодинамического равновесия. Пространственное разрешение некоторых методов термометрии составляет 1 мкм (например, для диагностики биологических клеток созданы термопары, диаметр спс1Я которых 1 мкм), однако для решения ряда задач требуется намного более высокое разрешение. С помощью многочисленных методов измеряют температуры в диапазоне от 10 до 10 К. В области температур в ЮООч-1500 К наиболее распространенным методом измерения является в настоящее время радиационная термометрия. Для измерений при 0 1 К применяются главным образом методы, основанные на температурной зависимости парамагнитных свойств твердых тел [1.3]. В широком диапазоне температур может использоваться шумовая термометрия [1.4], для применения этого метода необходима качественная и чувствительная электронная аппаратура, а регистрируемый сигнал не должен содержать составляющих, происхождение которых имеет нетепловую природу. Расширение диапазона измеряемых температур, повышение точности, быстродействия и удобства применяемых методов и средств термометрии являются основным мотивом создания новых методов и измерительных приборов.  [c.8]

Анализ бесконечно малых величин в приложении к задачам механики впервые применил знаменитый математик и механик XVIII в., член Россййской Академии наук Леонард Эйлер (1707—1783). Он написал 43 тома сочинений н более 780 статей. Большое число его выдающихся трудов относится к задачам механики. Эйлером был создан фундаментальный труд по аналитической динамике точки и твердого тела. С большой ясностью и полнотой Эйлер разработал задачи о движении твердого тела около неподвижной точки. Полученные Эйлером в этих задачах формулы, известные под названием эйлеровых, вошли во все современные курсы теоретической механики. Эйлера следует считать и основателем гидродинамики, так как он впервые вывел основные уравнения движения идеальной жидкости.  [c.7]

Полное решение проблемы выбора надлежащей модели материала даже в такой упрощенной форме далеко от завершения, однако имеются примеры удачных частных решений. Так, при сверхвысоких (порядка модуля упругости) давлениях, развивающихся при гиперскоростных соударениях, успешно используется модель идеальной жидкости (М. А. Лаврентьев, 1949). Для материалов типа полимеров, для которых существенны эффекты несовершенной упругости, иногда используется модель вязкоупругого тела (см., например, А. Ю. Ишлинский, 1940). Что касается материалов типа металлов, находящихся под действием умеренно высоких напряжений порядка предела текучести (которым, в основном, и посвящен данный обзор), то для их изучения могут использоваться два подхода. В основе первого из них лежит допущение, что за пределами упругости материал переходит в вязко-пластическое состояние и его определяющее уравнение зависит от времени. Начало этому направлению подолбили работы А. А. Ильюшина (1940, 1941), в которых в качестве определяющих уравнений использованы уравнения вязко-пластического течения, не учитывающие упругих деформаций. В этих работах дано решение нескольких теоретических задач (удар по цилиндрическому образцу твердым телом, деформирование полого цилиндра под действием внутреннего давления) и описан сконструированный автором первый пневматический копер, позволявший достигать скоростей деформаций порядка 10 Исек (с помощью его были определены коэффициенты вязкости некоторых металлов). Сразу вслед за тем учениками А. А. Ильюшина были решены задачи о вращении цилиндра в вязко-пластической среде (П. М. Огибалов, 1941) и об ударе цилиндра по вязко-пластической пластинке (Ф. А. Бахшиян, 1948 — опубликование этой работы задержалось на ряд лет). С математической точки зрения уравнения динамики одноосного вязко-пластического тела принадлежат к классу уравнений параболического типа.  [c.303]

Перемещение среды как целого и ее деформация при заданном поле и ( , г), конечно, перепутаны , не разделены. Движение сплошной среды обычно сопровождается деформацией, а может в определенных условиях проходить и без деформации. В этом случае говорят о квазитвер-дом движении среды, имея в виду, что она перемещается как твердое тело. Конечно, важно из общего случая движения сплошной среды уметь выделить те кинематические факторы, которые непосредственно связаны с деформацией. Именно они в динамике будут соотнесены с силовыми воздействиями, ответственными за деформацию среды. Б этом, по сути, и состоит основная задача теории деформации.  [c.55]


Смотреть страницы где упоминается термин Основные задачи динамики твердого тела : [c.70]    [c.261]    [c.7]    [c.53]    [c.304]    [c.13]    [c.12]    [c.2]   
Смотреть главы в:

Курс теоретической механики Том2 Изд2  -> Основные задачи динамики твердого тела

Курс теоретической механики  -> Основные задачи динамики твердого тела



ПОИСК



Две основные задачи динамики

Динамика ее задачи

Динамика твердого тела

Динамика твердого тела. Общие соображения Элементарные задачи Основные уравнения

Динамика твердых тел

Динамика, основная задача

Задача основная

Задачи динамики

Задачи динамики твердого тела

Основная задача динамики

Основное уравнение динамики вращательного движения твердого тела. Две задачи динамики вращательного движения

Основные Динамика

Основные задачи



© 2025 Mash-xxl.info Реклама на сайте